#!/usr/bin/env python3 # -*- coding: utf-8 -*- import torch from torch import nn def sequence_mask(lengths, maxlen=None, dtype=torch.float32, device=None): if maxlen is None: maxlen = lengths.max() row_vector = torch.arange(0, maxlen, 1).to(lengths.device) matrix = torch.unsqueeze(lengths, dim=-1) mask = row_vector < matrix mask = mask.detach() return mask.type(dtype).to(device) if device is not None else mask.type(dtype) def sequence_mask_scripts(lengths, maxlen:int): row_vector = torch.arange(0, maxlen, 1).type(lengths.dtype).to(lengths.device) matrix = torch.unsqueeze(lengths, dim=-1) mask = row_vector < matrix return mask.type(torch.float32).to(lengths.device) class CifPredictorV2(nn.Module): def __init__(self, model): super().__init__() self.pad = model.pad self.cif_conv1d = model.cif_conv1d self.cif_output = model.cif_output self.threshold = model.threshold self.smooth_factor = model.smooth_factor self.noise_threshold = model.noise_threshold self.tail_threshold = model.tail_threshold def forward(self, hidden: torch.Tensor, mask: torch.Tensor, ): h = hidden context = h.transpose(1, 2) queries = self.pad(context) output = torch.relu(self.cif_conv1d(queries)) output = output.transpose(1, 2) output = self.cif_output(output) alphas = torch.sigmoid(output) alphas = torch.nn.functional.relu(alphas * self.smooth_factor - self.noise_threshold) mask = mask.transpose(-1, -2).float() alphas = alphas * mask alphas = alphas.squeeze(-1) token_num = alphas.sum(-1) mask = mask.squeeze(-1) hidden, alphas, token_num = self.tail_process_fn(hidden, alphas, mask=mask) acoustic_embeds, cif_peak = cif(hidden, alphas, self.threshold) return acoustic_embeds, token_num, alphas, cif_peak def tail_process_fn(self, hidden, alphas, token_num=None, mask=None): b, t, d = hidden.size() tail_threshold = self.tail_threshold zeros_t = torch.zeros((b, 1), dtype=torch.float32, device=alphas.device) ones_t = torch.ones_like(zeros_t) mask_1 = torch.cat([mask, zeros_t], dim=1) mask_2 = torch.cat([ones_t, mask], dim=1) mask = mask_2 - mask_1 tail_threshold = mask * tail_threshold alphas = torch.cat([alphas, zeros_t], dim=1) alphas = torch.add(alphas, tail_threshold) zeros = torch.zeros((b, 1, d), dtype=hidden.dtype).to(hidden.device) hidden = torch.cat([hidden, zeros], dim=1) token_num = alphas.sum(dim=-1) token_num_floor = torch.floor(token_num) return hidden, alphas, token_num_floor # @torch.jit.script # def cif(hidden, alphas, threshold: float): # batch_size, len_time, hidden_size = hidden.size() # threshold = torch.tensor([threshold], dtype=alphas.dtype).to(alphas.device) # # # loop varss # integrate = torch.zeros([batch_size], device=hidden.device) # frame = torch.zeros([batch_size, hidden_size], device=hidden.device) # # intermediate vars along time # list_fires = [] # list_frames = [] # # for t in range(len_time): # alpha = alphas[:, t] # distribution_completion = torch.ones([batch_size], device=hidden.device) - integrate # # integrate += alpha # list_fires.append(integrate) # # fire_place = integrate >= threshold # integrate = torch.where(fire_place, # integrate - torch.ones([batch_size], device=hidden.device), # integrate) # cur = torch.where(fire_place, # distribution_completion, # alpha) # remainds = alpha - cur # # frame += cur[:, None] * hidden[:, t, :] # list_frames.append(frame) # frame = torch.where(fire_place[:, None].repeat(1, hidden_size), # remainds[:, None] * hidden[:, t, :], # frame) # # fires = torch.stack(list_fires, 1) # frames = torch.stack(list_frames, 1) # list_ls = [] # len_labels = torch.floor(alphas.sum(-1)).int() # max_label_len = len_labels.max() # for b in range(batch_size): # fire = fires[b, :] # l = torch.index_select(frames[b, :, :], 0, torch.nonzero(fire >= threshold).squeeze()) # pad_l = torch.zeros([int(max_label_len - l.size(0)), int(hidden_size)], device=hidden.device) # list_ls.append(torch.cat([l, pad_l], 0)) # return torch.stack(list_ls, 0), fires @torch.jit.script def cif(hidden, alphas, threshold: float): batch_size, len_time, hidden_size = hidden.size() threshold = torch.tensor([threshold], dtype=alphas.dtype).to(alphas.device) # loop varss integrate = torch.zeros([batch_size], dtype=alphas.dtype, device=hidden.device) frame = torch.zeros([batch_size, hidden_size], dtype=hidden.dtype, device=hidden.device) # intermediate vars along time list_fires = [] list_frames = [] for t in range(len_time): alpha = alphas[:, t] distribution_completion = torch.ones([batch_size], dtype=alphas.dtype, device=hidden.device) - integrate integrate += alpha list_fires.append(integrate) fire_place = integrate >= threshold integrate = torch.where(fire_place, integrate - torch.ones([batch_size], dtype=alphas.dtype, device=hidden.device), integrate) cur = torch.where(fire_place, distribution_completion, alpha) remainds = alpha - cur frame += cur[:, None] * hidden[:, t, :] list_frames.append(frame) frame = torch.where(fire_place[:, None].repeat(1, hidden_size), remainds[:, None] * hidden[:, t, :], frame) fires = torch.stack(list_fires, 1) frames = torch.stack(list_frames, 1) fire_idxs = fires >= threshold frame_fires = torch.zeros_like(hidden) max_label_len = frames[0, fire_idxs[0]].size(0) for b in range(batch_size): frame_fire = frames[b, fire_idxs[b]] frame_len = frame_fire.size(0) frame_fires[b, :frame_len, :] = frame_fire if frame_len >= max_label_len: max_label_len = frame_len frame_fires = frame_fires[:, :max_label_len, :] return frame_fires, fires class CifPredictorV3(nn.Module): def __init__(self, model): super().__init__() self.pad = model.pad self.cif_conv1d = model.cif_conv1d self.cif_output = model.cif_output self.threshold = model.threshold self.smooth_factor = model.smooth_factor self.noise_threshold = model.noise_threshold self.tail_threshold = model.tail_threshold self.upsample_times = model.upsample_times self.upsample_cnn = model.upsample_cnn self.blstm = model.blstm self.cif_output2 = model.cif_output2 self.smooth_factor2 = model.smooth_factor2 self.noise_threshold2 = model.noise_threshold2 def forward(self, hidden: torch.Tensor, mask: torch.Tensor, ): h = hidden context = h.transpose(1, 2) queries = self.pad(context) output = torch.relu(self.cif_conv1d(queries)) output = output.transpose(1, 2) output = self.cif_output(output) alphas = torch.sigmoid(output) alphas = torch.nn.functional.relu(alphas * self.smooth_factor - self.noise_threshold) mask = mask.transpose(-1, -2).float() alphas = alphas * mask alphas = alphas.squeeze(-1) token_num = alphas.sum(-1) mask = mask.squeeze(-1) hidden, alphas, token_num = self.tail_process_fn(hidden, alphas, mask=mask) acoustic_embeds, cif_peak = cif(hidden, alphas, self.threshold) return acoustic_embeds, token_num, alphas, cif_peak def get_upsample_timestmap(self, hidden, mask=None, token_num=None): h = hidden b = hidden.shape[0] context = h.transpose(1, 2) # generate alphas2 _output = context output2 = self.upsample_cnn(_output) output2 = output2.transpose(1, 2) output2, (_, _) = self.blstm(output2) alphas2 = torch.sigmoid(self.cif_output2(output2)) alphas2 = torch.nn.functional.relu(alphas2 * self.smooth_factor2 - self.noise_threshold2) mask = mask.repeat(1, self.upsample_times, 1).transpose(-1, -2).reshape(alphas2.shape[0], -1) mask = mask.unsqueeze(-1) alphas2 = alphas2 * mask alphas2 = alphas2.squeeze(-1) _token_num = alphas2.sum(-1) alphas2 *= (token_num / _token_num)[:, None].repeat(1, alphas2.size(1)) # upsampled alphas and cif_peak us_alphas = alphas2 us_cif_peak = cif_wo_hidden(us_alphas, self.threshold - 1e-4) return us_alphas, us_cif_peak def tail_process_fn(self, hidden, alphas, token_num=None, mask=None): b, t, d = hidden.size() tail_threshold = self.tail_threshold zeros_t = torch.zeros((b, 1), dtype=torch.float32, device=alphas.device) ones_t = torch.ones_like(zeros_t) mask_1 = torch.cat([mask, zeros_t], dim=1) mask_2 = torch.cat([ones_t, mask], dim=1) mask = mask_2 - mask_1 tail_threshold = mask * tail_threshold alphas = torch.cat([alphas, zeros_t], dim=1) alphas = torch.add(alphas, tail_threshold) zeros = torch.zeros((b, 1, d), dtype=hidden.dtype).to(hidden.device) hidden = torch.cat([hidden, zeros], dim=1) token_num = alphas.sum(dim=-1) token_num_floor = torch.floor(token_num) return hidden, alphas, token_num_floor @torch.jit.script def cif_wo_hidden(alphas, threshold: float): batch_size, len_time = alphas.size() # loop varss integrate = torch.zeros([batch_size], dtype=alphas.dtype, device=alphas.device) # intermediate vars along time list_fires = [] for t in range(len_time): alpha = alphas[:, t] integrate += alpha list_fires.append(integrate) fire_place = integrate >= threshold integrate = torch.where(fire_place, integrate - torch.ones([batch_size], device=alphas.device), integrate) fires = torch.stack(list_fires, 1) return fires