#!/usr/bin/env python3 # -*- encoding: utf-8 -*- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) import argparse import logging import os import sys from typing import Optional from typing import Union import numpy as np import torch import librosa from funasr.build_utils.build_streaming_iterator import build_streaming_iterator from funasr.torch_utils.set_all_random_seed import set_all_random_seed from funasr.utils import config_argparse from funasr.utils.cli_utils import get_commandline_args from funasr.utils.types import str2triple_str from funasr.bin.ss_infer import SpeechSeparator def inference_ss( batch_size: int, ngpu: int, log_level: Union[int, str], ss_infer_config: Optional[str], ss_model_file: Optional[str], output_dir: Optional[str] = None, dtype: str = "float32", seed: int = 0, num_workers: int = 1, num_spks: int = 2, sample_rate: int = 8000, param_dict: dict = None, **kwargs, ): ncpu = kwargs.get("ncpu", 1) torch.set_num_threads(ncpu) if batch_size > 1: raise NotImplementedError("batch decoding is not implemented") logging.basicConfig( level=log_level, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", ) if ngpu >= 1 and torch.cuda.is_available(): device = "cuda" else: device = "cpu" batch_size = 1 # 1. Set random-seed set_all_random_seed(seed) # 2. Build speech separator speech_separator_kwargs = dict( ss_infer_config=ss_infer_config, ss_model_file=ss_model_file, device=device, dtype=dtype, ) logging.info("speech_separator_kwargs: {}".format(speech_separator_kwargs)) speech_separator = SpeechSeparator(**speech_separator_kwargs) def _forward( data_path_and_name_and_type, raw_inputs: Union[np.ndarray, torch.Tensor] = None, output_dir_v2: Optional[str] = None, fs: dict = None, param_dict: dict = None ): # 3. Build data-iterator if data_path_and_name_and_type is None and raw_inputs is not None: if isinstance(raw_inputs, torch.Tensor): raw_inputs = raw_inputs.numpy() data_path_and_name_and_type = [raw_inputs, "speech", "waveform"] loader = build_streaming_iterator( task_name="ss", preprocess_args=None, data_path_and_name_and_type=data_path_and_name_and_type, dtype=dtype, fs=fs, batch_size=batch_size, num_workers=num_workers, ) # 4 .Start for-loop output_path = output_dir_v2 if output_dir_v2 is not None else output_dir if not os.path.exists(output_path): cmd = 'mkdir -p ' + output_path os.system(cmd) for keys, batch in loader: assert isinstance(batch, dict), type(batch) assert all(isinstance(s, str) for s in keys), keys _bs = len(next(iter(batch.values()))) assert len(keys) == _bs, f"{len(keys)} != {_bs}" # do speech separation logging.info('decoding: {}'.format(keys[0])) ss_results = speech_separator(**batch) for spk in range(num_spks): # sf.write(os.path.join(output_path, keys[0] + '_s' + str(spk+1)+'.wav'), ss_results[spk], sample_rate) try: librosa.output.write_wav(os.path.join(output_path, keys[0] + '_s' + str(spk+1)+'.wav'), ss_results[spk], sample_rate) except: print("To write wav by librosa, you should install librosa<=0.8.0") raise torch.cuda.empty_cache() return ss_results return _forward def inference_launch(mode, **kwargs): if mode == "mossformer": return inference_ss(**kwargs) else: logging.info("Unknown decoding mode: {}".format(mode)) return None def get_parser(): parser = config_argparse.ArgumentParser( description="Speech Separator Decoding", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) # Note(kamo): Use '_' instead of '-' as separator. # '-' is confusing if written in yaml. parser.add_argument( "--log_level", type=lambda x: x.upper(), default="INFO", choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"), help="The verbose level of logging", ) parser.add_argument("--output_dir", type=str, required=True) parser.add_argument( "--ngpu", type=int, default=1, help="The number of gpus. 0 indicates CPU mode", ) parser.add_argument( "--njob", type=int, default=1, help="The number of jobs for each gpu", ) parser.add_argument( "--gpuid_list", type=str, default="2", help="The visible gpus", ) parser.add_argument("--seed", type=int, default=0, help="Random seed") parser.add_argument( "--dtype", default="float32", choices=["float16", "float32", "float64"], help="Data type", ) parser.add_argument( "--num_workers", type=int, default=1, help="The number of workers used for DataLoader", ) group = parser.add_argument_group("Input data related") group.add_argument( "--data_path_and_name_and_type", type=str2triple_str, required=True, action="append", ) group = parser.add_argument_group("The model configuration related") group.add_argument( "--ss_infer_config", type=str, help="SS infer configuration", ) group.add_argument( "--ss_model_file", type=str, help="SS model parameter file", ) group.add_argument( "--ss_train_config", type=str, help="SS training configuration", ) group = parser.add_argument_group("The inference configuration related") group.add_argument( "--batch_size", type=int, default=1, help="The batch size for inference", ) parser.add_argument( '--num-spks', dest='num_spks', type=int, default=2) parser.add_argument( '--one-time-decode-length', dest='one_time_decode_length', type=int, default=60, help='the max length (second) for one-time decoding') parser.add_argument( '--decode-window', dest='decode_window', type=int, default=1, help='segmental decoding window length (second)') parser.add_argument( '--sample-rate', dest='sample_rate', type=int, default='8000') return parser def main(cmd=None): print(get_commandline_args(), file=sys.stderr) parser = get_parser() parser.add_argument( "--mode", type=str, default="mossformer", help="The decoding mode", ) args = parser.parse_args(cmd) kwargs = vars(args) kwargs.pop("config", None) # set logging messages logging.basicConfig( level=args.log_level, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", ) logging.info("Decoding args: {}".format(kwargs)) # gpu setting if args.ngpu > 0: jobid = int(args.output_dir.split(".")[-1]) gpuid = args.gpuid_list.split(",")[(jobid - 1) // args.njob] os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = gpuid inference_pipeline = inference_launch(**kwargs) return inference_pipeline(kwargs["data_path_and_name_and_type"]) if __name__ == "__main__": main()