mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
add english paraformer model
This commit is contained in:
parent
17e8f5b889
commit
ef475d0315
@ -0,0 +1 @@
|
|||||||
|
../../TEMPLATE/README.md
|
||||||
@ -0,0 +1,11 @@
|
|||||||
|
from modelscope.pipelines import pipeline
|
||||||
|
from modelscope.utils.constant import Tasks
|
||||||
|
|
||||||
|
inference_pipeline = pipeline(
|
||||||
|
task=Tasks.auto_speech_recognition,
|
||||||
|
model='damo/damo/speech_paraformer_asr-en-16k-vocab4199-pytorch',
|
||||||
|
model_revision="v1.0.1",
|
||||||
|
)
|
||||||
|
audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_en.wav'
|
||||||
|
rec_result = inference_pipeline(audio_in=audio_in)
|
||||||
|
print(rec_result)
|
||||||
@ -0,0 +1,36 @@
|
|||||||
|
import os
|
||||||
|
|
||||||
|
from modelscope.metainfo import Trainers
|
||||||
|
from modelscope.trainers import build_trainer
|
||||||
|
|
||||||
|
from funasr.datasets.ms_dataset import MsDataset
|
||||||
|
from funasr.utils.modelscope_param import modelscope_args
|
||||||
|
|
||||||
|
|
||||||
|
def modelscope_finetune(params):
|
||||||
|
if not os.path.exists(params.output_dir):
|
||||||
|
os.makedirs(params.output_dir, exist_ok=True)
|
||||||
|
# dataset split ["train", "validation"]
|
||||||
|
ds_dict = MsDataset.load(params.data_path)
|
||||||
|
kwargs = dict(
|
||||||
|
model=params.model,
|
||||||
|
data_dir=ds_dict,
|
||||||
|
dataset_type=params.dataset_type,
|
||||||
|
work_dir=params.output_dir,
|
||||||
|
batch_bins=params.batch_bins,
|
||||||
|
max_epoch=params.max_epoch,
|
||||||
|
lr=params.lr)
|
||||||
|
trainer = build_trainer(Trainers.speech_asr_trainer, default_args=kwargs)
|
||||||
|
trainer.train()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
params = modelscope_args(model="damo/speech_paraformer_asr-en-16k-vocab4199-pytorch", data_path="./data")
|
||||||
|
params.output_dir = "./checkpoint" # m模型保存路径
|
||||||
|
params.data_path = "./example_data/" # 数据路径
|
||||||
|
params.dataset_type = "small" # 小数据量设置small,若数据量大于1000小时,请使用large
|
||||||
|
params.batch_bins = 2000 # batch size,如果dataset_type="small",batch_bins单位为fbank特征帧数,如果dataset_type="large",batch_bins单位为毫秒,
|
||||||
|
params.max_epoch = 50 # 最大训练轮数
|
||||||
|
params.lr = 0.00005 # 设置学习率
|
||||||
|
|
||||||
|
modelscope_finetune(params)
|
||||||
@ -0,0 +1 @@
|
|||||||
|
../../TEMPLATE/infer.py
|
||||||
@ -0,0 +1,103 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
set -e
|
||||||
|
set -u
|
||||||
|
set -o pipefail
|
||||||
|
|
||||||
|
stage=1
|
||||||
|
stop_stage=2
|
||||||
|
model="damo/speech_paraformer_asr-en-16k-vocab4199-pytorch"
|
||||||
|
data_dir="./data/test"
|
||||||
|
output_dir="./results"
|
||||||
|
batch_size=64
|
||||||
|
gpu_inference=true # whether to perform gpu decoding
|
||||||
|
gpuid_list="0,1" # set gpus, e.g., gpuid_list="0,1"
|
||||||
|
njob=64 # the number of jobs for CPU decoding, if gpu_inference=false, use CPU decoding, please set njob
|
||||||
|
checkpoint_dir=
|
||||||
|
checkpoint_name="valid.cer_ctc.ave.pb"
|
||||||
|
|
||||||
|
. utils/parse_options.sh || exit 1;
|
||||||
|
|
||||||
|
if ${gpu_inference} == "true"; then
|
||||||
|
nj=$(echo $gpuid_list | awk -F "," '{print NF}')
|
||||||
|
else
|
||||||
|
nj=$njob
|
||||||
|
batch_size=1
|
||||||
|
gpuid_list=""
|
||||||
|
for JOB in $(seq ${nj}); do
|
||||||
|
gpuid_list=$gpuid_list"-1,"
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
mkdir -p $output_dir/split
|
||||||
|
split_scps=""
|
||||||
|
for JOB in $(seq ${nj}); do
|
||||||
|
split_scps="$split_scps $output_dir/split/wav.$JOB.scp"
|
||||||
|
done
|
||||||
|
perl utils/split_scp.pl ${data_dir}/wav.scp ${split_scps}
|
||||||
|
|
||||||
|
if [ -n "${checkpoint_dir}" ]; then
|
||||||
|
python utils/prepare_checkpoint.py ${model} ${checkpoint_dir} ${checkpoint_name}
|
||||||
|
model=${checkpoint_dir}/${model}
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ];then
|
||||||
|
echo "Decoding ..."
|
||||||
|
gpuid_list_array=(${gpuid_list//,/ })
|
||||||
|
for JOB in $(seq ${nj}); do
|
||||||
|
{
|
||||||
|
id=$((JOB-1))
|
||||||
|
gpuid=${gpuid_list_array[$id]}
|
||||||
|
mkdir -p ${output_dir}/output.$JOB
|
||||||
|
python infer.py \
|
||||||
|
--model ${model} \
|
||||||
|
--audio_in ${output_dir}/split/wav.$JOB.scp \
|
||||||
|
--output_dir ${output_dir}/output.$JOB \
|
||||||
|
--batch_size ${batch_size} \
|
||||||
|
--gpuid ${gpuid}
|
||||||
|
}&
|
||||||
|
done
|
||||||
|
wait
|
||||||
|
|
||||||
|
mkdir -p ${output_dir}/1best_recog
|
||||||
|
for f in token score text; do
|
||||||
|
if [ -f "${output_dir}/output.1/1best_recog/${f}" ]; then
|
||||||
|
for i in $(seq "${nj}"); do
|
||||||
|
cat "${output_dir}/output.${i}/1best_recog/${f}"
|
||||||
|
done | sort -k1 >"${output_dir}/1best_recog/${f}"
|
||||||
|
fi
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ];then
|
||||||
|
echo "Computing WER ..."
|
||||||
|
cp ${output_dir}/1best_recog/text ${output_dir}/1best_recog/text.proc
|
||||||
|
cp ${data_dir}/text ${output_dir}/1best_recog/text.ref
|
||||||
|
python utils/compute_wer.py ${output_dir}/1best_recog/text.ref ${output_dir}/1best_recog/text.proc ${output_dir}/1best_recog/text.cer
|
||||||
|
tail -n 3 ${output_dir}/1best_recog/text.cer
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ];then
|
||||||
|
echo "SpeechIO TIOBE textnorm"
|
||||||
|
echo "$0 --> Normalizing REF text ..."
|
||||||
|
./utils/textnorm_zh.py \
|
||||||
|
--has_key --to_upper \
|
||||||
|
${data_dir}/text \
|
||||||
|
${output_dir}/1best_recog/ref.txt
|
||||||
|
|
||||||
|
echo "$0 --> Normalizing HYP text ..."
|
||||||
|
./utils/textnorm_zh.py \
|
||||||
|
--has_key --to_upper \
|
||||||
|
${output_dir}/1best_recog/text.proc \
|
||||||
|
${output_dir}/1best_recog/rec.txt
|
||||||
|
grep -v $'\t$' ${output_dir}/1best_recog/rec.txt > ${output_dir}/1best_recog/rec_non_empty.txt
|
||||||
|
|
||||||
|
echo "$0 --> computing WER/CER and alignment ..."
|
||||||
|
./utils/error_rate_zh \
|
||||||
|
--tokenizer char \
|
||||||
|
--ref ${output_dir}/1best_recog/ref.txt \
|
||||||
|
--hyp ${output_dir}/1best_recog/rec_non_empty.txt \
|
||||||
|
${output_dir}/1best_recog/DETAILS.txt | tee ${output_dir}/1best_recog/RESULTS.txt
|
||||||
|
rm -rf ${output_dir}/1best_recog/rec.txt ${output_dir}/1best_recog/rec_non_empty.txt
|
||||||
|
fi
|
||||||
|
|
||||||
@ -0,0 +1 @@
|
|||||||
|
../../../../egs/aishell/transformer/utils
|
||||||
Loading…
Reference in New Issue
Block a user