# Speech Recognition
> **Note**:
> The modelscope pipeline supports all the models in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope) to inference and finetine. Here we take model of Paraformer and Paraformer-online as example to demonstrate the usage.
## Inference
### Quick start
#### [Paraformer model](https://www.modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary)
```python
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
)
rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav')
print(rec_result)
```
#### [Paraformer-online model](https://www.modelscope.cn/models/damo/speech_paraformer_asr_nat-zh-cn-16k-common-vocab8404-online/summary)
```python
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_paraformer_asr_nat-zh-cn-16k-common-vocab8404-online',
)
import soundfile
speech, sample_rate = soundfile.read("example/asr_example.wav")
param_dict = {"cache": dict(), "is_final": False}
chunk_stride = 7680# 480ms
# first chunk, 480ms
speech_chunk = speech[0:chunk_stride]
rec_result = inference_pipeline(audio_in=speech_chunk, param_dict=param_dict)
print(rec_result)
# next chunk, 480ms
speech_chunk = speech[chunk_stride:chunk_stride+chunk_stride]
rec_result = inference_pipeline(audio_in=speech_chunk, param_dict=param_dict)
print(rec_result)
```
Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/FunASR/discussions/241)
#### [UniASR model](https://www.modelscope.cn/models/damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/summary)
There are three decoding mode for UniASR model(`fast`、`normal`、`offline`), for more model detailes, please refer to [docs](https://www.modelscope.cn/models/damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/summary)
```python
decoding_model = "fast" # "fast"、"normal"、"offline"
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_UniASR_asr_2pass-minnan-16k-common-vocab3825',
param_dict={"decoding_model": decoding_model})
rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav')
print(rec_result)
```
The decoding mode of `fast` and `normal`
Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/FunASR/discussions/151)
#### [RNN-T-online model]()
Undo
#### API-reference
##### define pipeline
- `task`: `Tasks.auto_speech_recognition`
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
- `ngpu`: 1 (Defalut), decoding on GPU. If ngpu=0, decoding on CPU
- `ncpu`: 1 (Defalut), sets the number of threads used for intraop parallelism on CPU
- `output_dir`: None (Defalut), the output path of results if set
- `batch_size`: 1 (Defalut), batch size when decoding
##### infer pipeline
- `audio_in`: the input to decode, which could be:
- wav_path, `e.g.`: asr_example.wav,
- pcm_path, `e.g.`: asr_example.pcm,
- audio bytes stream, `e.g.`: bytes data from a microphone
- audio sample point,`e.g.`: `audio, rate = soundfile.read("asr_example_zh.wav")`, the dtype is numpy.ndarray or torch.Tensor
- wav.scp, kaldi style wav list (`wav_id \t wav_path``), `e.g.`:
```cat wav.scp
asr_example1 ./audios/asr_example1.wav
asr_example2 ./audios/asr_example2.wav
```
In this case of `wav.scp` input, `output_dir` must be set to save the output results
- `audio_fs`: audio sampling rate, only set when audio_in is pcm audio
- `output_dir`: None (Defalut), the output path of results if set
### Inference with multi-thread CPUs or multi GPUs
FunASR also offer recipes [infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/asr/TEMPLATE/infer.sh) to decode with multi-thread CPUs, or multi GPUs.
- Setting parameters in `infer.sh`
- model: # model name on ModelScope
- data_dir: # the dataset dir needs to include `${data_dir}/wav.scp`. If `${data_dir}/text` is also exists, CER will be computed
- output_dir: # result dir
- batch_size: # batchsize of inference
- gpu_inference: # whether to perform gpu decoding, set false for cpu decoding
- gpuid_list: # set gpus, e.g., gpuid_list="0,1"
- njob: # the number of jobs for CPU decoding, if `gpu_inference`=false, use CPU decoding, please set `njob`
- Decode with multi GPUs:
```shell
bash infer.sh \
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
--data_dir "./data/test" \
--output_dir "./results" \
--batch_size 64 \
--gpu_inference true \
--gpuid_list "0,1"
```
- Decode with multi-thread CPUs:
```shell
bash infer.sh \
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
--data_dir "./data/test" \
--output_dir "./results" \
--gpu_inference false \
--njob 64
```
- Results
The decoding results can be found in `$output_dir/1best_recog/text.cer`, which includes recognition results of each sample and the CER metric of the whole test set.
If you decode the SpeechIO test sets, you can use textnorm with `stage`=3, and `DETAILS.txt`, `RESULTS.txt` record the results and CER after text normalization.
## Finetune with pipeline
### Quick start
[finetune.py](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/asr/TEMPLATE/finetune.py)
```python
import os
from modelscope.metainfo import Trainers
from modelscope.trainers import build_trainer
from modelscope.msdatasets.audio.asr_dataset import ASRDataset
def modelscope_finetune(params):
if not os.path.exists(params.output_dir):
os.makedirs(params.output_dir, exist_ok=True)
# dataset split ["train", "validation"]
ds_dict = ASRDataset.load(params.data_path, namespace='speech_asr')
kwargs = dict(
model=params.model,
data_dir=ds_dict,
dataset_type=params.dataset_type,
work_dir=params.output_dir,
batch_bins=params.batch_bins,
max_epoch=params.max_epoch,
lr=params.lr)
trainer = build_trainer(Trainers.speech_asr_trainer, default_args=kwargs)
trainer.train()
if __name__ == '__main__':
from funasr.utils.modelscope_param import modelscope_args
params = modelscope_args(model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch")
params.output_dir = "./checkpoint" # 模型保存路径
params.data_path = "speech_asr_aishell1_trainsets" # 数据路径,可以为modelscope中已上传数据,也可以是本地数据
params.dataset_type = "small" # 小数据量设置small,若数据量大于1000小时,请使用large
params.batch_bins = 2000 # batch size,如果dataset_type="small",batch_bins单位为fbank特征帧数,如果dataset_type="large",batch_bins单位为毫秒,
params.max_epoch = 50 # 最大训练轮数
params.lr = 0.00005 # 设置学习率
modelscope_finetune(params)
```
```shell
python finetune.py &> log.txt &
```
### Finetune with your data
- Modify finetune training related parameters in [finetune.py](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/asr/TEMPLATE/finetune.py)
- output_dir: # result dir
- data_dir: # the dataset dir needs to include files: `train/wav.scp`, `train/text`; `validation/wav.scp`, `validation/text`
- dataset_type: # for dataset larger than 1000 hours, set as `large`, otherwise set as `small`
- batch_bins: # batch size. For dataset_type is `small`, `batch_bins` indicates the feature frames. For dataset_type is `large`, `batch_bins` indicates the duration in ms
- max_epoch: # number of training epoch
- lr: # learning rate
- Then you can run the pipeline to finetune with:
```shell
python finetune.py
```
If you want finetune with multi-GPUs, you could:
```shell
CUDA_VISIBLE_DEVICES=1,2 python -m torch.distributed.launch --nproc_per_node 2 finetune.py > log.txt 2>&1
```
## Inference with your finetuned model
- Modify inference related parameters in [infer_after_finetune.py](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/asr/TEMPLATE/infer_after_finetune.py)
- modelscope_model_name: # model name on ModelScope
- output_dir: # result dir
- data_dir: # the dataset dir needs to include `test/wav.scp`. If `test/text` is also exists, CER will be computed
- decoding_model_name: # set the checkpoint name for decoding, e.g., `valid.cer_ctc.ave.pb`
- batch_size: # batchsize of inference
- Then you can run the pipeline to finetune with:
```python
python infer_after_finetune.py
```