## 快速使用 ### Windows 安装Vs2022 打开cpp_onnx目录下的cmake工程,直接 build即可。 本仓库已经准备好所有相关依赖库。 Windows下已经预置fftw3及onnxruntime库 ### Linux See the bottom of this page: Building Guidance ### 运行程序 tester /path/to/models_dir /path/to/wave_file quantize(true or false) 例如: tester /data/models /data/test.wav false /data/models 需要包括如下三个文件: config.yaml, am.mvn, model.onnx(or model_quant.onnx) ## 支持平台 - Windows - Linux/Unix ## 依赖 - fftw3 - openblas - onnxruntime ## 导出onnx格式模型文件 安装 modelscope与FunASR,依赖:torch,torchaudio,安装过程[详细参考文档](https://github.com/alibaba-damo-academy/FunASR/wiki) ```shell pip install "modelscope[audio_asr]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html git clone https://github.com/alibaba/FunASR.git && cd FunASR pip install --editable ./ ``` 导出onnx模型,[详见](https://github.com/alibaba-damo-academy/FunASR/tree/main/funasr/export),参考示例,从modelscope中模型导出: ```shell python -m funasr.export.export_model --model-name damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type onnx --quantize True ``` ## Building Guidance for Linux/Unix ``` git clone https://github.com/alibaba-damo-academy/FunASR.git && cd funasr/runtime/onnxruntime mkdir build cd build # download an appropriate onnxruntime from https://github.com/microsoft/onnxruntime/releases/tag/v1.14.0 # here we get a copy of onnxruntime for linux 64 wget https://github.com/microsoft/onnxruntime/releases/download/v1.14.0/onnxruntime-linux-x64-1.14.0.tgz tar -zxvf onnxruntime-linux-x64-1.14.0.tgz # ls # onnxruntime-linux-x64-1.14.0 onnxruntime-linux-x64-1.14.0.tgz #install fftw3-dev ubuntu: apt install libfftw3-dev centos: yum install fftw fftw-devel #install openblas bash ./third_party/install_openblas.sh # build cmake -DCMAKE_BUILD_TYPE=release .. -DONNXRUNTIME_DIR=/path/to/onnxruntime-linux-x64-1.14.0 make # then in the subfolder tester of current direcotry, you will see a program, tester ```` ### The structure of a qualified onnxruntime package. ``` onnxruntime_xxx ├───include └───lib ``` ## 注意 本程序只支持 采样率16000hz, 位深16bit的 **单声道** 音频。 ## Acknowledge 1. This project is maintained by [FunASR community](https://github.com/alibaba-damo-academy/FunASR). 2. We acknowledge [mayong](https://github.com/RapidAI/RapidASR/tree/main/cpp_onnx) for contributing the onnxruntime(cpp api). 3. We borrowed a lot of code from [FastASR](https://github.com/chenkui164/FastASR) for audio frontend and text-postprocess.