#!/usr/bin/env python3 # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) from contextlib import contextmanager from distutils.version import LooseVersion from itertools import permutations from typing import Dict from typing import Optional from typing import Tuple, List import numpy as np import torch from torch.nn import functional as F from typeguard import check_argument_types from funasr.modules.nets_utils import to_device from funasr.modules.nets_utils import make_pad_mask from funasr.models.decoder.abs_decoder import AbsDecoder from funasr.models.encoder.abs_encoder import AbsEncoder from funasr.models.frontend.abs_frontend import AbsFrontend from funasr.models.specaug.abs_specaug import AbsSpecAug from funasr.layers.abs_normalize import AbsNormalize from funasr.torch_utils.device_funcs import force_gatherable from funasr.train.abs_espnet_model import AbsESPnetModel from funasr.losses.label_smoothing_loss import LabelSmoothingLoss, SequenceBinaryCrossEntropy from funasr.utils.misc import int2vec if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"): from torch.cuda.amp import autocast else: # Nothing to do if torch<1.6.0 @contextmanager def autocast(enabled=True): yield class DiarSondModel(AbsESPnetModel): """Speaker overlap-aware neural diarization model reference: https://arxiv.org/abs/2211.10243 """ def __init__( self, vocab_size: int, frontend: Optional[AbsFrontend], specaug: Optional[AbsSpecAug], normalize: Optional[AbsNormalize], encoder: torch.nn.Module, speaker_encoder: Optional[torch.nn.Module], ci_scorer: torch.nn.Module, cd_scorer: Optional[torch.nn.Module], decoder: torch.nn.Module, token_list: list, lsm_weight: float = 0.1, length_normalized_loss: bool = False, max_spk_num: int = 16, label_aggregator: Optional[torch.nn.Module] = None, normalize_speech_speaker: bool = False, ignore_id: int = -1, speaker_discrimination_loss_weight: float = 1.0, inter_score_loss_weight: float = 0.0, inputs_type: str = "raw", ): assert check_argument_types() super().__init__() self.encoder = encoder self.speaker_encoder = speaker_encoder self.ci_scorer = ci_scorer self.cd_scorer = cd_scorer self.normalize = normalize self.frontend = frontend self.specaug = specaug self.label_aggregator = label_aggregator self.decoder = decoder self.token_list = token_list self.max_spk_num = max_spk_num self.normalize_speech_speaker = normalize_speech_speaker self.ignore_id = ignore_id self.criterion_diar = LabelSmoothingLoss( size=vocab_size, padding_idx=ignore_id, smoothing=lsm_weight, normalize_length=length_normalized_loss, ) self.criterion_bce = SequenceBinaryCrossEntropy(normalize_length=length_normalized_loss) self.pse_embedding = self.generate_pse_embedding() self.power_weight = torch.from_numpy(2 ** np.arange(max_spk_num)[np.newaxis, np.newaxis, :]).float() self.int_token_arr = torch.from_numpy(np.array(self.token_list).astype(int)[np.newaxis, np.newaxis, :]).int() self.speaker_discrimination_loss_weight = speaker_discrimination_loss_weight self.inter_score_loss_weight = inter_score_loss_weight self.forward_steps = 0 self.inputs_type = inputs_type def generate_pse_embedding(self): embedding = np.zeros((len(self.token_list), self.max_spk_num), dtype=np.float) for idx, pse_label in enumerate(self.token_list): emb = int2vec(int(pse_label), vec_dim=self.max_spk_num, dtype=np.float) embedding[idx] = emb return torch.from_numpy(embedding) def forward( self, speech: torch.Tensor, speech_lengths: torch.Tensor = None, profile: torch.Tensor = None, profile_lengths: torch.Tensor = None, binary_labels: torch.Tensor = None, binary_labels_lengths: torch.Tensor = None, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: """Frontend + Encoder + Speaker Encoder + CI Scorer + CD Scorer + Decoder + Calc loss Args: speech: (Batch, samples) or (Batch, frames, input_size) speech_lengths: (Batch,) default None for chunk interator, because the chunk-iterator does not have the speech_lengths returned. see in espnet2/iterators/chunk_iter_factory.py profile: (Batch, N_spk, dim) profile_lengths: (Batch,) binary_labels: (Batch, frames, max_spk_num) binary_labels_lengths: (Batch,) """ assert speech.shape[0] <= binary_labels.shape[0], (speech.shape, binary_labels.shape) batch_size = speech.shape[0] self.forward_steps = self.forward_steps + 1 if self.pse_embedding.device != speech.device: self.pse_embedding = self.pse_embedding.to(speech.device) self.power_weight = self.power_weight.to(speech.device) self.int_token_arr = self.int_token_arr.to(speech.device) # 1. Network forward pred, inter_outputs = self.prediction_forward( speech, speech_lengths, profile, profile_lengths, return_inter_outputs=True ) (speech, speech_lengths), (profile, profile_lengths), (ci_score, cd_score) = inter_outputs # 2. Aggregate time-domain labels to match forward outputs if self.label_aggregator is not None: binary_labels, binary_labels_lengths = self.label_aggregator( binary_labels, binary_labels_lengths ) # 2. Calculate power-set encoding (PSE) labels raw_pse_labels = torch.sum(binary_labels * self.power_weight, dim=2, keepdim=True) pse_labels = torch.argmax((raw_pse_labels.int() == self.int_token_arr).float(), dim=2) # If encoder uses conv* as input_layer (i.e., subsampling), # the sequence length of 'pred' might be slightly less than the # length of 'spk_labels'. Here we force them to be equal. length_diff_tolerance = 2 length_diff = abs(pse_labels.shape[1] - pred.shape[1]) if length_diff <= length_diff_tolerance: min_len = min(pred.shape[1], pse_labels.shape[1]) pse_labels = pse_labels[:, :min_len] pred = pred[:, :min_len] cd_score = cd_score[:, :min_len] ci_score = ci_score[:, :min_len] loss_diar = self.classification_loss(pred, pse_labels, binary_labels_lengths) loss_spk_dis = self.speaker_discrimination_loss(profile, profile_lengths) loss_inter_ci, loss_inter_cd = self.internal_score_loss(cd_score, ci_score, pse_labels, binary_labels_lengths) label_mask = make_pad_mask(binary_labels_lengths, maxlen=pse_labels.shape[1]).to(pse_labels.device) loss = (loss_diar + self.speaker_discrimination_loss_weight * loss_spk_dis + self.inter_score_loss_weight * (loss_inter_ci + loss_inter_cd)) ( correct, num_frames, speech_scored, speech_miss, speech_falarm, speaker_scored, speaker_miss, speaker_falarm, speaker_error, ) = self.calc_diarization_error( pred=F.embedding(pred.argmax(dim=2) * (~label_mask), self.pse_embedding), label=F.embedding(pse_labels * (~label_mask), self.pse_embedding), length=binary_labels_lengths ) if speech_scored > 0 and num_frames > 0: sad_mr, sad_fr, mi, fa, cf, acc, der = ( speech_miss / speech_scored, speech_falarm / speech_scored, speaker_miss / speaker_scored, speaker_falarm / speaker_scored, speaker_error / speaker_scored, correct / num_frames, (speaker_miss + speaker_falarm + speaker_error) / speaker_scored, ) else: sad_mr, sad_fr, mi, fa, cf, acc, der = 0, 0, 0, 0, 0, 0, 0 stats = dict( loss=loss.detach(), loss_diar=loss_diar.detach() if loss_diar is not None else None, loss_spk_dis=loss_spk_dis.detach() if loss_spk_dis is not None else None, loss_inter_ci=loss_inter_ci.detach() if loss_inter_ci is not None else None, loss_inter_cd=loss_inter_cd.detach() if loss_inter_cd is not None else None, sad_mr=sad_mr, sad_fr=sad_fr, mi=mi, fa=fa, cf=cf, acc=acc, der=der, forward_steps=self.forward_steps, ) loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) return loss, stats, weight def classification_loss( self, predictions: torch.Tensor, labels: torch.Tensor, prediction_lengths: torch.Tensor ) -> torch.Tensor: mask = make_pad_mask(prediction_lengths, maxlen=labels.shape[1]) pad_labels = labels.masked_fill( mask.to(predictions.device), value=self.ignore_id ) loss = self.criterion_diar(predictions.contiguous(), pad_labels) return loss def speaker_discrimination_loss( self, profile: torch.Tensor, profile_lengths: torch.Tensor ) -> torch.Tensor: profile_mask = (torch.linalg.norm(profile, ord=2, dim=2, keepdim=True) > 0).float() # (B, N, 1) mask = torch.matmul(profile_mask, profile_mask.transpose(1, 2)) # (B, N, N) mask = mask * (1.0 - torch.eye(self.max_spk_num).unsqueeze(0).to(mask)) eps = 1e-12 coding_norm = torch.linalg.norm( profile * profile_mask + (1 - profile_mask) * eps, dim=2, keepdim=True ) * profile_mask # profile: Batch, N, dim cos_theta = F.cosine_similarity(profile.unsqueeze(2), profile.unsqueeze(1), dim=-1, eps=eps) * mask cos_theta = torch.clip(cos_theta, -1 + eps, 1 - eps) loss = (F.relu(mask * coding_norm * (cos_theta - 0.0))).sum() / mask.sum() return loss def calculate_multi_labels(self, pse_labels, pse_labels_lengths): mask = make_pad_mask(pse_labels_lengths, maxlen=pse_labels.shape[1]) padding_labels = pse_labels.masked_fill( mask.to(pse_labels.device), value=0 ).to(pse_labels) multi_labels = F.embedding(padding_labels, self.pse_embedding) return multi_labels def internal_score_loss( self, cd_score: torch.Tensor, ci_score: torch.Tensor, pse_labels: torch.Tensor, pse_labels_lengths: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: multi_labels = self.calculate_multi_labels(pse_labels, pse_labels_lengths) ci_loss = self.criterion_bce(ci_score, multi_labels, pse_labels_lengths) cd_loss = self.criterion_bce(cd_score, multi_labels, pse_labels_lengths) return ci_loss, cd_loss def collect_feats( self, speech: torch.Tensor, speech_lengths: torch.Tensor, profile: torch.Tensor = None, profile_lengths: torch.Tensor = None, binary_labels: torch.Tensor = None, binary_labels_lengths: torch.Tensor = None, ) -> Dict[str, torch.Tensor]: feats, feats_lengths = self._extract_feats(speech, speech_lengths) return {"feats": feats, "feats_lengths": feats_lengths} def encode_speaker( self, profile: torch.Tensor, profile_lengths: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: with autocast(False): if profile.shape[1] < self.max_spk_num: profile = F.pad(profile, [0, 0, 0, self.max_spk_num-profile.shape[1], 0, 0], "constant", 0.0) profile_mask = (torch.linalg.norm(profile, ord=2, dim=2, keepdim=True) > 0).float() profile = F.normalize(profile, dim=2) if self.speaker_encoder is not None: profile = self.speaker_encoder(profile, profile_lengths)[0] return profile * profile_mask, profile_lengths else: return profile, profile_lengths def encode_speech( self, speech: torch.Tensor, speech_lengths: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: if self.encoder is not None and self.inputs_type == "raw": speech, speech_lengths = self.encode(speech, speech_lengths) speech_mask = ~make_pad_mask(speech_lengths, maxlen=speech.shape[1]) speech_mask = speech_mask.to(speech.device).unsqueeze(-1).float() return speech * speech_mask, speech_lengths else: return speech, speech_lengths @staticmethod def concate_speech_ivc( speech: torch.Tensor, ivc: torch.Tensor ) -> torch.Tensor: nn, tt = ivc.shape[1], speech.shape[1] speech = speech.unsqueeze(dim=1) # B x 1 x T x D speech = speech.expand(-1, nn, -1, -1) # B x N x T x D ivc = ivc.unsqueeze(dim=2) # B x N x 1 x D ivc = ivc.expand(-1, -1, tt, -1) # B x N x T x D sd_in = torch.cat([speech, ivc], dim=3) # B x N x T x 2D return sd_in def calc_similarity( self, speech_encoder_outputs: torch.Tensor, speaker_encoder_outputs: torch.Tensor, seq_len: torch.Tensor = None, spk_len: torch.Tensor = None, ) -> Tuple[torch.Tensor, torch.Tensor]: bb, tt = speech_encoder_outputs.shape[0], speech_encoder_outputs.shape[1] d_sph, d_spk = speech_encoder_outputs.shape[2], speaker_encoder_outputs.shape[2] if self.normalize_speech_speaker: speech_encoder_outputs = F.normalize(speech_encoder_outputs, dim=2) speaker_encoder_outputs = F.normalize(speaker_encoder_outputs, dim=2) ge_in = self.concate_speech_ivc(speech_encoder_outputs, speaker_encoder_outputs) ge_in = torch.reshape(ge_in, [bb * self.max_spk_num, tt, d_sph + d_spk]) ge_len = seq_len.unsqueeze(1).expand(-1, self.max_spk_num) ge_len = torch.reshape(ge_len, [bb * self.max_spk_num]) cd_simi = self.cd_scorer(ge_in, ge_len)[0] cd_simi = torch.reshape(cd_simi, [bb, self.max_spk_num, tt, 1]) cd_simi = cd_simi.squeeze(dim=3).permute([0, 2, 1]) if isinstance(self.ci_scorer, AbsEncoder): ci_simi = self.ci_scorer(ge_in, ge_len)[0] ci_simi = torch.reshape(ci_simi, [bb, self.max_spk_num, tt]).permute([0, 2, 1]) else: ci_simi = self.ci_scorer(speech_encoder_outputs, speaker_encoder_outputs) return ci_simi, cd_simi def post_net_forward(self, simi, seq_len): logits = self.decoder(simi, seq_len)[0] return logits def prediction_forward( self, speech: torch.Tensor, speech_lengths: torch.Tensor, profile: torch.Tensor, profile_lengths: torch.Tensor, return_inter_outputs: bool = False, ) -> [torch.Tensor, Optional[list]]: # speech encoding speech, speech_lengths = self.encode_speech(speech, speech_lengths) # speaker encoding profile, profile_lengths = self.encode_speaker(profile, profile_lengths) # calculating similarity ci_simi, cd_simi = self.calc_similarity(speech, profile, speech_lengths, profile_lengths) similarity = torch.cat([cd_simi, ci_simi], dim=2) # post net forward logits = self.post_net_forward(similarity, speech_lengths) if return_inter_outputs: return logits, [(speech, speech_lengths), (profile, profile_lengths), (ci_simi, cd_simi)] return logits def encode( self, speech: torch.Tensor, speech_lengths: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: """Frontend + Encoder Args: speech: (Batch, Length, ...) speech_lengths: (Batch,) """ with autocast(False): # 1. Extract feats feats, feats_lengths = self._extract_feats(speech, speech_lengths) # 2. Data augmentation if self.specaug is not None and self.training: feats, feats_lengths = self.specaug(feats, feats_lengths) # 3. Normalization for feature: e.g. Global-CMVN, Utterance-CMVN if self.normalize is not None: feats, feats_lengths = self.normalize(feats, feats_lengths) # 4. Forward encoder # feats: (Batch, Length, Dim) # -> encoder_out: (Batch, Length2, Dim) encoder_outputs = self.encoder(feats, feats_lengths) encoder_out, encoder_out_lens = encoder_outputs[:2] assert encoder_out.size(0) == speech.size(0), ( encoder_out.size(), speech.size(0), ) assert encoder_out.size(1) <= encoder_out_lens.max(), ( encoder_out.size(), encoder_out_lens.max(), ) return encoder_out, encoder_out_lens def _extract_feats( self, speech: torch.Tensor, speech_lengths: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: batch_size = speech.shape[0] speech_lengths = ( speech_lengths if speech_lengths is not None else torch.ones(batch_size).int() * speech.shape[1] ) assert speech_lengths.dim() == 1, speech_lengths.shape # for data-parallel speech = speech[:, : speech_lengths.max()] if self.frontend is not None: # Frontend # e.g. STFT and Feature extract # data_loader may send time-domain signal in this case # speech (Batch, NSamples) -> feats: (Batch, NFrames, Dim) feats, feats_lengths = self.frontend(speech, speech_lengths) else: # No frontend and no feature extract feats, feats_lengths = speech, speech_lengths return feats, feats_lengths @staticmethod def calc_diarization_error(pred, label, length): # Note (jiatong): Credit to https://github.com/hitachi-speech/EEND (batch_size, max_len, num_output) = label.size() # mask the padding part mask = ~make_pad_mask(length, maxlen=label.shape[1]).unsqueeze(-1).numpy() # pred and label have the shape (batch_size, max_len, num_output) label_np = label.data.cpu().numpy().astype(int) pred_np = (pred.data.cpu().numpy() > 0).astype(int) label_np = label_np * mask pred_np = pred_np * mask length = length.data.cpu().numpy() # compute speech activity detection error n_ref = np.sum(label_np, axis=2) n_sys = np.sum(pred_np, axis=2) speech_scored = float(np.sum(n_ref > 0)) speech_miss = float(np.sum(np.logical_and(n_ref > 0, n_sys == 0))) speech_falarm = float(np.sum(np.logical_and(n_ref == 0, n_sys > 0))) # compute speaker diarization error speaker_scored = float(np.sum(n_ref)) speaker_miss = float(np.sum(np.maximum(n_ref - n_sys, 0))) speaker_falarm = float(np.sum(np.maximum(n_sys - n_ref, 0))) n_map = np.sum(np.logical_and(label_np == 1, pred_np == 1), axis=2) speaker_error = float(np.sum(np.minimum(n_ref, n_sys) - n_map)) correct = float(1.0 * np.sum((label_np == pred_np) * mask) / num_output) num_frames = np.sum(length) return ( correct, num_frames, speech_scored, speech_miss, speech_falarm, speaker_scored, speaker_miss, speaker_falarm, speaker_error, )