mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
add paraformer online infer and finetune recipe
This commit is contained in:
parent
e7334e0ec3
commit
f6809397d3
@ -4,7 +4,7 @@ from modelscope.utils.constant import Tasks
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model='damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online',
|
||||
model_revision='v1.0.5',
|
||||
model_revision='v1.0.6',
|
||||
mode="paraformer_fake_streaming"
|
||||
)
|
||||
audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav'
|
||||
|
||||
@ -14,7 +14,7 @@ os.environ["MODELSCOPE_CACHE"] = "./"
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model='damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online',
|
||||
model_revision='v1.0.5',
|
||||
model_revision='v1.0.6',
|
||||
mode="paraformer_streaming"
|
||||
)
|
||||
|
||||
|
||||
@ -0,0 +1,36 @@
|
||||
import os
|
||||
|
||||
from modelscope.metainfo import Trainers
|
||||
from modelscope.trainers import build_trainer
|
||||
|
||||
from funasr.datasets.ms_dataset import MsDataset
|
||||
from funasr.utils.modelscope_param import modelscope_args
|
||||
|
||||
|
||||
def modelscope_finetune(params):
|
||||
if not os.path.exists(params.output_dir):
|
||||
os.makedirs(params.output_dir, exist_ok=True)
|
||||
# dataset split ["train", "validation"]
|
||||
ds_dict = MsDataset.load(params.data_path)
|
||||
kwargs = dict(
|
||||
model=params.model,
|
||||
data_dir=ds_dict,
|
||||
dataset_type=params.dataset_type,
|
||||
work_dir=params.output_dir,
|
||||
batch_bins=params.batch_bins,
|
||||
max_epoch=params.max_epoch,
|
||||
lr=params.lr)
|
||||
trainer = build_trainer(Trainers.speech_asr_trainer, default_args=kwargs)
|
||||
trainer.train()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
params = modelscope_args(model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online", data_path="./data")
|
||||
params.output_dir = "./checkpoint" # m模型保存路径
|
||||
params.data_path = "./example_data/" # 数据路径
|
||||
params.dataset_type = "small" # 小数据量设置small,若数据量大于1000小时,请使用large
|
||||
params.batch_bins = 1000 # batch size,如果dataset_type="small",batch_bins单位为fbank特征帧数,如果dataset_type="large",batch_bins单位为毫秒,
|
||||
params.max_epoch = 20 # 最大训练轮数
|
||||
params.lr = 0.00005 # 设置学习率
|
||||
|
||||
modelscope_finetune(params)
|
||||
@ -0,0 +1,32 @@
|
||||
import os
|
||||
import shutil
|
||||
import argparse
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
|
||||
def modelscope_infer(args):
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpuid)
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model=args.model,
|
||||
output_dir=args.output_dir,
|
||||
batch_size=args.batch_size,
|
||||
model_revision='v1.0.6',
|
||||
mode="paraformer_fake_streaming",
|
||||
param_dict={"decoding_model": args.decoding_mode, "hotword": args.hotword_txt}
|
||||
)
|
||||
inference_pipeline(audio_in=args.audio_in)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--model', type=str, default="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch")
|
||||
parser.add_argument('--audio_in', type=str, default="./data/test/wav.scp")
|
||||
parser.add_argument('--output_dir', type=str, default="./results/")
|
||||
parser.add_argument('--decoding_mode', type=str, default="normal")
|
||||
parser.add_argument('--model_revision', type=str, default=None)
|
||||
parser.add_argument('--mode', type=str, default=None)
|
||||
parser.add_argument('--hotword_txt', type=str, default=None)
|
||||
parser.add_argument('--batch_size', type=int, default=64)
|
||||
parser.add_argument('--gpuid', type=str, default="0")
|
||||
args = parser.parse_args()
|
||||
modelscope_infer(args)
|
||||
@ -0,0 +1,104 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
set -u
|
||||
set -o pipefail
|
||||
|
||||
stage=1
|
||||
stop_stage=2
|
||||
model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online"
|
||||
data_dir="./data/test"
|
||||
output_dir="./results"
|
||||
batch_size=64
|
||||
gpu_inference=true # whether to perform gpu decoding
|
||||
gpuid_list="0,1" # set gpus, e.g., gpuid_list="0,1"
|
||||
njob=64 # the number of jobs for CPU decoding, if gpu_inference=false, use CPU decoding, please set njob
|
||||
checkpoint_dir=
|
||||
checkpoint_name="valid.cer_ctc.ave.pb"
|
||||
|
||||
. utils/parse_options.sh || exit 1;
|
||||
|
||||
if ${gpu_inference} == "true"; then
|
||||
nj=$(echo $gpuid_list | awk -F "," '{print NF}')
|
||||
else
|
||||
nj=$njob
|
||||
batch_size=1
|
||||
gpuid_list=""
|
||||
for JOB in $(seq ${nj}); do
|
||||
gpuid_list=$gpuid_list"-1,"
|
||||
done
|
||||
fi
|
||||
|
||||
mkdir -p $output_dir/split
|
||||
split_scps=""
|
||||
for JOB in $(seq ${nj}); do
|
||||
split_scps="$split_scps $output_dir/split/wav.$JOB.scp"
|
||||
done
|
||||
perl utils/split_scp.pl ${data_dir}/wav.scp ${split_scps}
|
||||
|
||||
if [ -n "${checkpoint_dir}" ]; then
|
||||
python utils/prepare_checkpoint.py ${model} ${checkpoint_dir} ${checkpoint_name}
|
||||
model=${checkpoint_dir}/${model}
|
||||
fi
|
||||
|
||||
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ];then
|
||||
echo "Decoding ..."
|
||||
gpuid_list_array=(${gpuid_list//,/ })
|
||||
for JOB in $(seq ${nj}); do
|
||||
{
|
||||
id=$((JOB-1))
|
||||
gpuid=${gpuid_list_array[$id]}
|
||||
mkdir -p ${output_dir}/output.$JOB
|
||||
python infer.py \
|
||||
--model ${model} \
|
||||
--audio_in ${output_dir}/split/wav.$JOB.scp \
|
||||
--output_dir ${output_dir}/output.$JOB \
|
||||
--batch_size ${batch_size} \
|
||||
--gpuid ${gpuid}
|
||||
--mode "paraformer_fake_streaming"
|
||||
}&
|
||||
done
|
||||
wait
|
||||
|
||||
mkdir -p ${output_dir}/1best_recog
|
||||
for f in token score text; do
|
||||
if [ -f "${output_dir}/output.1/1best_recog/${f}" ]; then
|
||||
for i in $(seq "${nj}"); do
|
||||
cat "${output_dir}/output.${i}/1best_recog/${f}"
|
||||
done | sort -k1 >"${output_dir}/1best_recog/${f}"
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ];then
|
||||
echo "Computing WER ..."
|
||||
cp ${output_dir}/1best_recog/text ${output_dir}/1best_recog/text.proc
|
||||
cp ${data_dir}/text ${output_dir}/1best_recog/text.ref
|
||||
python utils/compute_wer.py ${output_dir}/1best_recog/text.ref ${output_dir}/1best_recog/text.proc ${output_dir}/1best_recog/text.cer
|
||||
tail -n 3 ${output_dir}/1best_recog/text.cer
|
||||
fi
|
||||
|
||||
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ];then
|
||||
echo "SpeechIO TIOBE textnorm"
|
||||
echo "$0 --> Normalizing REF text ..."
|
||||
./utils/textnorm_zh.py \
|
||||
--has_key --to_upper \
|
||||
${data_dir}/text \
|
||||
${output_dir}/1best_recog/ref.txt
|
||||
|
||||
echo "$0 --> Normalizing HYP text ..."
|
||||
./utils/textnorm_zh.py \
|
||||
--has_key --to_upper \
|
||||
${output_dir}/1best_recog/text.proc \
|
||||
${output_dir}/1best_recog/rec.txt
|
||||
grep -v $'\t$' ${output_dir}/1best_recog/rec.txt > ${output_dir}/1best_recog/rec_non_empty.txt
|
||||
|
||||
echo "$0 --> computing WER/CER and alignment ..."
|
||||
./utils/error_rate_zh \
|
||||
--tokenizer char \
|
||||
--ref ${output_dir}/1best_recog/ref.txt \
|
||||
--hyp ${output_dir}/1best_recog/rec_non_empty.txt \
|
||||
${output_dir}/1best_recog/DETAILS.txt | tee ${output_dir}/1best_recog/RESULTS.txt
|
||||
rm -rf ${output_dir}/1best_recog/rec.txt ${output_dir}/1best_recog/rec_non_empty.txt
|
||||
fi
|
||||
|
||||
Loading…
Reference in New Issue
Block a user