import onnxruntime import numpy as np if __name__ == '__main__': onnx_path = "/mnt/workspace/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/model.onnx" sess = onnxruntime.InferenceSession(onnx_path) input_name = [nd.name for nd in sess.get_inputs()] output_name = [nd.name for nd in sess.get_outputs()] def _get_feed_dict(feats_length): return {'speech': np.zeros((1, feats_length, 560), dtype=np.float32), 'speech_lengths': np.array([feats_length,], dtype=np.int32)} def _run(feed_dict): output = sess.run(output_name, input_feed=feed_dict) for name, value in zip(output_name, output): print('{}: {}'.format(name, value.shape)) _run(_get_feed_dict(100)) _run(_get_feed_dict(200))