This commit is contained in:
wucong.lyb 2023-05-17 19:54:34 +08:00
parent 701022837a
commit f83f3e5985
7 changed files with 147 additions and 170 deletions

View File

@ -1,9 +1,9 @@
import logging
from funasr.lm.abs_model import AbsLM
from funasr.lm.abs_model import LanguageModel
from funasr.lm.seq_rnn_lm import SequentialRNNLM
from funasr.lm.transformer_lm import TransformerLM
from funasr.train.abs_model import AbsLM
from funasr.train.abs_model import LanguageModel
from funasr.models.seq_rnn_lm import SequentialRNNLM
from funasr.models.transformer_lm import TransformerLM
from funasr.torch_utils.initialize import initialize
from funasr.train.class_choices import ClassChoices

View File

View File

@ -1,158 +0,0 @@
from abc import ABC
from abc import abstractmethod
from typing import Tuple
import torch
from funasr.modules.scorers.scorer_interface import BatchScorerInterface
from typing import Dict
from typing import Optional
from typing import Tuple
import torch
import torch.nn.functional as F
from typeguard import check_argument_types
from funasr.modules.nets_utils import make_pad_mask
from funasr.torch_utils.device_funcs import force_gatherable
from funasr.models.base_model import FunASRModel
class AbsLM(torch.nn.Module, BatchScorerInterface, ABC):
"""The abstract LM class
To share the loss calculation way among different models,
We uses delegate pattern here:
The instance of this class should be passed to "LanguageModel"
>>> from funasr.lm.abs_model import AbsLM
>>> lm = AbsLM()
>>> model = LanguageESPnetModel(lm=lm)
This "model" is one of mediator objects for "Task" class.
"""
@abstractmethod
def forward(
self, input: torch.Tensor, hidden: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
raise NotImplementedError
class LanguageModel(FunASRModel):
def __init__(self, lm: AbsLM, vocab_size: int, ignore_id: int = 0):
assert check_argument_types()
super().__init__()
self.lm = lm
self.sos = 1
self.eos = 2
# ignore_id may be assumed as 0, shared with CTC-blank symbol for ASR.
self.ignore_id = ignore_id
def nll(
self,
text: torch.Tensor,
text_lengths: torch.Tensor,
max_length: Optional[int] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute negative log likelihood(nll)
Normally, this function is called in batchify_nll.
Args:
text: (Batch, Length)
text_lengths: (Batch,)
max_lengths: int
"""
batch_size = text.size(0)
# For data parallel
if max_length is None:
text = text[:, : text_lengths.max()]
else:
text = text[:, :max_length]
# 1. Create a sentence pair like '<sos> w1 w2 w3' and 'w1 w2 w3 <eos>'
# text: (Batch, Length) -> x, y: (Batch, Length + 1)
x = F.pad(text, [1, 0], "constant", self.sos)
t = F.pad(text, [0, 1], "constant", self.ignore_id)
for i, l in enumerate(text_lengths):
t[i, l] = self.eos
x_lengths = text_lengths + 1
# 2. Forward Language model
# x: (Batch, Length) -> y: (Batch, Length, NVocab)
y, _ = self.lm(x, None)
# 3. Calc negative log likelihood
# nll: (BxL,)
nll = F.cross_entropy(y.view(-1, y.shape[-1]), t.view(-1), reduction="none")
# nll: (BxL,) -> (BxL,)
if max_length is None:
nll.masked_fill_(make_pad_mask(x_lengths).to(nll.device).view(-1), 0.0)
else:
nll.masked_fill_(
make_pad_mask(x_lengths, maxlen=max_length + 1).to(nll.device).view(-1),
0.0,
)
# nll: (BxL,) -> (B, L)
nll = nll.view(batch_size, -1)
return nll, x_lengths
def batchify_nll(
self, text: torch.Tensor, text_lengths: torch.Tensor, batch_size: int = 100
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute negative log likelihood(nll) from transformer language model
To avoid OOM, this fuction seperate the input into batches.
Then call nll for each batch and combine and return results.
Args:
text: (Batch, Length)
text_lengths: (Batch,)
batch_size: int, samples each batch contain when computing nll,
you may change this to avoid OOM or increase
"""
total_num = text.size(0)
if total_num <= batch_size:
nll, x_lengths = self.nll(text, text_lengths)
else:
nlls = []
x_lengths = []
max_length = text_lengths.max()
start_idx = 0
while True:
end_idx = min(start_idx + batch_size, total_num)
batch_text = text[start_idx:end_idx, :]
batch_text_lengths = text_lengths[start_idx:end_idx]
# batch_nll: [B * T]
batch_nll, batch_x_lengths = self.nll(
batch_text, batch_text_lengths, max_length=max_length
)
nlls.append(batch_nll)
x_lengths.append(batch_x_lengths)
start_idx = end_idx
if start_idx == total_num:
break
nll = torch.cat(nlls)
x_lengths = torch.cat(x_lengths)
assert nll.size(0) == total_num
assert x_lengths.size(0) == total_num
return nll, x_lengths
def forward(
self, text: torch.Tensor, text_lengths: torch.Tensor
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
nll, y_lengths = self.nll(text, text_lengths)
ntokens = y_lengths.sum()
loss = nll.sum() / ntokens
stats = dict(loss=loss.detach())
# force_gatherable: to-device and to-tensor if scalar for DataParallel
loss, stats, weight = force_gatherable((loss, stats, ntokens), loss.device)
return loss, stats, weight
def collect_feats(
self, text: torch.Tensor, text_lengths: torch.Tensor
) -> Dict[str, torch.Tensor]:
return {}

View File

@ -5,8 +5,7 @@ from typing import Union
import torch
import torch.nn as nn
from typeguard import check_argument_types
from funasr.lm.abs_model import AbsLM
from funasr.train.abs_model import AbsLM
class SequentialRNNLM(AbsLM):

View File

@ -8,7 +8,7 @@ import torch.nn as nn
from funasr.modules.embedding import PositionalEncoding
from funasr.models.encoder.transformer_encoder import TransformerEncoder_s0 as Encoder
from funasr.modules.mask import subsequent_mask
from funasr.lm.abs_model import AbsLM
from funasr.train.abs_model import AbsLM
class TransformerLM(AbsLM):

View File

@ -14,10 +14,10 @@ from typeguard import check_return_type
from funasr.datasets.collate_fn import CommonCollateFn
from funasr.datasets.preprocessor import CommonPreprocessor
from funasr.lm.abs_model import AbsLM
from funasr.lm.abs_model import LanguageModel
from funasr.lm.seq_rnn_lm import SequentialRNNLM
from funasr.lm.transformer_lm import TransformerLM
from funasr.train.abs_model import AbsLM
from funasr.train.abs_model import LanguageModel
from funasr.models.seq_rnn_lm import SequentialRNNLM
from funasr.models.transformer_lm import TransformerLM
from funasr.tasks.abs_task import AbsTask
from funasr.text.phoneme_tokenizer import g2p_choices
from funasr.torch_utils.initialize import initialize

View File

@ -1,7 +1,7 @@
from abc import ABC
from abc import abstractmethod
from funasr.modules.scorers.scorer_interface import BatchScorerInterface
from typing import Dict
from typing import Optional
from typing import Tuple
@ -14,6 +14,142 @@ from funasr.modules.nets_utils import make_pad_mask
from funasr.torch_utils.device_funcs import force_gatherable
from funasr.models.base_model import FunASRModel
class AbsLM(torch.nn.Module, BatchScorerInterface, ABC):
"""The abstract LM class
To share the loss calculation way among different models,
We uses delegate pattern here:
The instance of this class should be passed to "LanguageModel"
This "model" is one of mediator objects for "Task" class.
"""
@abstractmethod
def forward(
self, input: torch.Tensor, hidden: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
raise NotImplementedError
class LanguageModel(FunASRModel):
def __init__(self, lm: AbsLM, vocab_size: int, ignore_id: int = 0):
assert check_argument_types()
super().__init__()
self.lm = lm
self.sos = 1
self.eos = 2
# ignore_id may be assumed as 0, shared with CTC-blank symbol for ASR.
self.ignore_id = ignore_id
def nll(
self,
text: torch.Tensor,
text_lengths: torch.Tensor,
max_length: Optional[int] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute negative log likelihood(nll)
Normally, this function is called in batchify_nll.
Args:
text: (Batch, Length)
text_lengths: (Batch,)
max_lengths: int
"""
batch_size = text.size(0)
# For data parallel
if max_length is None:
text = text[:, : text_lengths.max()]
else:
text = text[:, :max_length]
# 1. Create a sentence pair like '<sos> w1 w2 w3' and 'w1 w2 w3 <eos>'
# text: (Batch, Length) -> x, y: (Batch, Length + 1)
x = F.pad(text, [1, 0], "constant", self.sos)
t = F.pad(text, [0, 1], "constant", self.ignore_id)
for i, l in enumerate(text_lengths):
t[i, l] = self.eos
x_lengths = text_lengths + 1
# 2. Forward Language model
# x: (Batch, Length) -> y: (Batch, Length, NVocab)
y, _ = self.lm(x, None)
# 3. Calc negative log likelihood
# nll: (BxL,)
nll = F.cross_entropy(y.view(-1, y.shape[-1]), t.view(-1), reduction="none")
# nll: (BxL,) -> (BxL,)
if max_length is None:
nll.masked_fill_(make_pad_mask(x_lengths).to(nll.device).view(-1), 0.0)
else:
nll.masked_fill_(
make_pad_mask(x_lengths, maxlen=max_length + 1).to(nll.device).view(-1),
0.0,
)
# nll: (BxL,) -> (B, L)
nll = nll.view(batch_size, -1)
return nll, x_lengths
def batchify_nll(
self, text: torch.Tensor, text_lengths: torch.Tensor, batch_size: int = 100
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute negative log likelihood(nll) from transformer language model
To avoid OOM, this fuction seperate the input into batches.
Then call nll for each batch and combine and return results.
Args:
text: (Batch, Length)
text_lengths: (Batch,)
batch_size: int, samples each batch contain when computing nll,
you may change this to avoid OOM or increase
"""
total_num = text.size(0)
if total_num <= batch_size:
nll, x_lengths = self.nll(text, text_lengths)
else:
nlls = []
x_lengths = []
max_length = text_lengths.max()
start_idx = 0
while True:
end_idx = min(start_idx + batch_size, total_num)
batch_text = text[start_idx:end_idx, :]
batch_text_lengths = text_lengths[start_idx:end_idx]
# batch_nll: [B * T]
batch_nll, batch_x_lengths = self.nll(
batch_text, batch_text_lengths, max_length=max_length
)
nlls.append(batch_nll)
x_lengths.append(batch_x_lengths)
start_idx = end_idx
if start_idx == total_num:
break
nll = torch.cat(nlls)
x_lengths = torch.cat(x_lengths)
assert nll.size(0) == total_num
assert x_lengths.size(0) == total_num
return nll, x_lengths
def forward(
self, text: torch.Tensor, text_lengths: torch.Tensor
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
nll, y_lengths = self.nll(text, text_lengths)
ntokens = y_lengths.sum()
loss = nll.sum() / ntokens
stats = dict(loss=loss.detach())
# force_gatherable: to-device and to-tensor if scalar for DataParallel
loss, stats, weight = force_gatherable((loss, stats, ntokens), loss.device)
return loss, stats, weight
def collect_feats(
self, text: torch.Tensor, text_lengths: torch.Tensor
) -> Dict[str, torch.Tensor]:
return {}
class PunctuationModel(FunASRModel):