From f8a7f228f96db06aef13c964007b55e7b0b9f753 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E6=B8=B8=E9=9B=81?= Date: Wed, 11 Oct 2023 16:19:22 +0800 Subject: [PATCH] docs --- egs_modelscope/asr/TEMPLATE/README.md | 17 +++++++++++++++++ egs_modelscope/asr/TEMPLATE/README_zh.md | 17 +++++++++++++++++ 2 files changed, 34 insertions(+) diff --git a/egs_modelscope/asr/TEMPLATE/README.md b/egs_modelscope/asr/TEMPLATE/README.md index bd0e6a9be..e44a09da3 100644 --- a/egs_modelscope/asr/TEMPLATE/README.md +++ b/egs_modelscope/asr/TEMPLATE/README.md @@ -68,6 +68,23 @@ print(rec_result) ``` Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/FunASR/discussions/241) +#### [Paraformer-contextual Model](https://www.modelscope.cn/models/damo/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404/summary) +```python +from modelscope.pipelines import pipeline +from modelscope.utils.constant import Tasks + +param_dict = dict() +# param_dict['hotword'] = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/hotword.txt" +param_dict['hotword']="邓郁松 王颖春 王晔君" +inference_pipeline = pipeline( + task=Tasks.auto_speech_recognition, + model="damo/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404", + param_dict=param_dict) + +rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_hotword.wav') +print(rec_result) +``` + #### [UniASR Model](https://www.modelscope.cn/models/damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/summary) There are three decoding mode for UniASR model(`fast`、`normal`、`offline`), for more model details, please refer to [docs](https://www.modelscope.cn/models/damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/summary) ```python diff --git a/egs_modelscope/asr/TEMPLATE/README_zh.md b/egs_modelscope/asr/TEMPLATE/README_zh.md index 6db310ea4..d1fd2699b 100644 --- a/egs_modelscope/asr/TEMPLATE/README_zh.md +++ b/egs_modelscope/asr/TEMPLATE/README_zh.md @@ -68,6 +68,23 @@ print(rec_result) ``` 演示代码完整版本,请参考[demo](https://github.com/alibaba-damo-academy/FunASR/discussions/241) +#### [Paraformer-contextual Model](https://www.modelscope.cn/models/damo/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404/summary) +```python +from modelscope.pipelines import pipeline +from modelscope.utils.constant import Tasks + +param_dict = dict() +# param_dict['hotword'] = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/hotword.txt" +param_dict['hotword']="邓郁松 王颖春 王晔君" +inference_pipeline = pipeline( + task=Tasks.auto_speech_recognition, + model="damo/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404", + param_dict=param_dict) + +rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_hotword.wav') +print(rec_result) +``` + #### [UniASR 模型](https://www.modelscope.cn/models/damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/summary) UniASR 模型有三种解码模式(fast、normal、offline),更多模型细节请参考[文档](https://www.modelscope.cn/models/damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/summary) ```python