add english paraformer model

This commit is contained in:
nichongjia-2007 2023-07-20 21:55:31 +08:00
parent 17e8f5b889
commit ef475d0315
6 changed files with 153 additions and 0 deletions

View File

@ -0,0 +1 @@
../../TEMPLATE/README.md

View File

@ -0,0 +1,11 @@
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/damo/speech_paraformer_asr-en-16k-vocab4199-pytorch',
model_revision="v1.0.1",
)
audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_en.wav'
rec_result = inference_pipeline(audio_in=audio_in)
print(rec_result)

View File

@ -0,0 +1,36 @@
import os
from modelscope.metainfo import Trainers
from modelscope.trainers import build_trainer
from funasr.datasets.ms_dataset import MsDataset
from funasr.utils.modelscope_param import modelscope_args
def modelscope_finetune(params):
if not os.path.exists(params.output_dir):
os.makedirs(params.output_dir, exist_ok=True)
# dataset split ["train", "validation"]
ds_dict = MsDataset.load(params.data_path)
kwargs = dict(
model=params.model,
data_dir=ds_dict,
dataset_type=params.dataset_type,
work_dir=params.output_dir,
batch_bins=params.batch_bins,
max_epoch=params.max_epoch,
lr=params.lr)
trainer = build_trainer(Trainers.speech_asr_trainer, default_args=kwargs)
trainer.train()
if __name__ == '__main__':
params = modelscope_args(model="damo/speech_paraformer_asr-en-16k-vocab4199-pytorch", data_path="./data")
params.output_dir = "./checkpoint" # m模型保存路径
params.data_path = "./example_data/" # 数据路径
params.dataset_type = "small" # 小数据量设置small若数据量大于1000小时请使用large
params.batch_bins = 2000 # batch size如果dataset_type="small"batch_bins单位为fbank特征帧数如果dataset_type="large"batch_bins单位为毫秒
params.max_epoch = 50 # 最大训练轮数
params.lr = 0.00005 # 设置学习率
modelscope_finetune(params)

View File

@ -0,0 +1 @@
../../TEMPLATE/infer.py

View File

@ -0,0 +1,103 @@
#!/usr/bin/env bash
set -e
set -u
set -o pipefail
stage=1
stop_stage=2
model="damo/speech_paraformer_asr-en-16k-vocab4199-pytorch"
data_dir="./data/test"
output_dir="./results"
batch_size=64
gpu_inference=true # whether to perform gpu decoding
gpuid_list="0,1" # set gpus, e.g., gpuid_list="0,1"
njob=64 # the number of jobs for CPU decoding, if gpu_inference=false, use CPU decoding, please set njob
checkpoint_dir=
checkpoint_name="valid.cer_ctc.ave.pb"
. utils/parse_options.sh || exit 1;
if ${gpu_inference} == "true"; then
nj=$(echo $gpuid_list | awk -F "," '{print NF}')
else
nj=$njob
batch_size=1
gpuid_list=""
for JOB in $(seq ${nj}); do
gpuid_list=$gpuid_list"-1,"
done
fi
mkdir -p $output_dir/split
split_scps=""
for JOB in $(seq ${nj}); do
split_scps="$split_scps $output_dir/split/wav.$JOB.scp"
done
perl utils/split_scp.pl ${data_dir}/wav.scp ${split_scps}
if [ -n "${checkpoint_dir}" ]; then
python utils/prepare_checkpoint.py ${model} ${checkpoint_dir} ${checkpoint_name}
model=${checkpoint_dir}/${model}
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ];then
echo "Decoding ..."
gpuid_list_array=(${gpuid_list//,/ })
for JOB in $(seq ${nj}); do
{
id=$((JOB-1))
gpuid=${gpuid_list_array[$id]}
mkdir -p ${output_dir}/output.$JOB
python infer.py \
--model ${model} \
--audio_in ${output_dir}/split/wav.$JOB.scp \
--output_dir ${output_dir}/output.$JOB \
--batch_size ${batch_size} \
--gpuid ${gpuid}
}&
done
wait
mkdir -p ${output_dir}/1best_recog
for f in token score text; do
if [ -f "${output_dir}/output.1/1best_recog/${f}" ]; then
for i in $(seq "${nj}"); do
cat "${output_dir}/output.${i}/1best_recog/${f}"
done | sort -k1 >"${output_dir}/1best_recog/${f}"
fi
done
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ];then
echo "Computing WER ..."
cp ${output_dir}/1best_recog/text ${output_dir}/1best_recog/text.proc
cp ${data_dir}/text ${output_dir}/1best_recog/text.ref
python utils/compute_wer.py ${output_dir}/1best_recog/text.ref ${output_dir}/1best_recog/text.proc ${output_dir}/1best_recog/text.cer
tail -n 3 ${output_dir}/1best_recog/text.cer
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ];then
echo "SpeechIO TIOBE textnorm"
echo "$0 --> Normalizing REF text ..."
./utils/textnorm_zh.py \
--has_key --to_upper \
${data_dir}/text \
${output_dir}/1best_recog/ref.txt
echo "$0 --> Normalizing HYP text ..."
./utils/textnorm_zh.py \
--has_key --to_upper \
${output_dir}/1best_recog/text.proc \
${output_dir}/1best_recog/rec.txt
grep -v $'\t$' ${output_dir}/1best_recog/rec.txt > ${output_dir}/1best_recog/rec_non_empty.txt
echo "$0 --> computing WER/CER and alignment ..."
./utils/error_rate_zh \
--tokenizer char \
--ref ${output_dir}/1best_recog/ref.txt \
--hyp ${output_dir}/1best_recog/rec_non_empty.txt \
${output_dir}/1best_recog/DETAILS.txt | tee ${output_dir}/1best_recog/RESULTS.txt
rm -rf ${output_dir}/1best_recog/rec.txt ${output_dir}/1best_recog/rec_non_empty.txt
fi

View File

@ -0,0 +1 @@
../../../../egs/aishell/transformer/utils