#!/usr/bin/env python import re import numpy as np def forward_segment(text, seg_dict): word_list = [] i = 0 while i < len(text): longest_word = text[i] for j in range(i + 1, len(text) + 1): word = text[i:j] if word in seg_dict: if len(word) > len(longest_word): longest_word = word word_list.append(longest_word) i += len(longest_word) return word_list def seg_tokenize(txt, seg_dict): out_txt = "" pattern = re.compile(r"([\u4E00-\u9FA5A-Za-z0-9])") for word in txt: if pattern.match(word): if word in seg_dict: out_txt += seg_dict[word] + " " else: out_txt += "" + " " else: continue return out_txt.strip().split() def tokenize(data, vocab=None, seg_dict=None): assert "text" in data assert isinstance(vocab, dict) text = data["text"] token = [] if seg_dict is not None: assert isinstance(seg_dict, dict) txt = forward_segment("".join(text).lower(), seg_dict) text = seg_tokenize(txt, seg_dict) for x in text: if x in vocab: token.append(vocab[x]) else: token.append(vocab['']) data["text"] = np.array(token) return data