import logging from contextlib import contextmanager from distutils.version import LooseVersion from typing import Dict from typing import List from typing import Optional from typing import Tuple from typing import Union import torch import random import numpy as np from typeguard import check_argument_types from funasr.layers.abs_normalize import AbsNormalize from funasr.losses.label_smoothing_loss import ( LabelSmoothingLoss, # noqa: H301 ) from funasr.models.ctc import CTC from funasr.models.decoder.abs_decoder import AbsDecoder from funasr.models.e2e_asr_common import ErrorCalculator from funasr.models.encoder.abs_encoder import AbsEncoder from funasr.models.frontend.abs_frontend import AbsFrontend from funasr.models.postencoder.abs_postencoder import AbsPostEncoder from funasr.models.predictor.cif import mae_loss from funasr.models.preencoder.abs_preencoder import AbsPreEncoder from funasr.models.specaug.abs_specaug import AbsSpecAug from funasr.modules.add_sos_eos import add_sos_eos from funasr.modules.nets_utils import make_pad_mask, pad_list from funasr.modules.nets_utils import th_accuracy from funasr.torch_utils.device_funcs import force_gatherable from funasr.train.abs_espnet_model import AbsESPnetModel from funasr.models.predictor.cif import CifPredictorV3 if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"): from torch.cuda.amp import autocast else: # Nothing to do if torch<1.6.0 @contextmanager def autocast(enabled=True): yield class Paraformer(AbsESPnetModel): """ Author: Speech Lab, Alibaba Group, China Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition https://arxiv.org/abs/2206.08317 """ def __init__( self, vocab_size: int, token_list: Union[Tuple[str, ...], List[str]], frontend: Optional[AbsFrontend], specaug: Optional[AbsSpecAug], normalize: Optional[AbsNormalize], preencoder: Optional[AbsPreEncoder], encoder: AbsEncoder, postencoder: Optional[AbsPostEncoder], decoder: AbsDecoder, ctc: CTC, ctc_weight: float = 0.5, interctc_weight: float = 0.0, ignore_id: int = -1, blank_id: int = 0, sos: int = 1, eos: int = 2, lsm_weight: float = 0.0, length_normalized_loss: bool = False, report_cer: bool = True, report_wer: bool = True, sym_space: str = "", sym_blank: str = "", extract_feats_in_collect_stats: bool = True, predictor=None, predictor_weight: float = 0.0, predictor_bias: int = 0, sampling_ratio: float = 0.2, share_embedding: bool = False, ): assert check_argument_types() assert 0.0 <= ctc_weight <= 1.0, ctc_weight assert 0.0 <= interctc_weight < 1.0, interctc_weight super().__init__() # note that eos is the same as sos (equivalent ID) self.blank_id = blank_id self.sos = vocab_size - 1 if sos is None else sos self.eos = vocab_size - 1 if eos is None else eos self.vocab_size = vocab_size self.ignore_id = ignore_id self.ctc_weight = ctc_weight self.interctc_weight = interctc_weight self.token_list = token_list.copy() self.frontend = frontend self.specaug = specaug self.normalize = normalize self.preencoder = preencoder self.postencoder = postencoder self.encoder = encoder if not hasattr(self.encoder, "interctc_use_conditioning"): self.encoder.interctc_use_conditioning = False if self.encoder.interctc_use_conditioning: self.encoder.conditioning_layer = torch.nn.Linear( vocab_size, self.encoder.output_size() ) self.error_calculator = None if ctc_weight == 1.0: self.decoder = None else: self.decoder = decoder self.criterion_att = LabelSmoothingLoss( size=vocab_size, padding_idx=ignore_id, smoothing=lsm_weight, normalize_length=length_normalized_loss, ) if report_cer or report_wer: self.error_calculator = ErrorCalculator( token_list, sym_space, sym_blank, report_cer, report_wer ) if ctc_weight == 0.0: self.ctc = None else: self.ctc = ctc self.extract_feats_in_collect_stats = extract_feats_in_collect_stats self.predictor = predictor self.predictor_weight = predictor_weight self.predictor_bias = predictor_bias self.sampling_ratio = sampling_ratio self.criterion_pre = mae_loss(normalize_length=length_normalized_loss) self.step_cur = 0 self.share_embedding = share_embedding if self.share_embedding: self.decoder.embed = None def forward( self, speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: """Frontend + Encoder + Decoder + Calc loss Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) text: (Batch, Length) text_lengths: (Batch,) """ assert text_lengths.dim() == 1, text_lengths.shape # Check that batch_size is unified assert ( speech.shape[0] == speech_lengths.shape[0] == text.shape[0] == text_lengths.shape[0] ), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape) batch_size = speech.shape[0] self.step_cur += 1 # for data-parallel text = text[:, : text_lengths.max()] speech = speech[:, :speech_lengths.max()] # 1. Encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) intermediate_outs = None if isinstance(encoder_out, tuple): intermediate_outs = encoder_out[1] encoder_out = encoder_out[0] loss_att, acc_att, cer_att, wer_att = None, None, None, None loss_ctc, cer_ctc = None, None loss_pre = None stats = dict() # 1. CTC branch if self.ctc_weight != 0.0: loss_ctc, cer_ctc = self._calc_ctc_loss( encoder_out, encoder_out_lens, text, text_lengths ) # Collect CTC branch stats stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None stats["cer_ctc"] = cer_ctc # Intermediate CTC (optional) loss_interctc = 0.0 if self.interctc_weight != 0.0 and intermediate_outs is not None: for layer_idx, intermediate_out in intermediate_outs: # we assume intermediate_out has the same length & padding # as those of encoder_out loss_ic, cer_ic = self._calc_ctc_loss( intermediate_out, encoder_out_lens, text, text_lengths ) loss_interctc = loss_interctc + loss_ic # Collect Intermedaite CTC stats stats["loss_interctc_layer{}".format(layer_idx)] = ( loss_ic.detach() if loss_ic is not None else None ) stats["cer_interctc_layer{}".format(layer_idx)] = cer_ic loss_interctc = loss_interctc / len(intermediate_outs) # calculate whole encoder loss loss_ctc = ( 1 - self.interctc_weight ) * loss_ctc + self.interctc_weight * loss_interctc # 2b. Attention decoder branch if self.ctc_weight != 1.0: loss_att, acc_att, cer_att, wer_att, loss_pre = self._calc_att_loss( encoder_out, encoder_out_lens, text, text_lengths ) # 3. CTC-Att loss definition if self.ctc_weight == 0.0: loss = loss_att + loss_pre * self.predictor_weight elif self.ctc_weight == 1.0: loss = loss_ctc else: loss = self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att + loss_pre * self.predictor_weight # Collect Attn branch stats stats["loss_att"] = loss_att.detach() if loss_att is not None else None stats["acc"] = acc_att stats["cer"] = cer_att stats["wer"] = wer_att stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None stats["loss"] = torch.clone(loss.detach()) # force_gatherable: to-device and to-tensor if scalar for DataParallel loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) return loss, stats, weight def collect_feats( self, speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, ) -> Dict[str, torch.Tensor]: if self.extract_feats_in_collect_stats: feats, feats_lengths = self._extract_feats(speech, speech_lengths) else: # Generate dummy stats if extract_feats_in_collect_stats is False logging.warning( "Generating dummy stats for feats and feats_lengths, " "because encoder_conf.extract_feats_in_collect_stats is " f"{self.extract_feats_in_collect_stats}" ) feats, feats_lengths = speech, speech_lengths return {"feats": feats, "feats_lengths": feats_lengths} def encode( self, speech: torch.Tensor, speech_lengths: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: """Frontend + Encoder. Note that this method is used by asr_inference.py Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) """ with autocast(False): # 1. Extract feats feats, feats_lengths = self._extract_feats(speech, speech_lengths) # 2. Data augmentation if self.specaug is not None and self.training: feats, feats_lengths = self.specaug(feats, feats_lengths) # 3. Normalization for feature: e.g. Global-CMVN, Utterance-CMVN if self.normalize is not None: feats, feats_lengths = self.normalize(feats, feats_lengths) # Pre-encoder, e.g. used for raw input data if self.preencoder is not None: feats, feats_lengths = self.preencoder(feats, feats_lengths) # 4. Forward encoder # feats: (Batch, Length, Dim) # -> encoder_out: (Batch, Length2, Dim2) if self.encoder.interctc_use_conditioning: encoder_out, encoder_out_lens, _ = self.encoder( feats, feats_lengths, ctc=self.ctc ) else: encoder_out, encoder_out_lens, _ = self.encoder(feats, feats_lengths) intermediate_outs = None if isinstance(encoder_out, tuple): intermediate_outs = encoder_out[1] encoder_out = encoder_out[0] # Post-encoder, e.g. NLU if self.postencoder is not None: encoder_out, encoder_out_lens = self.postencoder( encoder_out, encoder_out_lens ) assert encoder_out.size(0) == speech.size(0), ( encoder_out.size(), speech.size(0), ) assert encoder_out.size(1) <= encoder_out_lens.max(), ( encoder_out.size(), encoder_out_lens.max(), ) if intermediate_outs is not None: return (encoder_out, intermediate_outs), encoder_out_lens return encoder_out, encoder_out_lens def encode_chunk( self, speech: torch.Tensor, speech_lengths: torch.Tensor, cache: dict = None ) -> Tuple[torch.Tensor, torch.Tensor]: """Frontend + Encoder. Note that this method is used by asr_inference.py Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) """ with autocast(False): # 1. Extract feats feats, feats_lengths = self._extract_feats(speech, speech_lengths) # 2. Data augmentation if self.specaug is not None and self.training: feats, feats_lengths = self.specaug(feats, feats_lengths) # 3. Normalization for feature: e.g. Global-CMVN, Utterance-CMVN if self.normalize is not None: feats, feats_lengths = self.normalize(feats, feats_lengths) # Pre-encoder, e.g. used for raw input data if self.preencoder is not None: feats, feats_lengths = self.preencoder(feats, feats_lengths) # 4. Forward encoder # feats: (Batch, Length, Dim) # -> encoder_out: (Batch, Length2, Dim2) if self.encoder.interctc_use_conditioning: encoder_out, encoder_out_lens, _ = self.encoder.forward_chunk( feats, feats_lengths, cache=cache["encoder"], ctc=self.ctc ) else: encoder_out, encoder_out_lens, _ = self.encoder.forward_chunk(feats, feats_lengths, cache=cache["encoder"]) intermediate_outs = None if isinstance(encoder_out, tuple): intermediate_outs = encoder_out[1] encoder_out = encoder_out[0] # Post-encoder, e.g. NLU if self.postencoder is not None: encoder_out, encoder_out_lens = self.postencoder( encoder_out, encoder_out_lens ) assert encoder_out.size(0) == speech.size(0), ( encoder_out.size(), speech.size(0), ) assert encoder_out.size(1) <= encoder_out_lens.max(), ( encoder_out.size(), encoder_out_lens.max(), ) if intermediate_outs is not None: return (encoder_out, intermediate_outs), encoder_out_lens return encoder_out, encoder_out_lens def calc_predictor(self, encoder_out, encoder_out_lens): encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to( encoder_out.device) pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = self.predictor(encoder_out, None, encoder_out_mask, ignore_id=self.ignore_id) return pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index def calc_predictor_chunk(self, encoder_out, cache=None): pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = self.predictor.forward_chunk(encoder_out, cache["encoder"]) return pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index def cal_decoder_with_predictor(self, encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens): decoder_outs = self.decoder( encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens ) decoder_out = decoder_outs[0] decoder_out = torch.log_softmax(decoder_out, dim=-1) return decoder_out, ys_pad_lens def cal_decoder_with_predictor_chunk(self, encoder_out, sematic_embeds, cache=None): decoder_outs = self.decoder.forward_chunk( encoder_out, sematic_embeds, cache["decoder"] ) decoder_out = decoder_outs decoder_out = torch.log_softmax(decoder_out, dim=-1) return decoder_out def _extract_feats( self, speech: torch.Tensor, speech_lengths: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: assert speech_lengths.dim() == 1, speech_lengths.shape # for data-parallel speech = speech[:, : speech_lengths.max()] if self.frontend is not None: # Frontend # e.g. STFT and Feature extract # data_loader may send time-domain signal in this case # speech (Batch, NSamples) -> feats: (Batch, NFrames, Dim) feats, feats_lengths = self.frontend(speech, speech_lengths) else: # No frontend and no feature extract feats, feats_lengths = speech, speech_lengths return feats, feats_lengths def nll( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ) -> torch.Tensor: """Compute negative log likelihood(nll) from transformer-decoder Normally, this function is called in batchify_nll. Args: encoder_out: (Batch, Length, Dim) encoder_out_lens: (Batch,) ys_pad: (Batch, Length) ys_pad_lens: (Batch,) """ ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) ys_in_lens = ys_pad_lens + 1 # 1. Forward decoder decoder_out, _ = self.decoder( encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens ) # [batch, seqlen, dim] batch_size = decoder_out.size(0) decoder_num_class = decoder_out.size(2) # nll: negative log-likelihood nll = torch.nn.functional.cross_entropy( decoder_out.view(-1, decoder_num_class), ys_out_pad.view(-1), ignore_index=self.ignore_id, reduction="none", ) nll = nll.view(batch_size, -1) nll = nll.sum(dim=1) assert nll.size(0) == batch_size return nll def batchify_nll( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, batch_size: int = 100, ): """Compute negative log likelihood(nll) from transformer-decoder To avoid OOM, this fuction seperate the input into batches. Then call nll for each batch and combine and return results. Args: encoder_out: (Batch, Length, Dim) encoder_out_lens: (Batch,) ys_pad: (Batch, Length) ys_pad_lens: (Batch,) batch_size: int, samples each batch contain when computing nll, you may change this to avoid OOM or increase GPU memory usage """ total_num = encoder_out.size(0) if total_num <= batch_size: nll = self.nll(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens) else: nll = [] start_idx = 0 while True: end_idx = min(start_idx + batch_size, total_num) batch_encoder_out = encoder_out[start_idx:end_idx, :, :] batch_encoder_out_lens = encoder_out_lens[start_idx:end_idx] batch_ys_pad = ys_pad[start_idx:end_idx, :] batch_ys_pad_lens = ys_pad_lens[start_idx:end_idx] batch_nll = self.nll( batch_encoder_out, batch_encoder_out_lens, batch_ys_pad, batch_ys_pad_lens, ) nll.append(batch_nll) start_idx = end_idx if start_idx == total_num: break nll = torch.cat(nll) assert nll.size(0) == total_num return nll def _calc_att_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ): encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to( encoder_out.device) if self.predictor_bias == 1: _, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) ys_pad_lens = ys_pad_lens + self.predictor_bias pre_acoustic_embeds, pre_token_length, _, pre_peak_index = self.predictor(encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id) # 0. sampler decoder_out_1st = None if self.sampling_ratio > 0.0: if self.step_cur < 2: logging.info("enable sampler in paraformer, sampling_ratio: {}".format(self.sampling_ratio)) sematic_embeds, decoder_out_1st = self.sampler(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds) else: if self.step_cur < 2: logging.info("disable sampler in paraformer, sampling_ratio: {}".format(self.sampling_ratio)) sematic_embeds = pre_acoustic_embeds # 1. Forward decoder decoder_outs = self.decoder( encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens ) decoder_out, _ = decoder_outs[0], decoder_outs[1] if decoder_out_1st is None: decoder_out_1st = decoder_out # 2. Compute attention loss loss_att = self.criterion_att(decoder_out, ys_pad) acc_att = th_accuracy( decoder_out_1st.view(-1, self.vocab_size), ys_pad, ignore_label=self.ignore_id, ) loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length) # Compute cer/wer using attention-decoder if self.training or self.error_calculator is None: cer_att, wer_att = None, None else: ys_hat = decoder_out_1st.argmax(dim=-1) cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) return loss_att, acc_att, cer_att, wer_att, loss_pre def sampler(self, encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds): tgt_mask = (~make_pad_mask(ys_pad_lens, maxlen=ys_pad_lens.max())[:, :, None]).to(ys_pad.device) ys_pad_masked = ys_pad * tgt_mask[:, :, 0] if self.share_embedding: ys_pad_embed = self.decoder.output_layer.weight[ys_pad_masked] else: ys_pad_embed = self.decoder.embed(ys_pad_masked) with torch.no_grad(): decoder_outs = self.decoder( encoder_out, encoder_out_lens, pre_acoustic_embeds, ys_pad_lens ) decoder_out, _ = decoder_outs[0], decoder_outs[1] pred_tokens = decoder_out.argmax(-1) nonpad_positions = ys_pad.ne(self.ignore_id) seq_lens = (nonpad_positions).sum(1) same_num = ((pred_tokens == ys_pad) & nonpad_positions).sum(1) input_mask = torch.ones_like(nonpad_positions) bsz, seq_len = ys_pad.size() for li in range(bsz): target_num = (((seq_lens[li] - same_num[li].sum()).float()) * self.sampling_ratio).long() if target_num > 0: input_mask[li].scatter_(dim=0, index=torch.randperm(seq_lens[li])[:target_num].cuda(), value=0) input_mask = input_mask.eq(1) input_mask = input_mask.masked_fill(~nonpad_positions, False) input_mask_expand_dim = input_mask.unsqueeze(2).to(pre_acoustic_embeds.device) sematic_embeds = pre_acoustic_embeds.masked_fill(~input_mask_expand_dim, 0) + ys_pad_embed.masked_fill( input_mask_expand_dim, 0) return sematic_embeds * tgt_mask, decoder_out * tgt_mask def _calc_ctc_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ): # Calc CTC loss loss_ctc = self.ctc(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens) # Calc CER using CTC cer_ctc = None if not self.training and self.error_calculator is not None: ys_hat = self.ctc.argmax(encoder_out).data cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True) return loss_ctc, cer_ctc class ParaformerBert(Paraformer): """ Author: Speech Lab, Alibaba Group, China Paraformer2: advanced paraformer with LFMMI and bert for non-autoregressive end-to-end speech recognition """ def __init__( self, vocab_size: int, token_list: Union[Tuple[str, ...], List[str]], frontend: Optional[AbsFrontend], specaug: Optional[AbsSpecAug], normalize: Optional[AbsNormalize], preencoder: Optional[AbsPreEncoder], encoder: AbsEncoder, postencoder: Optional[AbsPostEncoder], decoder: AbsDecoder, ctc: CTC, ctc_weight: float = 0.5, interctc_weight: float = 0.0, ignore_id: int = -1, blank_id: int = 0, sos: int = 1, eos: int = 2, lsm_weight: float = 0.0, length_normalized_loss: bool = False, report_cer: bool = True, report_wer: bool = True, sym_space: str = "", sym_blank: str = "", extract_feats_in_collect_stats: bool = True, predictor=None, predictor_weight: float = 0.0, predictor_bias: int = 0, sampling_ratio: float = 0.2, embeds_id: int = 2, embeds_loss_weight: float = 0.0, embed_dims: int = 768, ): assert check_argument_types() assert 0.0 <= ctc_weight <= 1.0, ctc_weight assert 0.0 <= interctc_weight < 1.0, interctc_weight super().__init__( vocab_size=vocab_size, token_list=token_list, frontend=frontend, specaug=specaug, normalize=normalize, preencoder=preencoder, encoder=encoder, postencoder=postencoder, decoder=decoder, ctc=ctc, ctc_weight=ctc_weight, interctc_weight=interctc_weight, ignore_id=ignore_id, blank_id=blank_id, sos=sos, eos=eos, lsm_weight=lsm_weight, length_normalized_loss=length_normalized_loss, report_cer=report_cer, report_wer=report_wer, sym_space=sym_space, sym_blank=sym_blank, extract_feats_in_collect_stats=extract_feats_in_collect_stats, predictor=predictor, predictor_weight=predictor_weight, predictor_bias=predictor_bias, sampling_ratio=sampling_ratio, ) self.decoder.embeds_id = embeds_id decoder_attention_dim = self.decoder.attention_dim self.pro_nn = torch.nn.Linear(decoder_attention_dim, embed_dims) self.cos = torch.nn.CosineSimilarity(dim=-1, eps=1e-6) self.embeds_loss_weight = embeds_loss_weight self.length_normalized_loss = length_normalized_loss def _calc_embed_loss(self, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, embed: torch.Tensor = None, embed_lengths: torch.Tensor = None, embeds_outputs: torch.Tensor = None, ): embeds_outputs = self.pro_nn(embeds_outputs) tgt_mask = (~make_pad_mask(ys_pad_lens, maxlen=ys_pad_lens.max())[:, :, None]).to(ys_pad.device) embeds_outputs *= tgt_mask # b x l x d embed *= tgt_mask # b x l x d cos_loss = 1.0 - self.cos(embeds_outputs, embed) cos_loss *= tgt_mask.squeeze(2) if self.length_normalized_loss: token_num_total = torch.sum(tgt_mask) else: token_num_total = tgt_mask.size()[0] cos_loss_total = torch.sum(cos_loss) cos_loss = cos_loss_total / token_num_total # print("cos_loss: {}".format(cos_loss)) return cos_loss def _calc_att_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ): encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to( encoder_out.device) if self.predictor_bias == 1: _, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) ys_pad_lens = ys_pad_lens + self.predictor_bias pre_acoustic_embeds, pre_token_length, _, pre_peak_index = self.predictor(encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id) # 0. sampler decoder_out_1st = None if self.sampling_ratio > 0.0: if self.step_cur < 2: logging.info( "enable sampler in paraformer, sampling_ratio: {}".format(self.sampling_ratio)) sematic_embeds, decoder_out_1st = self.sampler(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds) else: if self.step_cur < 2: logging.info( "disable sampler in paraformer, sampling_ratio: {}".format(self.sampling_ratio)) sematic_embeds = pre_acoustic_embeds # 1. Forward decoder decoder_outs = self.decoder( encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens ) decoder_out, _ = decoder_outs[0], decoder_outs[1] embeds_outputs = None if len(decoder_outs) > 2: embeds_outputs = decoder_outs[2] if decoder_out_1st is None: decoder_out_1st = decoder_out # 2. Compute attention loss loss_att = self.criterion_att(decoder_out, ys_pad) acc_att = th_accuracy( decoder_out_1st.view(-1, self.vocab_size), ys_pad, ignore_label=self.ignore_id, ) loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length) # Compute cer/wer using attention-decoder if self.training or self.error_calculator is None: cer_att, wer_att = None, None else: ys_hat = decoder_out_1st.argmax(dim=-1) cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) return loss_att, acc_att, cer_att, wer_att, loss_pre, embeds_outputs def forward( self, speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, embed: torch.Tensor = None, embed_lengths: torch.Tensor = None, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: """Frontend + Encoder + Decoder + Calc loss Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) text: (Batch, Length) text_lengths: (Batch,) """ assert text_lengths.dim() == 1, text_lengths.shape # Check that batch_size is unified assert ( speech.shape[0] == speech_lengths.shape[0] == text.shape[0] == text_lengths.shape[0] ), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape) batch_size = speech.shape[0] self.step_cur += 1 # for data-parallel text = text[:, : text_lengths.max()] speech = speech[:, :speech_lengths.max(), :] if embed is not None: embed = embed[:, :embed_lengths.max(), :] # 1. Encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) intermediate_outs = None if isinstance(encoder_out, tuple): intermediate_outs = encoder_out[1] encoder_out = encoder_out[0] loss_att, acc_att, cer_att, wer_att = None, None, None, None loss_ctc, cer_ctc = None, None loss_pre = 0.0 cos_loss = 0.0 stats = dict() # 1. CTC branch if self.ctc_weight != 0.0: loss_ctc, cer_ctc = self._calc_ctc_loss( encoder_out, encoder_out_lens, text, text_lengths ) # Collect CTC branch stats stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None stats["cer_ctc"] = cer_ctc # Intermediate CTC (optional) loss_interctc = 0.0 if self.interctc_weight != 0.0 and intermediate_outs is not None: for layer_idx, intermediate_out in intermediate_outs: # we assume intermediate_out has the same length & padding # as those of encoder_out loss_ic, cer_ic = self._calc_ctc_loss( intermediate_out, encoder_out_lens, text, text_lengths ) loss_interctc = loss_interctc + loss_ic # Collect Intermedaite CTC stats stats["loss_interctc_layer{}".format(layer_idx)] = ( loss_ic.detach() if loss_ic is not None else None ) stats["cer_interctc_layer{}".format(layer_idx)] = cer_ic loss_interctc = loss_interctc / len(intermediate_outs) # calculate whole encoder loss loss_ctc = ( 1 - self.interctc_weight ) * loss_ctc + self.interctc_weight * loss_interctc # 2b. Attention decoder branch if self.ctc_weight != 1.0: loss_ret = self._calc_att_loss( encoder_out, encoder_out_lens, text, text_lengths ) loss_att, acc_att, cer_att, wer_att, loss_pre = loss_ret[0], loss_ret[1], loss_ret[2], loss_ret[3], \ loss_ret[4] embeds_outputs = None if len(loss_ret) > 5: embeds_outputs = loss_ret[5] if embeds_outputs is not None: cos_loss = self._calc_embed_loss(text, text_lengths, embed, embed_lengths, embeds_outputs) # 3. CTC-Att loss definition if self.ctc_weight == 0.0: loss = loss_att + loss_pre * self.predictor_weight + cos_loss * self.embeds_loss_weight elif self.ctc_weight == 1.0: loss = loss_ctc else: loss = self.ctc_weight * loss_ctc + ( 1 - self.ctc_weight) * loss_att + loss_pre * self.predictor_weight + cos_loss * self.embeds_loss_weight # Collect Attn branch stats stats["loss_att"] = loss_att.detach() if loss_att is not None else None stats["acc"] = acc_att stats["cer"] = cer_att stats["wer"] = wer_att stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre > 0.0 else None stats["cos_loss"] = cos_loss.detach().cpu() if cos_loss > 0.0 else None stats["loss"] = torch.clone(loss.detach()) # force_gatherable: to-device and to-tensor if scalar for DataParallel loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) return loss, stats, weight class BiCifParaformer(Paraformer): """ Paraformer model with an extra cif predictor to conduct accurate timestamp prediction """ def __init__( self, vocab_size: int, token_list: Union[Tuple[str, ...], List[str]], frontend: Optional[AbsFrontend], specaug: Optional[AbsSpecAug], normalize: Optional[AbsNormalize], preencoder: Optional[AbsPreEncoder], encoder: AbsEncoder, postencoder: Optional[AbsPostEncoder], decoder: AbsDecoder, ctc: CTC, ctc_weight: float = 0.5, interctc_weight: float = 0.0, ignore_id: int = -1, blank_id: int = 0, sos: int = 1, eos: int = 2, lsm_weight: float = 0.0, length_normalized_loss: bool = False, report_cer: bool = True, report_wer: bool = True, sym_space: str = "", sym_blank: str = "", extract_feats_in_collect_stats: bool = True, predictor = None, predictor_weight: float = 0.0, predictor_bias: int = 0, sampling_ratio: float = 0.2, ): assert check_argument_types() assert 0.0 <= ctc_weight <= 1.0, ctc_weight assert 0.0 <= interctc_weight < 1.0, interctc_weight super().__init__( vocab_size=vocab_size, token_list=token_list, frontend=frontend, specaug=specaug, normalize=normalize, preencoder=preencoder, encoder=encoder, postencoder=postencoder, decoder=decoder, ctc=ctc, ctc_weight=ctc_weight, interctc_weight=interctc_weight, ignore_id=ignore_id, blank_id=blank_id, sos=sos, eos=eos, lsm_weight=lsm_weight, length_normalized_loss=length_normalized_loss, report_cer=report_cer, report_wer=report_wer, sym_space=sym_space, sym_blank=sym_blank, extract_feats_in_collect_stats=extract_feats_in_collect_stats, predictor=predictor, predictor_weight=predictor_weight, predictor_bias=predictor_bias, sampling_ratio=sampling_ratio, ) assert isinstance(self.predictor, CifPredictorV3), "BiCifParaformer should use CIFPredictorV3" def _calc_pre2_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ): encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to( encoder_out.device) if self.predictor_bias == 1: _, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) ys_pad_lens = ys_pad_lens + self.predictor_bias _, _, _, _, pre_token_length2 = self.predictor(encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id) # loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length) loss_pre2 = self.criterion_pre(ys_pad_lens.type_as(pre_token_length2), pre_token_length2) return loss_pre2 def calc_predictor(self, encoder_out, encoder_out_lens): encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to( encoder_out.device) pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index, pre_token_length2 = self.predictor(encoder_out, None, encoder_out_mask, ignore_id=self.ignore_id) return pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index def calc_predictor_timestamp(self, encoder_out, encoder_out_lens, token_num): encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to( encoder_out.device) ds_alphas, ds_cif_peak, us_alphas, us_peaks = self.predictor.get_upsample_timestamp(encoder_out, encoder_out_mask, token_num) return ds_alphas, ds_cif_peak, us_alphas, us_peaks def forward( self, speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: """Frontend + Encoder + Decoder + Calc loss Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) text: (Batch, Length) text_lengths: (Batch,) """ assert text_lengths.dim() == 1, text_lengths.shape # Check that batch_size is unified assert ( speech.shape[0] == speech_lengths.shape[0] == text.shape[0] == text_lengths.shape[0] ), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape) batch_size = speech.shape[0] self.step_cur += 1 # for data-parallel text = text[:, : text_lengths.max()] speech = speech[:, :speech_lengths.max()] # 1. Encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) stats = dict() loss_pre2 = self._calc_pre2_loss( encoder_out, encoder_out_lens, text, text_lengths ) loss = loss_pre2 stats["loss_pre2"] = loss_pre2.detach().cpu() stats["loss"] = torch.clone(loss.detach()) # force_gatherable: to-device and to-tensor if scalar for DataParallel loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) return loss, stats, weight class ContextualParaformer(Paraformer): """ Paraformer model with contextual hotword """ def __init__( self, vocab_size: int, token_list: Union[Tuple[str, ...], List[str]], frontend: Optional[AbsFrontend], specaug: Optional[AbsSpecAug], normalize: Optional[AbsNormalize], preencoder: Optional[AbsPreEncoder], encoder: AbsEncoder, postencoder: Optional[AbsPostEncoder], decoder: AbsDecoder, ctc: CTC, ctc_weight: float = 0.5, interctc_weight: float = 0.0, ignore_id: int = -1, blank_id: int = 0, sos: int = 1, eos: int = 2, lsm_weight: float = 0.0, length_normalized_loss: bool = False, report_cer: bool = True, report_wer: bool = True, sym_space: str = "", sym_blank: str = "", extract_feats_in_collect_stats: bool = True, predictor=None, predictor_weight: float = 0.0, predictor_bias: int = 0, sampling_ratio: float = 0.2, min_hw_length: int = 2, max_hw_length: int = 4, sample_rate: float = 0.6, batch_rate: float = 0.5, double_rate: float = -1.0, target_buffer_length: int = -1, inner_dim: int = 256, bias_encoder_type: str = 'lstm', label_bracket: bool = False, ): assert check_argument_types() assert 0.0 <= ctc_weight <= 1.0, ctc_weight assert 0.0 <= interctc_weight < 1.0, interctc_weight super().__init__( vocab_size=vocab_size, token_list=token_list, frontend=frontend, specaug=specaug, normalize=normalize, preencoder=preencoder, encoder=encoder, postencoder=postencoder, decoder=decoder, ctc=ctc, ctc_weight=ctc_weight, interctc_weight=interctc_weight, ignore_id=ignore_id, blank_id=blank_id, sos=sos, eos=eos, lsm_weight=lsm_weight, length_normalized_loss=length_normalized_loss, report_cer=report_cer, report_wer=report_wer, sym_space=sym_space, sym_blank=sym_blank, extract_feats_in_collect_stats=extract_feats_in_collect_stats, predictor=predictor, predictor_weight=predictor_weight, predictor_bias=predictor_bias, sampling_ratio=sampling_ratio, ) if bias_encoder_type == 'lstm': logging.warning("enable bias encoder sampling and contextual training") self.bias_encoder = torch.nn.LSTM(inner_dim, inner_dim, 1, batch_first=True, dropout=0) self.bias_embed = torch.nn.Embedding(vocab_size, inner_dim) else: logging.error("Unsupport bias encoder type") self.min_hw_length = min_hw_length self.max_hw_length = max_hw_length self.sample_rate = sample_rate self.batch_rate = batch_rate self.target_buffer_length = target_buffer_length self.double_rate = double_rate if self.target_buffer_length > 0: self.hotword_buffer = None self.length_record = [] self.current_buffer_length = 0 def forward( self, speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: """Frontend + Encoder + Decoder + Calc loss Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) text: (Batch, Length) text_lengths: (Batch,) """ assert text_lengths.dim() == 1, text_lengths.shape # Check that batch_size is unified assert ( speech.shape[0] == speech_lengths.shape[0] == text.shape[0] == text_lengths.shape[0] ), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape) batch_size = speech.shape[0] self.step_cur += 1 # for data-parallel text = text[:, : text_lengths.max()] speech = speech[:, :speech_lengths.max()] # 1. Encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) intermediate_outs = None if isinstance(encoder_out, tuple): intermediate_outs = encoder_out[1] encoder_out = encoder_out[0] loss_att, acc_att, cer_att, wer_att = None, None, None, None loss_ctc, cer_ctc = None, None loss_pre = None stats = dict() # 1. CTC branch if self.ctc_weight != 0.0: loss_ctc, cer_ctc = self._calc_ctc_loss( encoder_out, encoder_out_lens, text, text_lengths ) # Collect CTC branch stats stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None stats["cer_ctc"] = cer_ctc # Intermediate CTC (optional) loss_interctc = 0.0 if self.interctc_weight != 0.0 and intermediate_outs is not None: for layer_idx, intermediate_out in intermediate_outs: # we assume intermediate_out has the same length & padding # as those of encoder_out loss_ic, cer_ic = self._calc_ctc_loss( intermediate_out, encoder_out_lens, text, text_lengths ) loss_interctc = loss_interctc + loss_ic # Collect Intermedaite CTC stats stats["loss_interctc_layer{}".format(layer_idx)] = ( loss_ic.detach() if loss_ic is not None else None ) stats["cer_interctc_layer{}".format(layer_idx)] = cer_ic loss_interctc = loss_interctc / len(intermediate_outs) # calculate whole encoder loss loss_ctc = ( 1 - self.interctc_weight ) * loss_ctc + self.interctc_weight * loss_interctc # 2b. Attention decoder branch if self.ctc_weight != 1.0: loss_att, acc_att, cer_att, wer_att, loss_pre = self._calc_att_loss( encoder_out, encoder_out_lens, text, text_lengths ) # 3. CTC-Att loss definition if self.ctc_weight == 0.0: loss = loss_att + loss_pre * self.predictor_weight elif self.ctc_weight == 1.0: loss = loss_ctc else: loss = self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att + loss_pre * self.predictor_weight # Collect Attn branch stats stats["loss_att"] = loss_att.detach() if loss_att is not None else None stats["acc"] = acc_att stats["cer"] = cer_att stats["wer"] = wer_att stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None stats["loss"] = torch.clone(loss.detach()) # force_gatherable: to-device and to-tensor if scalar for DataParallel loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) return loss, stats, weight def _sample_hot_word(self, ys_pad, ys_pad_lens): hw_list = [torch.Tensor([0]).long().to(ys_pad.device)] hw_lengths = [0] # this length is actually for indice, so -1 for i, length in enumerate(ys_pad_lens): if length < 2: continue if length > self.min_hw_length + self.max_hw_length + 2 and random.random() < self.double_rate: # sample double hotword _max_hw_length = min(self.max_hw_length, length // 2) # first hotword start1 = random.randint(0, length // 3) end1 = random.randint(start1 + self.min_hw_length - 1, start1 + _max_hw_length - 1) hw_tokens1 = ys_pad[i][start1:end1 + 1] hw_lengths.append(len(hw_tokens1) - 1) hw_list.append(hw_tokens1) # second hotword start2 = random.randint(end1 + 1, length - self.min_hw_length) end2 = random.randint(min(length - 1, start2 + self.min_hw_length - 1), min(length - 1, start2 + self.max_hw_length - 1)) hw_tokens2 = ys_pad[i][start2:end2 + 1] hw_lengths.append(len(hw_tokens2) - 1) hw_list.append(hw_tokens2) continue if random.random() < self.sample_rate: if length == 2: hw_tokens = ys_pad[i][:2] hw_lengths.append(1) hw_list.append(hw_tokens) else: start = random.randint(0, length - self.min_hw_length) end = random.randint(min(length - 1, start + self.min_hw_length - 1), min(length - 1, start + self.max_hw_length - 1)) + 1 # print(start, end) hw_tokens = ys_pad[i][start:end] hw_lengths.append(len(hw_tokens) - 1) hw_list.append(hw_tokens) # padding hw_list_pad = pad_list(hw_list, 0) hw_embed = self.decoder.embed(hw_list_pad) hw_embed, (_, _) = self.bias_encoder(hw_embed) _ind = np.arange(0, len(hw_list)).tolist() # update self.hotword_buffer, throw a part if oversize selected = hw_embed[_ind, hw_lengths] if self.target_buffer_length > 0: _b = selected.shape[0] if self.hotword_buffer is None: self.hotword_buffer = selected self.length_record.append(selected.shape[0]) self.current_buffer_length = _b elif self.current_buffer_length + _b < self.target_buffer_length: self.hotword_buffer = torch.cat([self.hotword_buffer.detach(), selected], dim=0) self.current_buffer_length += _b selected = self.hotword_buffer else: self.hotword_buffer = torch.cat([self.hotword_buffer.detach(), selected], dim=0) random_throw = random.randint(self.target_buffer_length // 2, self.target_buffer_length) + 10 self.hotword_buffer = self.hotword_buffer[-1 * random_throw:] selected = self.hotword_buffer self.current_buffer_length = selected.shape[0] return selected.squeeze(0).repeat(ys_pad.shape[0], 1, 1).to(ys_pad.device) def sampler(self, encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds, contextual_info): tgt_mask = (~make_pad_mask(ys_pad_lens, maxlen=ys_pad_lens.max())[:, :, None]).to(ys_pad.device) ys_pad = ys_pad * tgt_mask[:, :, 0] if self.share_embedding: ys_pad_embed = self.decoder.output_layer.weight[ys_pad] else: ys_pad_embed = self.decoder.embed(ys_pad) with torch.no_grad(): decoder_outs = self.decoder( encoder_out, encoder_out_lens, pre_acoustic_embeds, ys_pad_lens, contextual_info=contextual_info ) decoder_out, _ = decoder_outs[0], decoder_outs[1] pred_tokens = decoder_out.argmax(-1) nonpad_positions = ys_pad.ne(self.ignore_id) seq_lens = (nonpad_positions).sum(1) same_num = ((pred_tokens == ys_pad) & nonpad_positions).sum(1) input_mask = torch.ones_like(nonpad_positions) bsz, seq_len = ys_pad.size() for li in range(bsz): target_num = (((seq_lens[li] - same_num[li].sum()).float()) * self.sampling_ratio).long() if target_num > 0: input_mask[li].scatter_(dim=0, index=torch.randperm(seq_lens[li])[:target_num].cuda(), value=0) input_mask = input_mask.eq(1) input_mask = input_mask.masked_fill(~nonpad_positions, False) input_mask_expand_dim = input_mask.unsqueeze(2).to(pre_acoustic_embeds.device) sematic_embeds = pre_acoustic_embeds.masked_fill(~input_mask_expand_dim, 0) + ys_pad_embed.masked_fill( input_mask_expand_dim, 0) return sematic_embeds * tgt_mask, decoder_out * tgt_mask def _calc_att_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ): encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to( encoder_out.device) if self.predictor_bias == 1: _, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) ys_pad_lens = ys_pad_lens + self.predictor_bias pre_acoustic_embeds, pre_token_length, _, pre_peak_index = self.predictor(encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id) # sample hot word contextual_info = self._sample_hot_word(ys_pad, ys_pad_lens) # 0. sampler decoder_out_1st = None if self.sampling_ratio > 0.0: if self.step_cur < 2: logging.info("enable sampler in paraformer, sampling_ratio: {}".format(self.sampling_ratio)) sematic_embeds, decoder_out_1st = self.sampler(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds, contextual_info) else: if self.step_cur < 2: logging.info("disable sampler in paraformer, sampling_ratio: {}".format(self.sampling_ratio)) sematic_embeds = pre_acoustic_embeds # 1. Forward decoder decoder_outs = self.decoder( encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, contextual_info=contextual_info ) decoder_out, _ = decoder_outs[0], decoder_outs[1] if decoder_out_1st is None: decoder_out_1st = decoder_out # 2. Compute attention loss loss_att = self.criterion_att(decoder_out, ys_pad) acc_att = th_accuracy( decoder_out_1st.view(-1, self.vocab_size), ys_pad, ignore_label=self.ignore_id, ) loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length) # Compute cer/wer using attention-decoder if self.training or self.error_calculator is None: cer_att, wer_att = None, None else: ys_hat = decoder_out_1st.argmax(dim=-1) cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) return loss_att, acc_att, cer_att, wer_att, loss_pre def cal_decoder_with_predictor(self, encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, hw_list=None): if hw_list is None: # default hotword list hw_list = [torch.Tensor([self.sos]).long().to(encoder_out.device)] # empty hotword list hw_list_pad = pad_list(hw_list, 0) hw_embed = self.bias_embed(hw_list_pad) _, (h_n, _) = self.bias_encoder(hw_embed) contextual_info = h_n.squeeze(0).repeat(encoder_out.shape[0], 1, 1) else: hw_lengths = [len(i) for i in hw_list] hw_list_pad = pad_list([torch.Tensor(i).long() for i in hw_list], 0).to(encoder_out.device) hw_embed = self.bias_embed(hw_list_pad) hw_embed = torch.nn.utils.rnn.pack_padded_sequence(hw_embed, hw_lengths, batch_first=True, enforce_sorted=False) _, (h_n, _) = self.bias_encoder(hw_embed) # hw_embed, _ = torch.nn.utils.rnn.pad_packed_sequence(hw_embed, batch_first=True) contextual_info = h_n.squeeze(0).repeat(encoder_out.shape[0], 1, 1) decoder_outs = self.decoder( encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, contextual_info=contextual_info ) decoder_out = decoder_outs[0] decoder_out = torch.log_softmax(decoder_out, dim=-1) return decoder_out, ys_pad_lens def gen_clas_tf2torch_map_dict(self): tensor_name_prefix_torch = "bias_encoder" tensor_name_prefix_tf = "seq2seq/clas_charrnn" tensor_name_prefix_torch_emb = "bias_embed" tensor_name_prefix_tf_emb = "seq2seq" map_dict_local = { # in lstm "{}.weight_ih_l0".format(tensor_name_prefix_torch): {"name": "{}/rnn/lstm_cell/kernel".format(tensor_name_prefix_tf), "squeeze": None, "transpose": (1, 0), "slice": (0, 512), "unit_k": 512, }, # (1024, 2048),(2048,512) "{}.weight_hh_l0".format(tensor_name_prefix_torch): {"name": "{}/rnn/lstm_cell/kernel".format(tensor_name_prefix_tf), "squeeze": None, "transpose": (1, 0), "slice": (512, 1024), "unit_k": 512, }, # (1024, 2048),(2048,512) "{}.bias_ih_l0".format(tensor_name_prefix_torch): {"name": "{}/rnn/lstm_cell/bias".format(tensor_name_prefix_tf), "squeeze": None, "transpose": None, "scale": 0.5, "unit_b": 512, }, # (2048,),(2048,) "{}.bias_hh_l0".format(tensor_name_prefix_torch): {"name": "{}/rnn/lstm_cell/bias".format(tensor_name_prefix_tf), "squeeze": None, "transpose": None, "scale": 0.5, "unit_b": 512, }, # (2048,),(2048,) # in embed "{}.weight".format(tensor_name_prefix_torch_emb): {"name": "{}/contextual_encoder/w_char_embs".format(tensor_name_prefix_tf_emb), "squeeze": None, "transpose": None, }, # (4235,256),(4235,256) } return map_dict_local def clas_convert_tf2torch(self, var_dict_tf, var_dict_torch): map_dict = self.gen_clas_tf2torch_map_dict() var_dict_torch_update = dict() for name in sorted(var_dict_torch.keys(), reverse=False): names = name.split('.') if names[0] == "bias_encoder": name_q = name if name_q in map_dict.keys(): name_v = map_dict[name_q]["name"] name_tf = name_v data_tf = var_dict_tf[name_tf] if map_dict[name_q].get("unit_k") is not None: dim = map_dict[name_q]["unit_k"] i = data_tf[:, 0:dim].copy() f = data_tf[:, dim:2 * dim].copy() o = data_tf[:, 2 * dim:3 * dim].copy() g = data_tf[:, 3 * dim:4 * dim].copy() data_tf = np.concatenate([i, o, f, g], axis=1) if map_dict[name_q].get("unit_b") is not None: dim = map_dict[name_q]["unit_b"] i = data_tf[0:dim].copy() f = data_tf[dim:2 * dim].copy() o = data_tf[2 * dim:3 * dim].copy() g = data_tf[3 * dim:4 * dim].copy() data_tf = np.concatenate([i, o, f, g], axis=0) if map_dict[name_q]["squeeze"] is not None: data_tf = np.squeeze(data_tf, axis=map_dict[name_q]["squeeze"]) if map_dict[name_q].get("slice") is not None: data_tf = data_tf[map_dict[name_q]["slice"][0]:map_dict[name_q]["slice"][1]] if map_dict[name_q].get("scale") is not None: data_tf = data_tf * map_dict[name_q]["scale"] if map_dict[name_q]["transpose"] is not None: data_tf = np.transpose(data_tf, map_dict[name_q]["transpose"]) data_tf = torch.from_numpy(data_tf).type(torch.float32).to("cpu") assert var_dict_torch[name].size() == data_tf.size(), "{}, {}, {} != {}".format(name, name_tf, var_dict_torch[ name].size(), data_tf.size()) var_dict_torch_update[name] = data_tf logging.info( "torch tensor: {}, {}, loading from tf tensor: {}, {}".format(name, data_tf.size(), name_v, var_dict_tf[name_tf].shape)) elif names[0] == "bias_embed": name_tf = map_dict[name]["name"] data_tf = var_dict_tf[name_tf] if map_dict[name]["squeeze"] is not None: data_tf = np.squeeze(data_tf, axis=map_dict[name]["squeeze"]) if map_dict[name]["transpose"] is not None: data_tf = np.transpose(data_tf, map_dict[name]["transpose"]) data_tf = torch.from_numpy(data_tf).type(torch.float32).to("cpu") assert var_dict_torch[name].size() == data_tf.size(), "{}, {}, {} != {}".format(name, name_tf, var_dict_torch[ name].size(), data_tf.size()) var_dict_torch_update[name] = data_tf logging.info( "torch tensor: {}, {}, loading from tf tensor: {}, {}".format(name, data_tf.size(), name_tf, var_dict_tf[name_tf].shape)) return var_dict_torch_update