#!/usr/bin/env bash . ./path.sh || exit 1; # machines configuration CUDA_VISIBLE_DEVICES="0,1" # set gpus, e.g., CUDA_VISIBLE_DEVICES="0,1" gpu_num=2 count=1 gpu_inference=true # Whether to perform gpu decoding, set false for cpu decoding njob=4 # the number of jobs for each gpu train_cmd=utils/run.pl # general configuration feats_dir="../DATA" #feature output dictionary, for large data exp_dir="." lang=zh dumpdir=dump/fbank feats_type=fbank token_type=char scp=feats.scp type=kaldi_ark stage=1 stop_stage=4 # feature configuration feats_dim=560 sample_frequency=16000 nj=32 speed_perturb="1.0" lfr=True lfr_m=7 lfr_n=6 init_model_name=speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch # pre-trained model, download from modelscope during fine-tuning model_revision="v1.0.3" # please do not modify the model revision cmvn_file=init_model/${init_model_name}/am.mvn seg_file=init_model/${init_model_name}/seg_dict vocab=init_model/${init_model_name}/tokens.txt # data dataset= # dataset (include train/wav.scp, train/text, dev/wav.scp, dev/text, optional test/wav.scp test/text) # exp tag tag="" # Set bash to 'debug' mode, it will exit on : # -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands', set -e set -u set -o pipefail train_set=train valid_set=dev test_sets="dev test" asr_config=conf/train_asr_paraformer_sanm_50e_16d_2048_512_lfr6.yaml init_param="init_model/${init_model_name}/model.pb" inference_config=conf/decode_asr_transformer_noctc_1best.yaml inference_asr_model=valid.acc.ave_10best.pth . utils/parse_options.sh || exit 1; # download model from modelscope python modelscope_utils/download_model.py --model_name ${init_model_name} --model_revision ${model_revision} if [ ! -d ${HOME}/.cache/modelscope/hub/damo/${init_model_name} ]; then echo "${HOME}/.cache/modelscope/hub/damo/${init_model_name} must exist" exit 1 else if [ -d init_model/${init_model_name} ]; then echo "init_model/${init_model_name} is already exists. if you want to decode again, please delete init_model/${init_model_name} first." else mkdir -p init_model/${init_model_name} cp -r ${HOME}/.cache/modelscope/hub/damo/${init_model_name}/* init_model/${init_model_name} fi fi model_dir="baseline_$(basename "${asr_config}" .yaml)_${feats_type}_${lang}_${token_type}_${tag}" # you can set gpu num for decoding here gpuid_list=$CUDA_VISIBLE_DEVICES # set gpus for decoding, the same as training stage by default ngpu=$(echo $gpuid_list | awk -F "," '{print NF}') inference_nj=$[${ngpu}*${njob}] [ ! -d ${dataset} ] && echo "$0: Training data is required" && exit 1; [ ! -f ${dataset}/train/wav.scp ] && [ ! -f ${dataset}/train/text ] && echo "$0: Training data wav.scp or text is not found" && exit 1; if [ ! -d "${dataset}/dev" ]; then utils/fix_data.sh ${dataset}/train utils/subset_data_dir_tr_cv.sh --dev-num-utt 1000 ${dataset}/train ${dataset} fi if [ ! -d "${dataset}/test" ]; then test_sets="dev" fi feat_train_dir=${feats_dir}/${dumpdir}/train; mkdir -p ${feat_train_dir} feat_dev_dir=${feats_dir}/${dumpdir}/dev; mkdir -p ${feat_dev_dir} feat_test_dir=${feats_dir}/${dumpdir}/test; mkdir -p ${feat_test_dir} if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then echo "Feature Generation" # compute fbank features fbankdir=${feats_dir}/fbank utils/compute_fbank.sh --cmd "$train_cmd" --nj $nj --speed_perturb ${speed_perturb} \ ${dataset}/train ${exp_dir}/exp/make_fbank/train ${fbankdir}/train utils/fix_data_feat.sh ${fbankdir}/train utils/compute_fbank.sh --cmd "$train_cmd" --nj $nj \ ${dataset}/dev ${exp_dir}/exp/make_fbank/dev ${fbankdir}/dev utils/fix_data_feat.sh ${fbankdir}/dev if [ -d "${dataset}/test" ]; then utils/compute_fbank.sh --cmd "$train_cmd" --nj $nj \ ${dataset}/test ${exp_dir}/exp/make_fbank/test ${fbankdir}/test utils/fix_data_feat.sh ${fbankdir}/test fi echo "apply low_frame_rate and cmvn" [ ! -f ${cmvn_file} ] && echo "$0: cmvn file is required" && exit 1; utils/apply_lfr_and_cmvn.sh --cmd "$train_cmd" --nj $nj \ --lfr $lfr --lfr-m $lfr_m --lfr-n $lfr_n \ ${fbankdir}/train ${cmvn_file} ${exp_dir}/exp/make_fbank/train ${feat_train_dir} utils/apply_lfr_and_cmvn.sh --cmd "$train_cmd" --nj $nj \ --lfr $lfr --lfr-m $lfr_m --lfr-n $lfr_n \ ${fbankdir}/dev ${cmvn_file} ${exp_dir}/exp/make_fbank/dev ${feat_dev_dir} if [ -d "${dataset}/test" ]; then utils/apply_lfr_and_cmvn.sh --cmd "$train_cmd" --nj $nj \ --lfr $lfr --lfr-m $lfr_m --lfr-n $lfr_n \ ${fbankdir}/test ${cmvn_file} ${exp_dir}/exp/make_fbank/test ${feat_test_dir} fi echo "Text Tokenize" # 我爱reading->我 爱 read@@ ing utils/text_tokenize.sh --cmd "$train_cmd" --nj $nj ${fbankdir}/train ${seg_file} ${feat_train_dir}/log ${feat_train_dir} utils/fix_data_feat.sh ${feat_train_dir} utils/text_tokenize.sh --cmd "$train_cmd" --nj $nj ${fbankdir}/dev ${seg_file} ${feat_dev_dir}/log ${feat_dev_dir} utils/fix_data_feat.sh ${feat_dev_dir} if [ -d "${dataset}/test" ]; then cp ${fbankdir}/test/text ${feat_test_dir} fi fi token_list=${feats_dir}/data/${lang}_token_list/char/tokens.txt echo "dictionary: ${token_list}" if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then echo "stage 2: Dictionary Preparation" mkdir -p ${feats_dir}/data/${lang}_token_list/char/ cp $vocab ${token_list} vocab_size=$(wc -l <${token_list}) awk -v v=,${vocab_size} '{print $0v}' ${feat_train_dir}/text_shape > ${feat_train_dir}/text_shape.char awk -v v=,${vocab_size} '{print $0v}' ${feat_dev_dir}/text_shape > ${feat_dev_dir}/text_shape.char mkdir -p ${feats_dir}/asr_stats_fbank_zh_char/train mkdir -p ${feats_dir}/asr_stats_fbank_zh_char/dev cp ${feat_train_dir}/speech_shape ${feat_train_dir}/text_shape ${feat_train_dir}/text_shape.char ${feats_dir}/asr_stats_fbank_zh_char/train cp ${feat_dev_dir}/speech_shape ${feat_dev_dir}/text_shape ${feat_dev_dir}/text_shape.char ${feats_dir}/asr_stats_fbank_zh_char/dev fi # Training Stage world_size=$gpu_num # run on one machine if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then # update asr train config.yaml python modelscope_utils/update_config.py --modelscope_config init_model/${init_model_name}/finetune.yaml --finetune_config ${asr_config} --output_config init_model/${init_model_name}/asr_finetune_config.yaml finetune_config=init_model/${init_model_name}/asr_finetune_config.yaml mkdir -p ${exp_dir}/exp/${model_dir} mkdir -p ${exp_dir}/exp/${model_dir}/log INIT_FILE=$exp_dir/ddp_init if [ -f $INIT_FILE ];then rm -f $INIT_FILE fi init_method=file://$(readlink -f $INIT_FILE) echo "$0: init method is $init_method" for ((i = 0; i < $gpu_num; ++i)); do { rank=$i local_rank=$i gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1]) asr_train_paraformer.py \ --gpu_id $gpu_id \ --use_preprocessor true \ --token_type $token_type \ --token_list $token_list \ --train_data_path_and_name_and_type ${feats_dir}/${dumpdir}/${train_set}/${scp},speech,${type} \ --train_data_path_and_name_and_type ${feats_dir}/${dumpdir}/${train_set}/text,text,text \ --train_shape_file ${feats_dir}/asr_stats_fbank_zh_char/${train_set}/speech_shape \ --train_shape_file ${feats_dir}/asr_stats_fbank_zh_char/${train_set}/text_shape.char \ --valid_data_path_and_name_and_type ${feats_dir}/${dumpdir}/${valid_set}/${scp},speech,${type} \ --valid_data_path_and_name_and_type ${feats_dir}/${dumpdir}/${valid_set}/text,text,text \ --valid_shape_file ${feats_dir}/asr_stats_fbank_zh_char/${valid_set}/speech_shape \ --valid_shape_file ${feats_dir}/asr_stats_fbank_zh_char/${valid_set}/text_shape.char \ --resume true \ --output_dir ${exp_dir}/exp/${model_dir} \ --init_param $init_param \ --config $finetune_config \ --input_size $feats_dim \ --ngpu $gpu_num \ --num_worker_count $count \ --multiprocessing_distributed true \ --dist_init_method $init_method \ --dist_world_size $world_size \ --dist_rank $rank \ --local_rank $local_rank 1> ${exp_dir}/exp/${model_dir}/log/train.log.$i 2>&1 } & done wait fi # Testing Stage if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then ./utils/easy_asr_infer.sh \ --lang zh \ --datadir ${feats_dir} \ --feats_type ${feats_type} \ --feats_dim ${feats_dim} \ --token_type ${token_type} \ --gpu_inference ${gpu_inference} \ --inference_config "${inference_config}" \ --test_sets "${test_sets}" \ --token_list $token_list \ --asr_exp ${exp_dir}/exp/${model_dir} \ --stage 12 \ --stop_stage 12 \ --scp $scp \ --text text \ --inference_nj $inference_nj \ --njob $njob \ --inference_asr_model $inference_asr_model \ --gpuid_list $gpuid_list \ --mode paraformer fi