#!/usr/bin/env python3 # -*- encoding: utf-8 -*- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) import types import torch from funasr.register import tables def export_rebuild_model(model, **kwargs): is_onnx = kwargs.get("type", "onnx") == "onnx" encoder_class = tables.encoder_classes.get(kwargs["encoder"] + "Export") model.encoder = encoder_class(model.encoder, onnx=is_onnx) model.forward = types.MethodType(export_forward, model) model.export_dummy_inputs = types.MethodType(export_dummy_inputs, model) model.export_input_names = types.MethodType(export_input_names, model) model.export_output_names = types.MethodType(export_output_names, model) model.export_dynamic_axes = types.MethodType(export_dynamic_axes, model) model.export_name = types.MethodType(export_name, model) return model def export_forward(self, inputs: torch.Tensor, text_lengths: torch.Tensor): """Compute loss value from buffer sequences. Args: input (torch.Tensor): Input ids. (batch, len) hidden (torch.Tensor): Target ids. (batch, len) """ x = self.embed(inputs) h, _ = self.encoder(x, text_lengths) y = self.decoder(h) return y def export_dummy_inputs(self): length = 120 text_indexes = torch.randint(0, self.embed.num_embeddings, (2, length)).type(torch.int32) text_lengths = torch.tensor([length-20, length], dtype=torch.int32) return (text_indexes, text_lengths) def export_input_names(self): return ['inputs', 'text_lengths'] def export_output_names(self): return ['logits'] def export_dynamic_axes(self): return { 'inputs': { 0: 'batch_size', 1: 'feats_length' }, 'text_lengths': { 0: 'batch_size', }, 'logits': { 0: 'batch_size', 1: 'logits_length' }, } def export_name(self): return "model.onnx"