#!/usr/bin/env python3 # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) import argparse import logging import os import sys from pathlib import Path from typing import Any from typing import List from typing import Optional from typing import Sequence from typing import Tuple from typing import Union from collections import OrderedDict import numpy as np import soundfile import torch from torch.nn import functional as F from typeguard import check_argument_types from typeguard import check_return_type from funasr.utils.cli_utils import get_commandline_args from funasr.tasks.diar import DiarTask from funasr.tasks.asr import ASRTask from funasr.torch_utils.device_funcs import to_device from funasr.torch_utils.set_all_random_seed import set_all_random_seed from funasr.utils import config_argparse from funasr.utils.types import str2bool from funasr.utils.types import str2triple_str from funasr.utils.types import str_or_none from scipy.ndimage import median_filter from funasr.utils.misc import statistic_model_parameters from funasr.datasets.iterable_dataset import load_bytes class Speech2Diarization: """Speech2Xvector class Examples: >>> import soundfile >>> import numpy as np >>> speech2diar = Speech2Diarization("diar_sond_config.yml", "diar_sond.pb") >>> profile = np.load("profiles.npy") >>> audio, rate = soundfile.read("speech.wav") >>> speech2diar(audio, profile) {"spk1": [(int, int), ...], ...} """ def __init__( self, diar_train_config: Union[Path, str] = None, diar_model_file: Union[Path, str] = None, device: Union[str, torch.device] = "cpu", batch_size: int = 1, dtype: str = "float32", streaming: bool = False, smooth_size: int = 83, dur_threshold: float = 10, ): assert check_argument_types() # TODO: 1. Build Diarization model diar_model, diar_train_args = DiarTask.build_model_from_file( config_file=diar_train_config, model_file=diar_model_file, device=device ) logging.info("diar_model: {}".format(diar_model)) logging.info("model parameter number: {}".format(statistic_model_parameters(diar_model))) logging.info("diar_train_args: {}".format(diar_train_args)) diar_model.to(dtype=getattr(torch, dtype)).eval() self.diar_model = diar_model self.diar_train_args = diar_train_args self.token_list = diar_train_args.token_list self.smooth_size = smooth_size self.dur_threshold = dur_threshold self.device = device self.dtype = dtype def smooth_multi_labels(self, multi_label): multi_label = median_filter(multi_label, (self.smooth_size, 1), mode="constant", cval=0.0).astype(int) return multi_label @staticmethod def calc_spk_turns(label_arr, spk_list): turn_list = [] length = label_arr.shape[0] n_spk = label_arr.shape[1] for k in range(n_spk): if spk_list[k] == "None": continue in_utt = False start = 0 for i in range(length): if label_arr[i, k] == 1 and in_utt is False: start = i in_utt = True if label_arr[i, k] == 0 and in_utt is True: turn_list.append([spk_list[k], start, i - start]) in_utt = False if in_utt: turn_list.append([spk_list[k], start, length - start]) return turn_list @staticmethod def seq2arr(seq, vec_dim=8): def int2vec(x, vec_dim=8, dtype=np.int): b = ('{:0' + str(vec_dim) + 'b}').format(x) # little-endian order: lower bit first return (np.array(list(b)[::-1]) == '1').astype(dtype) # process oov seq = np.array([int(x) for x in seq]) new_seq = [] for i, x in enumerate(seq): if x < 2 ** vec_dim: new_seq.append(x) else: idx_list = np.where(seq < 2 ** vec_dim)[0] idx = np.abs(idx_list - i).argmin() new_seq.append(seq[idx_list[idx]]) return np.row_stack([int2vec(x, vec_dim) for x in new_seq]) def post_processing(self, raw_logits: torch.Tensor, spk_num: int, output_format: str = "speaker_turn"): logits_idx = raw_logits.argmax(-1) # B, T, vocab_size -> B, T # upsampling outputs to match inputs ut = logits_idx.shape[1] * self.diar_model.encoder.time_ds_ratio logits_idx = F.upsample( logits_idx.unsqueeze(1).float(), size=(ut, ), mode="nearest", ).squeeze(1).long() logits_idx = logits_idx[0].tolist() pse_labels = [self.token_list[x] for x in logits_idx] if output_format == "pse_labels": return pse_labels, None multi_labels = self.seq2arr(pse_labels, spk_num)[:, :spk_num] # remove padding speakers multi_labels = self.smooth_multi_labels(multi_labels) if output_format == "binary_labels": return multi_labels, None spk_list = ["spk{}".format(i + 1) for i in range(spk_num)] spk_turns = self.calc_spk_turns(multi_labels, spk_list) results = OrderedDict() for spk, st, dur in spk_turns: if spk not in results: results[spk] = [] if dur > self.dur_threshold: results[spk].append((st, st+dur)) # sort segments in start time ascending for spk in results: results[spk] = sorted(results[spk], key=lambda x: x[0]) return results, pse_labels @torch.no_grad() def __call__( self, speech: Union[torch.Tensor, np.ndarray], profile: Union[torch.Tensor, np.ndarray], output_format: str = "speaker_turn" ): """Inference Args: speech: Input speech data profile: Speaker profiles Returns: diarization results for each speaker """ assert check_argument_types() # Input as audio signal if isinstance(speech, np.ndarray): speech = torch.tensor(speech) if isinstance(profile, np.ndarray): profile = torch.tensor(profile) # data: (Nsamples,) -> (1, Nsamples) speech = speech.unsqueeze(0).to(getattr(torch, self.dtype)) profile = profile.unsqueeze(0).to(getattr(torch, self.dtype)) # lengths: (1,) speech_lengths = speech.new_full([1], dtype=torch.long, fill_value=speech.size(1)) profile_lengths = profile.new_full([1], dtype=torch.long, fill_value=profile.size(1)) batch = {"speech": speech, "speech_lengths": speech_lengths, "profile": profile, "profile_lengths": profile_lengths} # a. To device batch = to_device(batch, device=self.device) logits = self.diar_model.prediction_forward(**batch) results, pse_labels = self.post_processing(logits, profile.shape[1], output_format) return results, pse_labels @staticmethod def from_pretrained( model_tag: Optional[str] = None, **kwargs: Optional[Any], ): """Build Speech2Xvector instance from the pretrained model. Args: model_tag (Optional[str]): Model tag of the pretrained models. Currently, the tags of espnet_model_zoo are supported. Returns: Speech2Xvector: Speech2Xvector instance. """ if model_tag is not None: try: from espnet_model_zoo.downloader import ModelDownloader except ImportError: logging.error( "`espnet_model_zoo` is not installed. " "Please install via `pip install -U espnet_model_zoo`." ) raise d = ModelDownloader() kwargs.update(**d.download_and_unpack(model_tag)) return Speech2Diarization(**kwargs) def inference_modelscope( diar_train_config: str, diar_model_file: str, output_dir: Optional[str] = None, batch_size: int = 1, dtype: str = "float32", ngpu: int = 0, seed: int = 0, num_workers: int = 0, log_level: Union[int, str] = "INFO", key_file: Optional[str] = None, model_tag: Optional[str] = None, allow_variable_data_keys: bool = True, streaming: bool = False, smooth_size: int = 83, dur_threshold: int = 10, out_format: str = "vad", param_dict: Optional[dict] = None, mode: str = "sond", **kwargs, ): assert check_argument_types() if batch_size > 1: raise NotImplementedError("batch decoding is not implemented") if ngpu > 1: raise NotImplementedError("only single GPU decoding is supported") logging.basicConfig( level=log_level, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", ) logging.info("param_dict: {}".format(param_dict)) if ngpu >= 1 and torch.cuda.is_available(): device = "cuda" else: device = "cpu" # 1. Set random-seed set_all_random_seed(seed) # 2a. Build speech2xvec [Optional] if mode == "sond_demo" and param_dict is not None and "extract_profile" in param_dict and param_dict["extract_profile"]: assert "sv_train_config" in param_dict, "sv_train_config must be provided param_dict." assert "sv_model_file" in param_dict, "sv_model_file must be provided in param_dict." sv_train_config = param_dict["sv_train_config"] sv_model_file = param_dict["sv_model_file"] if "model_dir" in param_dict: sv_train_config = os.path.join(param_dict["model_dir"], sv_train_config) sv_model_file = os.path.join(param_dict["model_dir"], sv_model_file) from funasr.bin.sv_inference import Speech2Xvector speech2xvector_kwargs = dict( sv_train_config=sv_train_config, sv_model_file=sv_model_file, device=device, dtype=dtype, streaming=streaming, embedding_node="resnet1_dense" ) logging.info("speech2xvector_kwargs: {}".format(speech2xvector_kwargs)) speech2xvector = Speech2Xvector.from_pretrained( model_tag=model_tag, **speech2xvector_kwargs, ) speech2xvector.sv_model.eval() # 2b. Build speech2diar speech2diar_kwargs = dict( diar_train_config=diar_train_config, diar_model_file=diar_model_file, device=device, dtype=dtype, streaming=streaming, smooth_size=smooth_size, dur_threshold=dur_threshold, ) logging.info("speech2diarization_kwargs: {}".format(speech2diar_kwargs)) speech2diar = Speech2Diarization.from_pretrained( model_tag=model_tag, **speech2diar_kwargs, ) speech2diar.diar_model.eval() def output_results_str(results: dict, uttid: str): rst = [] mid = uttid.rsplit("-", 1)[0] for key in results: results[key] = [(x[0]/100, x[1]/100) for x in results[key]] if out_format == "vad": for spk, segs in results.items(): rst.append("{} {}".format(spk, segs)) else: template = "SPEAKER {} 0 {:.2f} {:.2f} {} " for spk, segs in results.items(): rst.extend([template.format(mid, st, ed, spk) for st, ed in segs]) return "\n".join(rst) def _forward( data_path_and_name_and_type: Sequence[Tuple[str, str, str]] = None, raw_inputs: List[List[Union[np.ndarray, torch.Tensor, str, bytes]]] = None, output_dir_v2: Optional[str] = None, param_dict: Optional[dict] = None, ): logging.info("param_dict: {}".format(param_dict)) if data_path_and_name_and_type is None and raw_inputs is not None: if isinstance(raw_inputs, (list, tuple)): if not isinstance(raw_inputs[0], List): raw_inputs = [raw_inputs] assert all([len(example) >= 2 for example in raw_inputs]), \ "The length of test case in raw_inputs must larger than 1 (>=2)." def prepare_dataset(): for idx, example in enumerate(raw_inputs): # read waveform file example = [load_bytes(x) if isinstance(x, bytes) else x for x in example] example = [soundfile.read(x)[0] if isinstance(x, str) else x for x in example] # convert torch tensor to numpy array example = [x.numpy() if isinstance(example[0], torch.Tensor) else x for x in example] speech = example[0] logging.info("Extracting profiles for {} waveforms".format(len(example)-1)) profile = [speech2xvector.calculate_embedding(x) for x in example[1:]] profile = torch.cat(profile, dim=0) yield ["test{}".format(idx)], {"speech": [speech], "profile": [profile]} loader = prepare_dataset() else: raise TypeError("raw_inputs must be a list or tuple in [speech, profile1, profile2, ...] ") else: # 3. Build data-iterator loader = ASRTask.build_streaming_iterator( data_path_and_name_and_type, dtype=dtype, batch_size=batch_size, key_file=key_file, num_workers=num_workers, preprocess_fn=None, collate_fn=None, allow_variable_data_keys=allow_variable_data_keys, inference=True, ) # 7. Start for-loop output_path = output_dir_v2 if output_dir_v2 is not None else output_dir if output_path is not None: os.makedirs(output_path, exist_ok=True) output_writer = open("{}/result.txt".format(output_path), "w") pse_label_writer = open("{}/labels.txt".format(output_path), "w") logging.info("Start to diarize...") result_list = [] for idx, (keys, batch) in enumerate(loader): assert isinstance(batch, dict), type(batch) assert all(isinstance(s, str) for s in keys), keys _bs = len(next(iter(batch.values()))) assert len(keys) == _bs, f"{len(keys)} != {_bs}" batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")} results, pse_labels = speech2diar(**batch) # Only supporting batch_size==1 key, value = keys[0], output_results_str(results, keys[0]) item = {"key": key, "value": value} result_list.append(item) if output_path is not None: output_writer.write(value) output_writer.flush() pse_label_writer.write("{} {}\n".format(key, " ".join(pse_labels))) pse_label_writer.flush() if idx % 100 == 0: logging.info("Processing {:5d}: {}".format(idx, key)) if output_path is not None: output_writer.close() pse_label_writer.close() return result_list return _forward def inference( data_path_and_name_and_type: Sequence[Tuple[str, str, str]], diar_train_config: Optional[str], diar_model_file: Optional[str], output_dir: Optional[str] = None, batch_size: int = 1, dtype: str = "float32", ngpu: int = 0, seed: int = 0, num_workers: int = 1, log_level: Union[int, str] = "INFO", key_file: Optional[str] = None, model_tag: Optional[str] = None, allow_variable_data_keys: bool = True, streaming: bool = False, smooth_size: int = 83, dur_threshold: int = 10, out_format: str = "vad", **kwargs, ): inference_pipeline = inference_modelscope( diar_train_config=diar_train_config, diar_model_file=diar_model_file, output_dir=output_dir, batch_size=batch_size, dtype=dtype, ngpu=ngpu, seed=seed, num_workers=num_workers, log_level=log_level, key_file=key_file, model_tag=model_tag, allow_variable_data_keys=allow_variable_data_keys, streaming=streaming, smooth_size=smooth_size, dur_threshold=dur_threshold, out_format=out_format, **kwargs, ) return inference_pipeline(data_path_and_name_and_type, raw_inputs=None) def get_parser(): parser = config_argparse.ArgumentParser( description="Speaker verification/x-vector extraction", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) # Note(kamo): Use '_' instead of '-' as separator. # '-' is confusing if written in yaml. parser.add_argument( "--log_level", type=lambda x: x.upper(), default="INFO", choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"), help="The verbose level of logging", ) parser.add_argument("--output_dir", type=str, required=False) parser.add_argument( "--ngpu", type=int, default=0, help="The number of gpus. 0 indicates CPU mode", ) parser.add_argument( "--gpuid_list", type=str, default="", help="The visible gpus", ) parser.add_argument("--seed", type=int, default=0, help="Random seed") parser.add_argument( "--dtype", default="float32", choices=["float16", "float32", "float64"], help="Data type", ) parser.add_argument( "--num_workers", type=int, default=1, help="The number of workers used for DataLoader", ) group = parser.add_argument_group("Input data related") group.add_argument( "--data_path_and_name_and_type", type=str2triple_str, required=False, action="append", ) group.add_argument("--key_file", type=str_or_none) group.add_argument("--allow_variable_data_keys", type=str2bool, default=False) group = parser.add_argument_group("The model configuration related") group.add_argument( "--diar_train_config", type=str, help="diarization training configuration", ) group.add_argument( "--diar_model_file", type=str, help="diarization model parameter file", ) group.add_argument( "--dur_threshold", type=int, default=10, help="The threshold for short segments in number frames" ) parser.add_argument( "--smooth_size", type=int, default=83, help="The smoothing window length in number frames" ) group.add_argument( "--model_tag", type=str, help="Pretrained model tag. If specify this option, *_train_config and " "*_file will be overwritten", ) parser.add_argument( "--batch_size", type=int, default=1, help="The batch size for inference", ) parser.add_argument("--streaming", type=str2bool, default=False) return parser def main(cmd=None): print(get_commandline_args(), file=sys.stderr) parser = get_parser() args = parser.parse_args(cmd) kwargs = vars(args) kwargs.pop("config", None) logging.info("args: {}".format(kwargs)) if args.output_dir is None: jobid, n_gpu = 1, 1 gpuid = args.gpuid_list.split(",")[jobid-1] else: jobid = int(args.output_dir.split(".")[-1]) n_gpu = len(args.gpuid_list.split(",")) gpuid = args.gpuid_list.split(",")[(jobid - 1) % n_gpu] os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = gpuid results_list = inference(**kwargs) for results in results_list: print("{} {}".format(results["key"], results["value"])) if __name__ == "__main__": main()