mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
update repo
This commit is contained in:
parent
0b07e6af04
commit
fee48e7a62
1
.github/workflows/UnitTest.yml
vendored
1
.github/workflows/UnitTest.yml
vendored
@ -8,6 +8,7 @@ on:
|
||||
branches:
|
||||
- dev_wjm
|
||||
- dev_jy
|
||||
- dev_wjm_infer
|
||||
|
||||
jobs:
|
||||
build:
|
||||
|
||||
@ -31,6 +31,7 @@ from funasr.bin.asr_infer import Speech2TextUniASR
|
||||
from funasr.bin.punc_infer import Text2Punc
|
||||
from funasr.bin.tp_infer import Speech2Timestamp
|
||||
from funasr.bin.vad_infer import Speech2VadSegment
|
||||
from funasr.build_utils.build_streaming_iterator import build_streaming_iterator
|
||||
from funasr.fileio.datadir_writer import DatadirWriter
|
||||
from funasr.modules.beam_search.beam_search import Hypothesis
|
||||
from funasr.modules.subsampling import TooShortUttError
|
||||
@ -142,18 +143,16 @@ def inference_asr(
|
||||
if isinstance(raw_inputs, torch.Tensor):
|
||||
raw_inputs = raw_inputs.numpy()
|
||||
data_path_and_name_and_type = [raw_inputs, "speech", "waveform"]
|
||||
loader = ASRTask.build_streaming_iterator(
|
||||
data_path_and_name_and_type,
|
||||
loader = build_streaming_iterator(
|
||||
task_name="asr",
|
||||
preprocess_args=speech2text.asr_train_args,
|
||||
data_path_and_name_and_type=data_path_and_name_and_type,
|
||||
dtype=dtype,
|
||||
fs=fs,
|
||||
mc=mc,
|
||||
batch_size=batch_size,
|
||||
key_file=key_file,
|
||||
num_workers=num_workers,
|
||||
preprocess_fn=ASRTask.build_preprocess_fn(speech2text.asr_train_args, False),
|
||||
collate_fn=ASRTask.build_collate_fn(speech2text.asr_train_args, False),
|
||||
allow_variable_data_keys=allow_variable_data_keys,
|
||||
inference=True,
|
||||
)
|
||||
|
||||
finish_count = 0
|
||||
@ -329,17 +328,15 @@ def inference_paraformer(
|
||||
if isinstance(raw_inputs, torch.Tensor):
|
||||
raw_inputs = raw_inputs.numpy()
|
||||
data_path_and_name_and_type = [raw_inputs, "speech", "waveform"]
|
||||
loader = ASRTask.build_streaming_iterator(
|
||||
data_path_and_name_and_type,
|
||||
loader = build_streaming_iterator(
|
||||
task_name="asr",
|
||||
preprocess_args=speech2text.asr_train_args,
|
||||
data_path_and_name_and_type=data_path_and_name_and_type,
|
||||
dtype=dtype,
|
||||
fs=fs,
|
||||
batch_size=batch_size,
|
||||
key_file=key_file,
|
||||
num_workers=num_workers,
|
||||
preprocess_fn=ASRTask.build_preprocess_fn(speech2text.asr_train_args, False),
|
||||
collate_fn=ASRTask.build_collate_fn(speech2text.asr_train_args, False),
|
||||
allow_variable_data_keys=allow_variable_data_keys,
|
||||
inference=True,
|
||||
)
|
||||
|
||||
if param_dict is not None:
|
||||
@ -580,17 +577,15 @@ def inference_paraformer_vad_punc(
|
||||
if isinstance(raw_inputs, torch.Tensor):
|
||||
raw_inputs = raw_inputs.numpy()
|
||||
data_path_and_name_and_type = [raw_inputs, "speech", "waveform"]
|
||||
loader = ASRTask.build_streaming_iterator(
|
||||
data_path_and_name_and_type,
|
||||
loader = build_streaming_iterator(
|
||||
task_name="asr",
|
||||
preprocess_args=None,
|
||||
data_path_and_name_and_type=data_path_and_name_and_type,
|
||||
dtype=dtype,
|
||||
fs=fs,
|
||||
batch_size=1,
|
||||
key_file=key_file,
|
||||
num_workers=num_workers,
|
||||
preprocess_fn=VADTask.build_preprocess_fn(speech2vadsegment.vad_infer_args, False),
|
||||
collate_fn=VADTask.build_collate_fn(speech2vadsegment.vad_infer_args, False),
|
||||
allow_variable_data_keys=allow_variable_data_keys,
|
||||
inference=True,
|
||||
)
|
||||
|
||||
if param_dict is not None:
|
||||
@ -1027,17 +1022,15 @@ def inference_uniasr(
|
||||
if isinstance(raw_inputs, torch.Tensor):
|
||||
raw_inputs = raw_inputs.numpy()
|
||||
data_path_and_name_and_type = [raw_inputs, "speech", "waveform"]
|
||||
loader = ASRTask.build_streaming_iterator(
|
||||
data_path_and_name_and_type,
|
||||
loader = build_streaming_iterator(
|
||||
task_name="asr",
|
||||
preprocess_args=speech2text.asr_train_args,
|
||||
data_path_and_name_and_type=data_path_and_name_and_type,
|
||||
dtype=dtype,
|
||||
fs=fs,
|
||||
batch_size=batch_size,
|
||||
key_file=key_file,
|
||||
num_workers=num_workers,
|
||||
preprocess_fn=ASRTask.build_preprocess_fn(speech2text.asr_train_args, False),
|
||||
collate_fn=ASRTask.build_collate_fn(speech2text.asr_train_args, False),
|
||||
allow_variable_data_keys=allow_variable_data_keys,
|
||||
inference=True,
|
||||
)
|
||||
|
||||
finish_count = 0
|
||||
@ -1182,18 +1175,16 @@ def inference_mfcca(
|
||||
if isinstance(raw_inputs, torch.Tensor):
|
||||
raw_inputs = raw_inputs.numpy()
|
||||
data_path_and_name_and_type = [raw_inputs, "speech", "waveform"]
|
||||
loader = ASRTask.build_streaming_iterator(
|
||||
data_path_and_name_and_type,
|
||||
loader = build_streaming_iterator(
|
||||
task_name="asr",
|
||||
preprocess_args=speech2text.asr_train_args,
|
||||
data_path_and_name_and_type=data_path_and_name_and_type,
|
||||
dtype=dtype,
|
||||
batch_size=batch_size,
|
||||
fs=fs,
|
||||
mc=True,
|
||||
key_file=key_file,
|
||||
num_workers=num_workers,
|
||||
preprocess_fn=ASRTask.build_preprocess_fn(speech2text.asr_train_args, False),
|
||||
collate_fn=ASRTask.build_collate_fn(speech2text.asr_train_args, False),
|
||||
allow_variable_data_keys=allow_variable_data_keys,
|
||||
inference=True,
|
||||
)
|
||||
|
||||
finish_count = 0
|
||||
|
||||
@ -24,7 +24,10 @@ def build_streaming_iterator(
|
||||
assert check_argument_types()
|
||||
|
||||
# preprocess
|
||||
preprocess_fn = build_preprocess(preprocess_args, train)
|
||||
if preprocess_args is not None:
|
||||
preprocess_fn = build_preprocess(preprocess_args, train)
|
||||
else:
|
||||
preprocess_fn = None
|
||||
|
||||
# collate
|
||||
if task_name in ["punc", "lm"]:
|
||||
|
||||
Loading…
Reference in New Issue
Block a user