mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
del lm
This commit is contained in:
parent
701022837a
commit
f83f3e5985
@ -1,9 +1,9 @@
|
||||
import logging
|
||||
|
||||
from funasr.lm.abs_model import AbsLM
|
||||
from funasr.lm.abs_model import LanguageModel
|
||||
from funasr.lm.seq_rnn_lm import SequentialRNNLM
|
||||
from funasr.lm.transformer_lm import TransformerLM
|
||||
from funasr.train.abs_model import AbsLM
|
||||
from funasr.train.abs_model import LanguageModel
|
||||
from funasr.models.seq_rnn_lm import SequentialRNNLM
|
||||
from funasr.models.transformer_lm import TransformerLM
|
||||
from funasr.torch_utils.initialize import initialize
|
||||
from funasr.train.class_choices import ClassChoices
|
||||
|
||||
|
||||
@ -1,158 +0,0 @@
|
||||
from abc import ABC
|
||||
from abc import abstractmethod
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
|
||||
from funasr.modules.scorers.scorer_interface import BatchScorerInterface
|
||||
from typing import Dict
|
||||
from typing import Optional
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from typeguard import check_argument_types
|
||||
|
||||
from funasr.modules.nets_utils import make_pad_mask
|
||||
from funasr.torch_utils.device_funcs import force_gatherable
|
||||
from funasr.models.base_model import FunASRModel
|
||||
|
||||
class AbsLM(torch.nn.Module, BatchScorerInterface, ABC):
|
||||
"""The abstract LM class
|
||||
|
||||
To share the loss calculation way among different models,
|
||||
We uses delegate pattern here:
|
||||
The instance of this class should be passed to "LanguageModel"
|
||||
|
||||
>>> from funasr.lm.abs_model import AbsLM
|
||||
>>> lm = AbsLM()
|
||||
>>> model = LanguageESPnetModel(lm=lm)
|
||||
|
||||
This "model" is one of mediator objects for "Task" class.
|
||||
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def forward(
|
||||
self, input: torch.Tensor, hidden: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class LanguageModel(FunASRModel):
|
||||
def __init__(self, lm: AbsLM, vocab_size: int, ignore_id: int = 0):
|
||||
assert check_argument_types()
|
||||
super().__init__()
|
||||
self.lm = lm
|
||||
self.sos = 1
|
||||
self.eos = 2
|
||||
|
||||
# ignore_id may be assumed as 0, shared with CTC-blank symbol for ASR.
|
||||
self.ignore_id = ignore_id
|
||||
|
||||
def nll(
|
||||
self,
|
||||
text: torch.Tensor,
|
||||
text_lengths: torch.Tensor,
|
||||
max_length: Optional[int] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Compute negative log likelihood(nll)
|
||||
|
||||
Normally, this function is called in batchify_nll.
|
||||
Args:
|
||||
text: (Batch, Length)
|
||||
text_lengths: (Batch,)
|
||||
max_lengths: int
|
||||
"""
|
||||
batch_size = text.size(0)
|
||||
# For data parallel
|
||||
if max_length is None:
|
||||
text = text[:, : text_lengths.max()]
|
||||
else:
|
||||
text = text[:, :max_length]
|
||||
|
||||
# 1. Create a sentence pair like '<sos> w1 w2 w3' and 'w1 w2 w3 <eos>'
|
||||
# text: (Batch, Length) -> x, y: (Batch, Length + 1)
|
||||
x = F.pad(text, [1, 0], "constant", self.sos)
|
||||
t = F.pad(text, [0, 1], "constant", self.ignore_id)
|
||||
for i, l in enumerate(text_lengths):
|
||||
t[i, l] = self.eos
|
||||
x_lengths = text_lengths + 1
|
||||
|
||||
# 2. Forward Language model
|
||||
# x: (Batch, Length) -> y: (Batch, Length, NVocab)
|
||||
y, _ = self.lm(x, None)
|
||||
|
||||
# 3. Calc negative log likelihood
|
||||
# nll: (BxL,)
|
||||
nll = F.cross_entropy(y.view(-1, y.shape[-1]), t.view(-1), reduction="none")
|
||||
# nll: (BxL,) -> (BxL,)
|
||||
if max_length is None:
|
||||
nll.masked_fill_(make_pad_mask(x_lengths).to(nll.device).view(-1), 0.0)
|
||||
else:
|
||||
nll.masked_fill_(
|
||||
make_pad_mask(x_lengths, maxlen=max_length + 1).to(nll.device).view(-1),
|
||||
0.0,
|
||||
)
|
||||
# nll: (BxL,) -> (B, L)
|
||||
nll = nll.view(batch_size, -1)
|
||||
return nll, x_lengths
|
||||
|
||||
def batchify_nll(
|
||||
self, text: torch.Tensor, text_lengths: torch.Tensor, batch_size: int = 100
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Compute negative log likelihood(nll) from transformer language model
|
||||
|
||||
To avoid OOM, this fuction seperate the input into batches.
|
||||
Then call nll for each batch and combine and return results.
|
||||
Args:
|
||||
text: (Batch, Length)
|
||||
text_lengths: (Batch,)
|
||||
batch_size: int, samples each batch contain when computing nll,
|
||||
you may change this to avoid OOM or increase
|
||||
|
||||
"""
|
||||
total_num = text.size(0)
|
||||
if total_num <= batch_size:
|
||||
nll, x_lengths = self.nll(text, text_lengths)
|
||||
else:
|
||||
nlls = []
|
||||
x_lengths = []
|
||||
max_length = text_lengths.max()
|
||||
|
||||
start_idx = 0
|
||||
while True:
|
||||
end_idx = min(start_idx + batch_size, total_num)
|
||||
batch_text = text[start_idx:end_idx, :]
|
||||
batch_text_lengths = text_lengths[start_idx:end_idx]
|
||||
# batch_nll: [B * T]
|
||||
batch_nll, batch_x_lengths = self.nll(
|
||||
batch_text, batch_text_lengths, max_length=max_length
|
||||
)
|
||||
nlls.append(batch_nll)
|
||||
x_lengths.append(batch_x_lengths)
|
||||
start_idx = end_idx
|
||||
if start_idx == total_num:
|
||||
break
|
||||
nll = torch.cat(nlls)
|
||||
x_lengths = torch.cat(x_lengths)
|
||||
assert nll.size(0) == total_num
|
||||
assert x_lengths.size(0) == total_num
|
||||
return nll, x_lengths
|
||||
|
||||
def forward(
|
||||
self, text: torch.Tensor, text_lengths: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
|
||||
nll, y_lengths = self.nll(text, text_lengths)
|
||||
ntokens = y_lengths.sum()
|
||||
loss = nll.sum() / ntokens
|
||||
stats = dict(loss=loss.detach())
|
||||
|
||||
# force_gatherable: to-device and to-tensor if scalar for DataParallel
|
||||
loss, stats, weight = force_gatherable((loss, stats, ntokens), loss.device)
|
||||
return loss, stats, weight
|
||||
|
||||
def collect_feats(
|
||||
self, text: torch.Tensor, text_lengths: torch.Tensor
|
||||
) -> Dict[str, torch.Tensor]:
|
||||
return {}
|
||||
@ -5,8 +5,7 @@ from typing import Union
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from typeguard import check_argument_types
|
||||
|
||||
from funasr.lm.abs_model import AbsLM
|
||||
from funasr.train.abs_model import AbsLM
|
||||
|
||||
|
||||
class SequentialRNNLM(AbsLM):
|
||||
@ -8,7 +8,7 @@ import torch.nn as nn
|
||||
from funasr.modules.embedding import PositionalEncoding
|
||||
from funasr.models.encoder.transformer_encoder import TransformerEncoder_s0 as Encoder
|
||||
from funasr.modules.mask import subsequent_mask
|
||||
from funasr.lm.abs_model import AbsLM
|
||||
from funasr.train.abs_model import AbsLM
|
||||
|
||||
|
||||
class TransformerLM(AbsLM):
|
||||
@ -14,10 +14,10 @@ from typeguard import check_return_type
|
||||
|
||||
from funasr.datasets.collate_fn import CommonCollateFn
|
||||
from funasr.datasets.preprocessor import CommonPreprocessor
|
||||
from funasr.lm.abs_model import AbsLM
|
||||
from funasr.lm.abs_model import LanguageModel
|
||||
from funasr.lm.seq_rnn_lm import SequentialRNNLM
|
||||
from funasr.lm.transformer_lm import TransformerLM
|
||||
from funasr.train.abs_model import AbsLM
|
||||
from funasr.train.abs_model import LanguageModel
|
||||
from funasr.models.seq_rnn_lm import SequentialRNNLM
|
||||
from funasr.models.transformer_lm import TransformerLM
|
||||
from funasr.tasks.abs_task import AbsTask
|
||||
from funasr.text.phoneme_tokenizer import g2p_choices
|
||||
from funasr.torch_utils.initialize import initialize
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
from abc import ABC
|
||||
from abc import abstractmethod
|
||||
|
||||
|
||||
from funasr.modules.scorers.scorer_interface import BatchScorerInterface
|
||||
from typing import Dict
|
||||
from typing import Optional
|
||||
from typing import Tuple
|
||||
@ -14,6 +14,142 @@ from funasr.modules.nets_utils import make_pad_mask
|
||||
from funasr.torch_utils.device_funcs import force_gatherable
|
||||
from funasr.models.base_model import FunASRModel
|
||||
|
||||
class AbsLM(torch.nn.Module, BatchScorerInterface, ABC):
|
||||
"""The abstract LM class
|
||||
|
||||
To share the loss calculation way among different models,
|
||||
We uses delegate pattern here:
|
||||
The instance of this class should be passed to "LanguageModel"
|
||||
|
||||
This "model" is one of mediator objects for "Task" class.
|
||||
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def forward(
|
||||
self, input: torch.Tensor, hidden: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class LanguageModel(FunASRModel):
|
||||
def __init__(self, lm: AbsLM, vocab_size: int, ignore_id: int = 0):
|
||||
assert check_argument_types()
|
||||
super().__init__()
|
||||
self.lm = lm
|
||||
self.sos = 1
|
||||
self.eos = 2
|
||||
|
||||
# ignore_id may be assumed as 0, shared with CTC-blank symbol for ASR.
|
||||
self.ignore_id = ignore_id
|
||||
|
||||
def nll(
|
||||
self,
|
||||
text: torch.Tensor,
|
||||
text_lengths: torch.Tensor,
|
||||
max_length: Optional[int] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Compute negative log likelihood(nll)
|
||||
|
||||
Normally, this function is called in batchify_nll.
|
||||
Args:
|
||||
text: (Batch, Length)
|
||||
text_lengths: (Batch,)
|
||||
max_lengths: int
|
||||
"""
|
||||
batch_size = text.size(0)
|
||||
# For data parallel
|
||||
if max_length is None:
|
||||
text = text[:, : text_lengths.max()]
|
||||
else:
|
||||
text = text[:, :max_length]
|
||||
|
||||
# 1. Create a sentence pair like '<sos> w1 w2 w3' and 'w1 w2 w3 <eos>'
|
||||
# text: (Batch, Length) -> x, y: (Batch, Length + 1)
|
||||
x = F.pad(text, [1, 0], "constant", self.sos)
|
||||
t = F.pad(text, [0, 1], "constant", self.ignore_id)
|
||||
for i, l in enumerate(text_lengths):
|
||||
t[i, l] = self.eos
|
||||
x_lengths = text_lengths + 1
|
||||
|
||||
# 2. Forward Language model
|
||||
# x: (Batch, Length) -> y: (Batch, Length, NVocab)
|
||||
y, _ = self.lm(x, None)
|
||||
|
||||
# 3. Calc negative log likelihood
|
||||
# nll: (BxL,)
|
||||
nll = F.cross_entropy(y.view(-1, y.shape[-1]), t.view(-1), reduction="none")
|
||||
# nll: (BxL,) -> (BxL,)
|
||||
if max_length is None:
|
||||
nll.masked_fill_(make_pad_mask(x_lengths).to(nll.device).view(-1), 0.0)
|
||||
else:
|
||||
nll.masked_fill_(
|
||||
make_pad_mask(x_lengths, maxlen=max_length + 1).to(nll.device).view(-1),
|
||||
0.0,
|
||||
)
|
||||
# nll: (BxL,) -> (B, L)
|
||||
nll = nll.view(batch_size, -1)
|
||||
return nll, x_lengths
|
||||
|
||||
def batchify_nll(
|
||||
self, text: torch.Tensor, text_lengths: torch.Tensor, batch_size: int = 100
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Compute negative log likelihood(nll) from transformer language model
|
||||
|
||||
To avoid OOM, this fuction seperate the input into batches.
|
||||
Then call nll for each batch and combine and return results.
|
||||
Args:
|
||||
text: (Batch, Length)
|
||||
text_lengths: (Batch,)
|
||||
batch_size: int, samples each batch contain when computing nll,
|
||||
you may change this to avoid OOM or increase
|
||||
|
||||
"""
|
||||
total_num = text.size(0)
|
||||
if total_num <= batch_size:
|
||||
nll, x_lengths = self.nll(text, text_lengths)
|
||||
else:
|
||||
nlls = []
|
||||
x_lengths = []
|
||||
max_length = text_lengths.max()
|
||||
|
||||
start_idx = 0
|
||||
while True:
|
||||
end_idx = min(start_idx + batch_size, total_num)
|
||||
batch_text = text[start_idx:end_idx, :]
|
||||
batch_text_lengths = text_lengths[start_idx:end_idx]
|
||||
# batch_nll: [B * T]
|
||||
batch_nll, batch_x_lengths = self.nll(
|
||||
batch_text, batch_text_lengths, max_length=max_length
|
||||
)
|
||||
nlls.append(batch_nll)
|
||||
x_lengths.append(batch_x_lengths)
|
||||
start_idx = end_idx
|
||||
if start_idx == total_num:
|
||||
break
|
||||
nll = torch.cat(nlls)
|
||||
x_lengths = torch.cat(x_lengths)
|
||||
assert nll.size(0) == total_num
|
||||
assert x_lengths.size(0) == total_num
|
||||
return nll, x_lengths
|
||||
|
||||
def forward(
|
||||
self, text: torch.Tensor, text_lengths: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
|
||||
nll, y_lengths = self.nll(text, text_lengths)
|
||||
ntokens = y_lengths.sum()
|
||||
loss = nll.sum() / ntokens
|
||||
stats = dict(loss=loss.detach())
|
||||
|
||||
# force_gatherable: to-device and to-tensor if scalar for DataParallel
|
||||
loss, stats, weight = force_gatherable((loss, stats, ntokens), loss.device)
|
||||
return loss, stats, weight
|
||||
|
||||
def collect_feats(
|
||||
self, text: torch.Tensor, text_lengths: torch.Tensor
|
||||
) -> Dict[str, torch.Tensor]:
|
||||
return {}
|
||||
|
||||
|
||||
class PunctuationModel(FunASRModel):
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user