From ce92fde1b754ae56aec7f62ff910c205a84bf159 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E6=B8=B8=E9=9B=81?= Date: Tue, 16 Jan 2024 10:41:16 +0800 Subject: [PATCH 1/2] funasr1.0 auto/ auto_model auto_frontend auto_tokenizer --- funasr/__init__.py | 3 +- funasr/auto/__init__.py | 0 funasr/auto/auto_frontend.py | 95 +++++++ funasr/auto/auto_model.py | 416 +++++++++++++++++++++++++++++++ funasr/auto/auto_tokenizer.py | 8 + funasr/bin/inference.py | 453 +--------------------------------- 6 files changed, 522 insertions(+), 453 deletions(-) create mode 100644 funasr/auto/__init__.py create mode 100644 funasr/auto/auto_frontend.py create mode 100644 funasr/auto/auto_model.py create mode 100644 funasr/auto/auto_tokenizer.py diff --git a/funasr/__init__.py b/funasr/__init__.py index 669bdac48..a5011bf79 100644 --- a/funasr/__init__.py +++ b/funasr/__init__.py @@ -30,4 +30,5 @@ def import_submodules(package, recursive=True): import_submodules(__name__) -from funasr.bin.inference import AutoModel, AutoFrontend \ No newline at end of file +from funasr.auto.auto_model import AutoModel +from funasr.auto.auto_frontend import AutoFrontend \ No newline at end of file diff --git a/funasr/auto/__init__.py b/funasr/auto/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/funasr/auto/auto_frontend.py b/funasr/auto/auto_frontend.py new file mode 100644 index 000000000..661f94939 --- /dev/null +++ b/funasr/auto/auto_frontend.py @@ -0,0 +1,95 @@ +import json +import time +import torch +import hydra +import random +import string +import logging +import os.path +from tqdm import tqdm +from omegaconf import DictConfig, OmegaConf, ListConfig + +from funasr.register import tables +from funasr.utils.load_utils import load_bytes +from funasr.download.file import download_from_url +from funasr.download.download_from_hub import download_model +from funasr.utils.vad_utils import slice_padding_audio_samples +from funasr.train_utils.set_all_random_seed import set_all_random_seed +from funasr.train_utils.load_pretrained_model import load_pretrained_model +from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank +from funasr.utils.timestamp_tools import timestamp_sentence +from funasr.models.campplus.utils import sv_chunk, postprocess, distribute_spk +from funasr.models.campplus.cluster_backend import ClusterBackend +from funasr.auto.auto_model import prepare_data_iterator + + + +class AutoFrontend: + def __init__(self, **kwargs): + assert "model" in kwargs + if "model_conf" not in kwargs: + logging.info("download models from model hub: {}".format(kwargs.get("model_hub", "ms"))) + kwargs = download_model(**kwargs) + + # build frontend + frontend = kwargs.get("frontend", None) + if frontend is not None: + frontend_class = tables.frontend_classes.get(frontend) + frontend = frontend_class(**kwargs["frontend_conf"]) + + self.frontend = frontend + if "frontend" in kwargs: + del kwargs["frontend"] + self.kwargs = kwargs + + + def __call__(self, input, input_len=None, kwargs=None, **cfg): + + kwargs = self.kwargs if kwargs is None else kwargs + kwargs.update(cfg) + + + key_list, data_list = prepare_data_iterator(input, input_len=input_len) + batch_size = kwargs.get("batch_size", 1) + device = kwargs.get("device", "cpu") + if device == "cpu": + batch_size = 1 + + meta_data = {} + + result_list = [] + num_samples = len(data_list) + pbar = tqdm(colour="blue", total=num_samples + 1, dynamic_ncols=True) + + time0 = time.perf_counter() + for beg_idx in range(0, num_samples, batch_size): + end_idx = min(num_samples, beg_idx + batch_size) + data_batch = data_list[beg_idx:end_idx] + key_batch = key_list[beg_idx:end_idx] + + # extract fbank feats + time1 = time.perf_counter() + audio_sample_list = load_audio_text_image_video(data_batch, fs=self.frontend.fs, audio_fs=kwargs.get("fs", 16000)) + time2 = time.perf_counter() + meta_data["load_data"] = f"{time2 - time1:0.3f}" + speech, speech_lengths = extract_fbank(audio_sample_list, data_type=kwargs.get("data_type", "sound"), + frontend=self.frontend, **kwargs) + time3 = time.perf_counter() + meta_data["extract_feat"] = f"{time3 - time2:0.3f}" + meta_data["batch_data_time"] = speech_lengths.sum().item() * self.frontend.frame_shift * self.frontend.lfr_n / 1000 + + speech.to(device=device), speech_lengths.to(device=device) + batch = {"input": speech, "input_len": speech_lengths, "key": key_batch} + result_list.append(batch) + + pbar.update(1) + description = ( + f"{meta_data}, " + ) + pbar.set_description(description) + + time_end = time.perf_counter() + pbar.set_description(f"time escaped total: {time_end - time0:0.3f}") + + return result_list + diff --git a/funasr/auto/auto_model.py b/funasr/auto/auto_model.py new file mode 100644 index 000000000..25edeb708 --- /dev/null +++ b/funasr/auto/auto_model.py @@ -0,0 +1,416 @@ +import json +import time +import torch +import hydra +import random +import string +import logging +import os.path +from tqdm import tqdm +from omegaconf import DictConfig, OmegaConf, ListConfig + +from funasr.register import tables +from funasr.utils.load_utils import load_bytes +from funasr.download.file import download_from_url +from funasr.download.download_from_hub import download_model +from funasr.utils.vad_utils import slice_padding_audio_samples +from funasr.train_utils.set_all_random_seed import set_all_random_seed +from funasr.train_utils.load_pretrained_model import load_pretrained_model +from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank +from funasr.utils.timestamp_tools import timestamp_sentence +from funasr.models.campplus.utils import sv_chunk, postprocess, distribute_spk +from funasr.models.campplus.cluster_backend import ClusterBackend + + +def prepare_data_iterator(data_in, input_len=None, data_type=None, key=None): + """ + + :param input: + :param input_len: + :param data_type: + :param frontend: + :return: + """ + data_list = [] + key_list = [] + filelist = [".scp", ".txt", ".json", ".jsonl"] + + chars = string.ascii_letters + string.digits + if isinstance(data_in, str) and data_in.startswith('http'): # url + data_in = download_from_url(data_in) + if isinstance(data_in, str) and os.path.exists(data_in): # wav_path; filelist: wav.scp, file.jsonl;text.txt; + _, file_extension = os.path.splitext(data_in) + file_extension = file_extension.lower() + if file_extension in filelist: #filelist: wav.scp, file.jsonl;text.txt; + with open(data_in, encoding='utf-8') as fin: + for line in fin: + key = "rand_key_" + ''.join(random.choice(chars) for _ in range(13)) + if data_in.endswith(".jsonl"): #file.jsonl: json.dumps({"source": data}) + lines = json.loads(line.strip()) + data = lines["source"] + key = data["key"] if "key" in data else key + else: # filelist, wav.scp, text.txt: id \t data or data + lines = line.strip().split(maxsplit=1) + data = lines[1] if len(lines)>1 else lines[0] + key = lines[0] if len(lines)>1 else key + + data_list.append(data) + key_list.append(key) + else: + key = "rand_key_" + ''.join(random.choice(chars) for _ in range(13)) + data_list = [data_in] + key_list = [key] + elif isinstance(data_in, (list, tuple)): + if data_type is not None and isinstance(data_type, (list, tuple)): # mutiple inputs + data_list_tmp = [] + for data_in_i, data_type_i in zip(data_in, data_type): + key_list, data_list_i = prepare_data_iterator(data_in=data_in_i, data_type=data_type_i) + data_list_tmp.append(data_list_i) + data_list = [] + for item in zip(*data_list_tmp): + data_list.append(item) + else: + # [audio sample point, fbank, text] + data_list = data_in + key_list = ["rand_key_" + ''.join(random.choice(chars) for _ in range(13)) for _ in range(len(data_in))] + else: # raw text; audio sample point, fbank; bytes + if isinstance(data_in, bytes): # audio bytes + data_in = load_bytes(data_in) + if key is None: + key = "rand_key_" + ''.join(random.choice(chars) for _ in range(13)) + data_list = [data_in] + key_list = [key] + + return key_list, data_list + + +class AutoModel: + + def __init__(self, **kwargs): + tables.print() + + model, kwargs = self.build_model(**kwargs) + + # if vad_model is not None, build vad model else None + vad_model = kwargs.get("vad_model", None) + vad_kwargs = kwargs.get("vad_model_revision", None) + if vad_model is not None: + logging.info("Building VAD model.") + vad_kwargs = {"model": vad_model, "model_revision": vad_kwargs} + vad_model, vad_kwargs = self.build_model(**vad_kwargs) + + # if punc_model is not None, build punc model else None + punc_model = kwargs.get("punc_model", None) + punc_kwargs = kwargs.get("punc_model_revision", None) + if punc_model is not None: + logging.info("Building punc model.") + punc_kwargs = {"model": punc_model, "model_revision": punc_kwargs} + punc_model, punc_kwargs = self.build_model(**punc_kwargs) + + # if spk_model is not None, build spk model else None + spk_model = kwargs.get("spk_model", None) + spk_kwargs = kwargs.get("spk_model_revision", None) + if spk_model is not None: + logging.info("Building SPK model.") + spk_kwargs = {"model": spk_model, "model_revision": spk_kwargs} + spk_model, spk_kwargs = self.build_model(**spk_kwargs) + self.cb_model = ClusterBackend() + spk_mode = kwargs.get("spk_mode", 'punc_segment') + if spk_mode not in ["default", "vad_segment", "punc_segment"]: + logging.error("spk_mode should be one of default, vad_segment and punc_segment.") + self.spk_mode = spk_mode + self.preset_spk_num = kwargs.get("preset_spk_num", None) + if self.preset_spk_num: + logging.warning("Using preset speaker number: {}".format(self.preset_spk_num)) + logging.warning("Many to print when using speaker model...") + + self.kwargs = kwargs + self.model = model + self.vad_model = vad_model + self.vad_kwargs = vad_kwargs + self.punc_model = punc_model + self.punc_kwargs = punc_kwargs + self.spk_model = spk_model + self.spk_kwargs = spk_kwargs + self.model_path = kwargs["model_path"] + + + def build_model(self, **kwargs): + assert "model" in kwargs + if "model_conf" not in kwargs: + logging.info("download models from model hub: {}".format(kwargs.get("model_hub", "ms"))) + kwargs = download_model(**kwargs) + + set_all_random_seed(kwargs.get("seed", 0)) + + device = kwargs.get("device", "cuda") + if not torch.cuda.is_available() or kwargs.get("ngpu", 0): + device = "cpu" + # kwargs["batch_size"] = 1 + kwargs["device"] = device + + if kwargs.get("ncpu", None): + torch.set_num_threads(kwargs.get("ncpu")) + + # build tokenizer + tokenizer = kwargs.get("tokenizer", None) + if tokenizer is not None: + tokenizer_class = tables.tokenizer_classes.get(tokenizer) + tokenizer = tokenizer_class(**kwargs["tokenizer_conf"]) + kwargs["tokenizer"] = tokenizer + kwargs["token_list"] = tokenizer.token_list + vocab_size = len(tokenizer.token_list) + else: + vocab_size = -1 + + # build frontend + frontend = kwargs.get("frontend", None) + if frontend is not None: + frontend_class = tables.frontend_classes.get(frontend) + frontend = frontend_class(**kwargs["frontend_conf"]) + kwargs["frontend"] = frontend + kwargs["input_size"] = frontend.output_size() + + # build model + model_class = tables.model_classes.get(kwargs["model"]) + model = model_class(**kwargs, **kwargs["model_conf"], vocab_size=vocab_size) + model.eval() + model.to(device) + + # init_param + init_param = kwargs.get("init_param", None) + if init_param is not None: + logging.info(f"Loading pretrained params from {init_param}") + load_pretrained_model( + model=model, + init_param=init_param, + ignore_init_mismatch=kwargs.get("ignore_init_mismatch", False), + oss_bucket=kwargs.get("oss_bucket", None), + ) + + return model, kwargs + + def __call__(self, *args, **cfg): + kwargs = self.kwargs + kwargs.update(cfg) + res = self.model(*args, kwargs) + return res + + + + def generate(self, input, input_len=None, **cfg): + if self.vad_model is None: + return self.inference(input, input_len=input_len, **cfg) + + else: + return self.inference_with_vad(input, input_len=input_len, **cfg) + + def inference(self, input, input_len=None, model=None, kwargs=None, key=None, **cfg): + kwargs = self.kwargs if kwargs is None else kwargs + kwargs.update(cfg) + model = self.model if model is None else model + + batch_size = kwargs.get("batch_size", 1) + # if kwargs.get("device", "cpu") == "cpu": + # batch_size = 1 + + key_list, data_list = prepare_data_iterator(input, input_len=input_len, data_type=kwargs.get("data_type", None), key=key) + + speed_stats = {} + asr_result_list = [] + num_samples = len(data_list) + pbar = tqdm(colour="blue", total=num_samples+1, dynamic_ncols=True) + time_speech_total = 0.0 + time_escape_total = 0.0 + for beg_idx in range(0, num_samples, batch_size): + end_idx = min(num_samples, beg_idx + batch_size) + data_batch = data_list[beg_idx:end_idx] + key_batch = key_list[beg_idx:end_idx] + batch = {"data_in": data_batch, "key": key_batch} + if (end_idx - beg_idx) == 1 and isinstance(data_batch[0], torch.Tensor): # fbank + batch["data_in"] = data_batch[0] + batch["data_lengths"] = input_len + + time1 = time.perf_counter() + with torch.no_grad(): + results, meta_data = model.inference(**batch, **kwargs) + time2 = time.perf_counter() + + asr_result_list.extend(results) + pbar.update(1) + + # batch_data_time = time_per_frame_s * data_batch_i["speech_lengths"].sum().item() + batch_data_time = meta_data.get("batch_data_time", -1) + time_escape = time2 - time1 + speed_stats["load_data"] = meta_data.get("load_data", 0.0) + speed_stats["extract_feat"] = meta_data.get("extract_feat", 0.0) + speed_stats["forward"] = f"{time_escape:0.3f}" + speed_stats["batch_size"] = f"{len(results)}" + speed_stats["rtf"] = f"{(time_escape) / batch_data_time:0.3f}" + description = ( + f"{speed_stats}, " + ) + pbar.set_description(description) + time_speech_total += batch_data_time + time_escape_total += time_escape + + pbar.update(1) + pbar.set_description(f"rtf_avg: {time_escape_total/time_speech_total:0.3f}") + torch.cuda.empty_cache() + return asr_result_list + + def inference_with_vad(self, input, input_len=None, **cfg): + + # step.1: compute the vad model + self.vad_kwargs.update(cfg) + beg_vad = time.time() + res = self.generate(input, input_len=input_len, model=self.vad_model, kwargs=self.vad_kwargs, **cfg) + end_vad = time.time() + print(f"time cost vad: {end_vad - beg_vad:0.3f}") + + + # step.2 compute asr model + model = self.model + kwargs = self.kwargs + kwargs.update(cfg) + batch_size = int(kwargs.get("batch_size_s", 300))*1000 + batch_size_threshold_ms = int(kwargs.get("batch_size_threshold_s", 60))*1000 + kwargs["batch_size"] = batch_size + + key_list, data_list = prepare_data_iterator(input, input_len=input_len, data_type=kwargs.get("data_type", None)) + results_ret_list = [] + time_speech_total_all_samples = 0.0 + + beg_total = time.time() + pbar_total = tqdm(colour="red", total=len(res) + 1, dynamic_ncols=True) + for i in range(len(res)): + key = res[i]["key"] + vadsegments = res[i]["value"] + input_i = data_list[i] + speech = load_audio_text_image_video(input_i, fs=kwargs["frontend"].fs, audio_fs=kwargs.get("fs", 16000)) + speech_lengths = len(speech) + n = len(vadsegments) + data_with_index = [(vadsegments[i], i) for i in range(n)] + sorted_data = sorted(data_with_index, key=lambda x: x[0][1] - x[0][0]) + results_sorted = [] + + if not len(sorted_data): + logging.info("decoding, utt: {}, empty speech".format(key)) + continue + + if len(sorted_data) > 0 and len(sorted_data[0]) > 0: + batch_size = max(batch_size, sorted_data[0][0][1] - sorted_data[0][0][0]) + + batch_size_ms_cum = 0 + beg_idx = 0 + beg_asr_total = time.time() + time_speech_total_per_sample = speech_lengths/16000 + time_speech_total_all_samples += time_speech_total_per_sample + + for j, _ in enumerate(range(0, n)): + batch_size_ms_cum += (sorted_data[j][0][1] - sorted_data[j][0][0]) + if j < n - 1 and ( + batch_size_ms_cum + sorted_data[j + 1][0][1] - sorted_data[j + 1][0][0]) < batch_size and ( + sorted_data[j + 1][0][1] - sorted_data[j + 1][0][0]) < batch_size_threshold_ms: + continue + batch_size_ms_cum = 0 + end_idx = j + 1 + speech_j, speech_lengths_j = slice_padding_audio_samples(speech, speech_lengths, sorted_data[beg_idx:end_idx]) + results = self.generate(speech_j, input_len=None, model=model, kwargs=kwargs, **cfg) + if self.spk_model is not None: + all_segments = [] + # compose vad segments: [[start_time_sec, end_time_sec, speech], [...]] + for _b in range(len(speech_j)): + vad_segments = [[sorted_data[beg_idx:end_idx][_b][0][0]/1000.0, \ + sorted_data[beg_idx:end_idx][_b][0][1]/1000.0, \ + speech_j[_b]]] + segments = sv_chunk(vad_segments) + all_segments.extend(segments) + speech_b = [i[2] for i in segments] + spk_res = self.generate(speech_b, input_len=None, model=self.spk_model, kwargs=kwargs, **cfg) + results[_b]['spk_embedding'] = spk_res[0]['spk_embedding'] + beg_idx = end_idx + if len(results) < 1: + continue + results_sorted.extend(results) + + + pbar_total.update(1) + end_asr_total = time.time() + time_escape_total_per_sample = end_asr_total - beg_asr_total + pbar_total.set_description(f"rtf_avg_per_sample: {time_escape_total_per_sample / time_speech_total_per_sample:0.3f}, " + f"time_speech_total_per_sample: {time_speech_total_per_sample: 0.3f}, " + f"time_escape_total_per_sample: {time_escape_total_per_sample:0.3f}") + + restored_data = [0] * n + for j in range(n): + index = sorted_data[j][1] + restored_data[index] = results_sorted[j] + result = {} + + # results combine for texts, timestamps, speaker embeddings and others + # TODO: rewrite for clean code + for j in range(n): + for k, v in restored_data[j].items(): + if k.startswith("timestamp"): + if k not in result: + result[k] = [] + for t in restored_data[j][k]: + t[0] += vadsegments[j][0] + t[1] += vadsegments[j][0] + result[k].extend(restored_data[j][k]) + elif k == 'spk_embedding': + if k not in result: + result[k] = restored_data[j][k] + else: + result[k] = torch.cat([result[k], restored_data[j][k]], dim=0) + elif k == 'text': + if k not in result: + result[k] = restored_data[j][k] + else: + result[k] += " " + restored_data[j][k] + else: + if k not in result: + result[k] = restored_data[j][k] + else: + result[k] += restored_data[j][k] + + # step.3 compute punc model + if self.punc_model is not None: + self.punc_kwargs.update(cfg) + punc_res = self.generate(result["text"], model=self.punc_model, kwargs=self.punc_kwargs, **cfg) + result["text_with_punc"] = punc_res[0]["text"] + + # speaker embedding cluster after resorted + if self.spk_model is not None: + all_segments = sorted(all_segments, key=lambda x: x[0]) + spk_embedding = result['spk_embedding'] + labels = self.cb_model(spk_embedding, oracle_num=self.preset_spk_num) + del result['spk_embedding'] + sv_output = postprocess(all_segments, None, labels, spk_embedding.cpu()) + if self.spk_mode == 'vad_segment': + sentence_list = [] + for res, vadsegment in zip(restored_data, vadsegments): + sentence_list.append({"start": vadsegment[0],\ + "end": vadsegment[1], + "sentence": res['text'], + "timestamp": res['timestamp']}) + else: # punc_segment + sentence_list = timestamp_sentence(punc_res[0]['punc_array'], \ + result['timestamp'], \ + result['text']) + distribute_spk(sentence_list, sv_output) + result['sentence_info'] = sentence_list + + result["key"] = key + results_ret_list.append(result) + pbar_total.update(1) + + pbar_total.update(1) + end_total = time.time() + time_escape_total_all_samples = end_total - beg_total + pbar_total.set_description(f"rtf_avg_all_samples: {time_escape_total_all_samples / time_speech_total_all_samples:0.3f}, " + f"time_speech_total_all_samples: {time_speech_total_all_samples: 0.3f}, " + f"time_escape_total_all_samples: {time_escape_total_all_samples:0.3f}") + return results_ret_list + diff --git a/funasr/auto/auto_tokenizer.py b/funasr/auto/auto_tokenizer.py new file mode 100644 index 000000000..d5082e2e8 --- /dev/null +++ b/funasr/auto/auto_tokenizer.py @@ -0,0 +1,8 @@ + + +class AutoTokenizer: + """ + Undo + """ + def __init__(self): + pass \ No newline at end of file diff --git a/funasr/bin/inference.py b/funasr/bin/inference.py index 7368d161e..bc435c43c 100644 --- a/funasr/bin/inference.py +++ b/funasr/bin/inference.py @@ -20,69 +20,9 @@ from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank from funasr.utils.timestamp_tools import timestamp_sentence from funasr.models.campplus.utils import sv_chunk, postprocess, distribute_spk from funasr.models.campplus.cluster_backend import ClusterBackend +from funasr.auto.auto_model import AutoModel -def prepare_data_iterator(data_in, input_len=None, data_type=None, key=None): - """ - - :param input: - :param input_len: - :param data_type: - :param frontend: - :return: - """ - data_list = [] - key_list = [] - filelist = [".scp", ".txt", ".json", ".jsonl"] - - chars = string.ascii_letters + string.digits - if isinstance(data_in, str) and data_in.startswith('http'): # url - data_in = download_from_url(data_in) - if isinstance(data_in, str) and os.path.exists(data_in): # wav_path; filelist: wav.scp, file.jsonl;text.txt; - _, file_extension = os.path.splitext(data_in) - file_extension = file_extension.lower() - if file_extension in filelist: #filelist: wav.scp, file.jsonl;text.txt; - with open(data_in, encoding='utf-8') as fin: - for line in fin: - key = "rand_key_" + ''.join(random.choice(chars) for _ in range(13)) - if data_in.endswith(".jsonl"): #file.jsonl: json.dumps({"source": data}) - lines = json.loads(line.strip()) - data = lines["source"] - key = data["key"] if "key" in data else key - else: # filelist, wav.scp, text.txt: id \t data or data - lines = line.strip().split(maxsplit=1) - data = lines[1] if len(lines)>1 else lines[0] - key = lines[0] if len(lines)>1 else key - - data_list.append(data) - key_list.append(key) - else: - key = "rand_key_" + ''.join(random.choice(chars) for _ in range(13)) - data_list = [data_in] - key_list = [key] - elif isinstance(data_in, (list, tuple)): - if data_type is not None and isinstance(data_type, (list, tuple)): # mutiple inputs - data_list_tmp = [] - for data_in_i, data_type_i in zip(data_in, data_type): - key_list, data_list_i = prepare_data_iterator(data_in=data_in_i, data_type=data_type_i) - data_list_tmp.append(data_list_i) - data_list = [] - for item in zip(*data_list_tmp): - data_list.append(item) - else: - # [audio sample point, fbank, text] - data_list = data_in - key_list = ["rand_key_" + ''.join(random.choice(chars) for _ in range(13)) for _ in range(len(data_in))] - else: # raw text; audio sample point, fbank; bytes - if isinstance(data_in, bytes): # audio bytes - data_in = load_bytes(data_in) - if key is None: - key = "rand_key_" + ''.join(random.choice(chars) for _ in range(13)) - data_list = [data_in] - key_list = [key] - - return key_list, data_list - @hydra.main(config_name=None, version_base=None) def main_hydra(cfg: DictConfig): def to_plain_list(cfg_item): @@ -104,397 +44,6 @@ def main_hydra(cfg: DictConfig): res = model(input=kwargs["input"]) print(res) -class AutoModel: - - def __init__(self, **kwargs): - tables.print() - - model, kwargs = self.build_model(**kwargs) - - # if vad_model is not None, build vad model else None - vad_model = kwargs.get("vad_model", None) - vad_kwargs = kwargs.get("vad_model_revision", None) - if vad_model is not None: - logging.info("Building VAD model.") - vad_kwargs = {"model": vad_model, "model_revision": vad_kwargs} - vad_model, vad_kwargs = self.build_model(**vad_kwargs) - - # if punc_model is not None, build punc model else None - punc_model = kwargs.get("punc_model", None) - punc_kwargs = kwargs.get("punc_model_revision", None) - if punc_model is not None: - logging.info("Building punc model.") - punc_kwargs = {"model": punc_model, "model_revision": punc_kwargs} - punc_model, punc_kwargs = self.build_model(**punc_kwargs) - - # if spk_model is not None, build spk model else None - spk_model = kwargs.get("spk_model", None) - spk_kwargs = kwargs.get("spk_model_revision", None) - if spk_model is not None: - logging.info("Building SPK model.") - spk_kwargs = {"model": spk_model, "model_revision": spk_kwargs} - spk_model, spk_kwargs = self.build_model(**spk_kwargs) - self.cb_model = ClusterBackend() - spk_mode = kwargs.get("spk_mode", 'punc_segment') - if spk_mode not in ["default", "vad_segment", "punc_segment"]: - logging.error("spk_mode should be one of default, vad_segment and punc_segment.") - self.spk_mode = spk_mode - self.preset_spk_num = kwargs.get("preset_spk_num", None) - if self.preset_spk_num: - logging.warning("Using preset speaker number: {}".format(self.preset_spk_num)) - logging.warning("Many to print when using speaker model...") - - self.kwargs = kwargs - self.model = model - self.vad_model = vad_model - self.vad_kwargs = vad_kwargs - self.punc_model = punc_model - self.punc_kwargs = punc_kwargs - self.spk_model = spk_model - self.spk_kwargs = spk_kwargs - self.model_path = kwargs["model_path"] - - - def build_model(self, **kwargs): - assert "model" in kwargs - if "model_conf" not in kwargs: - logging.info("download models from model hub: {}".format(kwargs.get("model_hub", "ms"))) - kwargs = download_model(**kwargs) - - set_all_random_seed(kwargs.get("seed", 0)) - - device = kwargs.get("device", "cuda") - if not torch.cuda.is_available() or kwargs.get("ngpu", 0): - device = "cpu" - # kwargs["batch_size"] = 1 - kwargs["device"] = device - - if kwargs.get("ncpu", None): - torch.set_num_threads(kwargs.get("ncpu")) - - # build tokenizer - tokenizer = kwargs.get("tokenizer", None) - if tokenizer is not None: - tokenizer_class = tables.tokenizer_classes.get(tokenizer) - tokenizer = tokenizer_class(**kwargs["tokenizer_conf"]) - kwargs["tokenizer"] = tokenizer - kwargs["token_list"] = tokenizer.token_list - vocab_size = len(tokenizer.token_list) - else: - vocab_size = -1 - - # build frontend - frontend = kwargs.get("frontend", None) - if frontend is not None: - frontend_class = tables.frontend_classes.get(frontend) - frontend = frontend_class(**kwargs["frontend_conf"]) - kwargs["frontend"] = frontend - kwargs["input_size"] = frontend.output_size() - - # build model - model_class = tables.model_classes.get(kwargs["model"]) - model = model_class(**kwargs, **kwargs["model_conf"], vocab_size=vocab_size) - model.eval() - model.to(device) - - # init_param - init_param = kwargs.get("init_param", None) - if init_param is not None: - logging.info(f"Loading pretrained params from {init_param}") - load_pretrained_model( - model=model, - init_param=init_param, - ignore_init_mismatch=kwargs.get("ignore_init_mismatch", False), - oss_bucket=kwargs.get("oss_bucket", None), - ) - - return model, kwargs - - def __call__(self, input, input_len=None, **cfg): - if self.vad_model is None: - return self.generate(input, input_len=input_len, **cfg) - - else: - return self.generate_with_vad(input, input_len=input_len, **cfg) - - def generate(self, input, input_len=None, model=None, kwargs=None, key=None, **cfg): - kwargs = self.kwargs if kwargs is None else kwargs - kwargs.update(cfg) - model = self.model if model is None else model - - batch_size = kwargs.get("batch_size", 1) - # if kwargs.get("device", "cpu") == "cpu": - # batch_size = 1 - - key_list, data_list = prepare_data_iterator(input, input_len=input_len, data_type=kwargs.get("data_type", None), key=key) - - speed_stats = {} - asr_result_list = [] - num_samples = len(data_list) - pbar = tqdm(colour="blue", total=num_samples+1, dynamic_ncols=True) - time_speech_total = 0.0 - time_escape_total = 0.0 - for beg_idx in range(0, num_samples, batch_size): - end_idx = min(num_samples, beg_idx + batch_size) - data_batch = data_list[beg_idx:end_idx] - key_batch = key_list[beg_idx:end_idx] - batch = {"data_in": data_batch, "key": key_batch} - if (end_idx - beg_idx) == 1 and isinstance(data_batch[0], torch.Tensor): # fbank - batch["data_in"] = data_batch[0] - batch["data_lengths"] = input_len - - time1 = time.perf_counter() - with torch.no_grad(): - results, meta_data = model.inference(**batch, **kwargs) - time2 = time.perf_counter() - - asr_result_list.extend(results) - pbar.update(1) - - # batch_data_time = time_per_frame_s * data_batch_i["speech_lengths"].sum().item() - batch_data_time = meta_data.get("batch_data_time", -1) - time_escape = time2 - time1 - speed_stats["load_data"] = meta_data.get("load_data", 0.0) - speed_stats["extract_feat"] = meta_data.get("extract_feat", 0.0) - speed_stats["forward"] = f"{time_escape:0.3f}" - speed_stats["batch_size"] = f"{len(results)}" - speed_stats["rtf"] = f"{(time_escape) / batch_data_time:0.3f}" - description = ( - f"{speed_stats}, " - ) - pbar.set_description(description) - time_speech_total += batch_data_time - time_escape_total += time_escape - - pbar.update(1) - pbar.set_description(f"rtf_avg: {time_escape_total/time_speech_total:0.3f}") - torch.cuda.empty_cache() - return asr_result_list - - def generate_with_vad(self, input, input_len=None, **cfg): - - # step.1: compute the vad model - self.vad_kwargs.update(cfg) - beg_vad = time.time() - res = self.generate(input, input_len=input_len, model=self.vad_model, kwargs=self.vad_kwargs, **cfg) - end_vad = time.time() - print(f"time cost vad: {end_vad - beg_vad:0.3f}") - - - # step.2 compute asr model - model = self.model - kwargs = self.kwargs - kwargs.update(cfg) - batch_size = int(kwargs.get("batch_size_s", 300))*1000 - batch_size_threshold_ms = int(kwargs.get("batch_size_threshold_s", 60))*1000 - kwargs["batch_size"] = batch_size - - key_list, data_list = prepare_data_iterator(input, input_len=input_len, data_type=kwargs.get("data_type", None)) - results_ret_list = [] - time_speech_total_all_samples = 0.0 - - beg_total = time.time() - pbar_total = tqdm(colour="red", total=len(res) + 1, dynamic_ncols=True) - for i in range(len(res)): - key = res[i]["key"] - vadsegments = res[i]["value"] - input_i = data_list[i] - speech = load_audio_text_image_video(input_i, fs=kwargs["frontend"].fs, audio_fs=kwargs.get("fs", 16000)) - speech_lengths = len(speech) - n = len(vadsegments) - data_with_index = [(vadsegments[i], i) for i in range(n)] - sorted_data = sorted(data_with_index, key=lambda x: x[0][1] - x[0][0]) - results_sorted = [] - - if not len(sorted_data): - logging.info("decoding, utt: {}, empty speech".format(key)) - continue - - if len(sorted_data) > 0 and len(sorted_data[0]) > 0: - batch_size = max(batch_size, sorted_data[0][0][1] - sorted_data[0][0][0]) - - batch_size_ms_cum = 0 - beg_idx = 0 - beg_asr_total = time.time() - time_speech_total_per_sample = speech_lengths/16000 - time_speech_total_all_samples += time_speech_total_per_sample - - for j, _ in enumerate(range(0, n)): - batch_size_ms_cum += (sorted_data[j][0][1] - sorted_data[j][0][0]) - if j < n - 1 and ( - batch_size_ms_cum + sorted_data[j + 1][0][1] - sorted_data[j + 1][0][0]) < batch_size and ( - sorted_data[j + 1][0][1] - sorted_data[j + 1][0][0]) < batch_size_threshold_ms: - continue - batch_size_ms_cum = 0 - end_idx = j + 1 - speech_j, speech_lengths_j = slice_padding_audio_samples(speech, speech_lengths, sorted_data[beg_idx:end_idx]) - results = self.generate(speech_j, input_len=None, model=model, kwargs=kwargs, **cfg) - if self.spk_model is not None: - all_segments = [] - # compose vad segments: [[start_time_sec, end_time_sec, speech], [...]] - for _b in range(len(speech_j)): - vad_segments = [[sorted_data[beg_idx:end_idx][_b][0][0]/1000.0, \ - sorted_data[beg_idx:end_idx][_b][0][1]/1000.0, \ - speech_j[_b]]] - segments = sv_chunk(vad_segments) - all_segments.extend(segments) - speech_b = [i[2] for i in segments] - spk_res = self.generate(speech_b, input_len=None, model=self.spk_model, kwargs=kwargs, **cfg) - results[_b]['spk_embedding'] = spk_res[0]['spk_embedding'] - beg_idx = end_idx - if len(results) < 1: - continue - results_sorted.extend(results) - - - pbar_total.update(1) - end_asr_total = time.time() - time_escape_total_per_sample = end_asr_total - beg_asr_total - pbar_total.set_description(f"rtf_avg_per_sample: {time_escape_total_per_sample / time_speech_total_per_sample:0.3f}, " - f"time_speech_total_per_sample: {time_speech_total_per_sample: 0.3f}, " - f"time_escape_total_per_sample: {time_escape_total_per_sample:0.3f}") - - restored_data = [0] * n - for j in range(n): - index = sorted_data[j][1] - restored_data[index] = results_sorted[j] - result = {} - - # results combine for texts, timestamps, speaker embeddings and others - # TODO: rewrite for clean code - for j in range(n): - for k, v in restored_data[j].items(): - if k.startswith("timestamp"): - if k not in result: - result[k] = [] - for t in restored_data[j][k]: - t[0] += vadsegments[j][0] - t[1] += vadsegments[j][0] - result[k].extend(restored_data[j][k]) - elif k == 'spk_embedding': - if k not in result: - result[k] = restored_data[j][k] - else: - result[k] = torch.cat([result[k], restored_data[j][k]], dim=0) - elif k == 'text': - if k not in result: - result[k] = restored_data[j][k] - else: - result[k] += " " + restored_data[j][k] - else: - if k not in result: - result[k] = restored_data[j][k] - else: - result[k] += restored_data[j][k] - - # step.3 compute punc model - if self.punc_model is not None: - self.punc_kwargs.update(cfg) - punc_res = self.generate(result["text"], model=self.punc_model, kwargs=self.punc_kwargs, **cfg) - result["text_with_punc"] = punc_res[0]["text"] - - # speaker embedding cluster after resorted - if self.spk_model is not None: - all_segments = sorted(all_segments, key=lambda x: x[0]) - spk_embedding = result['spk_embedding'] - labels = self.cb_model(spk_embedding, oracle_num=self.preset_spk_num) - del result['spk_embedding'] - sv_output = postprocess(all_segments, None, labels, spk_embedding.cpu()) - if self.spk_mode == 'vad_segment': - sentence_list = [] - for res, vadsegment in zip(restored_data, vadsegments): - sentence_list.append({"start": vadsegment[0],\ - "end": vadsegment[1], - "sentence": res['text'], - "timestamp": res['timestamp']}) - else: # punc_segment - sentence_list = timestamp_sentence(punc_res[0]['punc_array'], \ - result['timestamp'], \ - result['text']) - distribute_spk(sentence_list, sv_output) - result['sentence_info'] = sentence_list - - result["key"] = key - results_ret_list.append(result) - pbar_total.update(1) - - pbar_total.update(1) - end_total = time.time() - time_escape_total_all_samples = end_total - beg_total - pbar_total.set_description(f"rtf_avg_all_samples: {time_escape_total_all_samples / time_speech_total_all_samples:0.3f}, " - f"time_speech_total_all_samples: {time_speech_total_all_samples: 0.3f}, " - f"time_escape_total_all_samples: {time_escape_total_all_samples:0.3f}") - return results_ret_list - - -class AutoFrontend: - def __init__(self, **kwargs): - assert "model" in kwargs - if "model_conf" not in kwargs: - logging.info("download models from model hub: {}".format(kwargs.get("model_hub", "ms"))) - kwargs = download_model(**kwargs) - - # build frontend - frontend = kwargs.get("frontend", None) - if frontend is not None: - frontend_class = tables.frontend_classes.get(frontend) - frontend = frontend_class(**kwargs["frontend_conf"]) - - self.frontend = frontend - if "frontend" in kwargs: - del kwargs["frontend"] - self.kwargs = kwargs - - - def __call__(self, input, input_len=None, kwargs=None, **cfg): - - kwargs = self.kwargs if kwargs is None else kwargs - kwargs.update(cfg) - - - key_list, data_list = prepare_data_iterator(input, input_len=input_len) - batch_size = kwargs.get("batch_size", 1) - device = kwargs.get("device", "cpu") - if device == "cpu": - batch_size = 1 - - meta_data = {} - - result_list = [] - num_samples = len(data_list) - pbar = tqdm(colour="blue", total=num_samples + 1, dynamic_ncols=True) - - time0 = time.perf_counter() - for beg_idx in range(0, num_samples, batch_size): - end_idx = min(num_samples, beg_idx + batch_size) - data_batch = data_list[beg_idx:end_idx] - key_batch = key_list[beg_idx:end_idx] - - # extract fbank feats - time1 = time.perf_counter() - audio_sample_list = load_audio_text_image_video(data_batch, fs=self.frontend.fs, audio_fs=kwargs.get("fs", 16000)) - time2 = time.perf_counter() - meta_data["load_data"] = f"{time2 - time1:0.3f}" - speech, speech_lengths = extract_fbank(audio_sample_list, data_type=kwargs.get("data_type", "sound"), - frontend=self.frontend, **kwargs) - time3 = time.perf_counter() - meta_data["extract_feat"] = f"{time3 - time2:0.3f}" - meta_data["batch_data_time"] = speech_lengths.sum().item() * self.frontend.frame_shift * self.frontend.lfr_n / 1000 - - speech.to(device=device), speech_lengths.to(device=device) - batch = {"input": speech, "input_len": speech_lengths, "key": key_batch} - result_list.append(batch) - - pbar.update(1) - description = ( - f"{meta_data}, " - ) - pbar.set_description(description) - - time_end = time.perf_counter() - pbar.set_description(f"time escaped total: {time_end - time0:0.3f}") - - return result_list if __name__ == '__main__': From b7cb19b01a1454f7a1388e24dcd4e10fc654bd7c Mon Sep 17 00:00:00 2001 From: "shixian.shi" Date: Tue, 16 Jan 2024 11:30:25 +0800 Subject: [PATCH 2/2] update demo, readme --- README.md | 24 ++++++++++++------- README_zh.md | 18 +++++++++----- .../bicif_paraformer/demo.py | 16 ++++++------- .../campplus_sv/demo.py | 2 +- .../contextual_paraformer/demo.py | 2 +- .../ct_transformer/demo.py | 4 ++-- .../ct_transformer_streaming/demo.py | 2 +- .../emotion2vec/demo.py | 2 +- .../fsmn_vad_streaming/demo.py | 4 ++-- .../monotonic_aligner/demo.py | 2 +- .../paraformer-zh-spk/demo.py | 4 ++-- .../paraformer/demo.py | 4 ++-- .../paraformer_streaming/demo.py | 16 ++++++------- .../seaco_paraformer/demo.py | 4 ++-- funasr/auto/auto_model.py | 8 +++---- funasr/bin/inference.py | 21 +--------------- 16 files changed, 63 insertions(+), 70 deletions(-) diff --git a/README.md b/README.md index a53ce4d3e..2bd28e218 100644 --- a/README.md +++ b/README.md @@ -95,9 +95,9 @@ model = AutoModel(model="paraformer-zh", model_revision="v2.0.2", \ vad_model="fsmn-vad", vad_model_revision="v2.0.2", \ punc_model="ct-punc-c", punc_model_revision="v2.0.2", \ spk_model="cam++", spk_model_revision="v2.0.2") -res = model(input=f"{model.model_path}/example/asr_example.wav", - batch_size=64, - hotword='魔搭') +res = model.generate(input=f"{model.model_path}/example/asr_example.wav", + batch_size=64, + hotword='魔搭') print(res) ``` Note: `model_hub`: represents the model repository, `ms` stands for selecting ModelScope download, `hf` stands for selecting Huggingface download. @@ -124,7 +124,7 @@ total_chunk_num = int(len((speech)-1)/chunk_stride+1) for i in range(total_chunk_num): speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride] is_final = i == total_chunk_num - 1 - res = model(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size, encoder_chunk_look_back=encoder_chunk_look_back, decoder_chunk_look_back=decoder_chunk_look_back) + res = model.generate(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size, encoder_chunk_look_back=encoder_chunk_look_back, decoder_chunk_look_back=decoder_chunk_look_back) print(res) ``` Note: `chunk_size` is the configuration for streaming latency.` [0,10,5]` indicates that the real-time display granularity is `10*60=600ms`, and the lookahead information is `5*60=300ms`. Each inference input is `600ms` (sample points are `16000*0.6=960`), and the output is the corresponding text. For the last speech segment input, `is_final=True` needs to be set to force the output of the last word. @@ -135,7 +135,7 @@ from funasr import AutoModel model = AutoModel(model="fsmn-vad", model_revision="v2.0.2") wav_file = f"{model.model_path}/example/asr_example.wav" -res = model(input=wav_file) +res = model.generate(input=wav_file) print(res) ``` ### Voice Activity Detection (Non-streaming) @@ -156,7 +156,7 @@ total_chunk_num = int(len((speech)-1)/chunk_stride+1) for i in range(total_chunk_num): speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride] is_final = i == total_chunk_num - 1 - res = model(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size) + res = model.generate(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size) if len(res[0]["value"]): print(res) ``` @@ -165,7 +165,7 @@ for i in range(total_chunk_num): from funasr import AutoModel model = AutoModel(model="ct-punc", model_revision="v2.0.2") -res = model(input="那今天的会就到这里吧 happy new year 明年见") +res = model.generate(input="那今天的会就到这里吧 happy new year 明年见") print(res) ``` ### Timestamp Prediction @@ -175,7 +175,7 @@ from funasr import AutoModel model = AutoModel(model="fa-zh", model_revision="v2.0.2") wav_file = f"{model.model_path}/example/asr_example.wav" text_file = f"{model.model_path}/example/text.txt" -res = model(input=(wav_file, text_file), data_type=("sound", "text")) +res = model.generate(input=(wav_file, text_file), data_type=("sound", "text")) print(res) ``` [//]: # (FunASR supports inference and fine-tuning of models trained on industrial datasets of tens of thousands of hours. For more details, please refer to ([modelscope_egs](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_pipeline/quick_start.html)). It also supports training and fine-tuning of models on academic standard datasets. For more details, please refer to([egs](https://alibaba-damo-academy.github.io/FunASR/en/academic_recipe/asr_recipe.html)). The models include speech recognition (ASR), speech activity detection (VAD), punctuation recovery, language model, speaker verification, speaker separation, and multi-party conversation speech recognition. For a detailed list of models, please refer to the [Model Zoo](https://github.com/alibaba-damo-academy/FunASR/blob/main/docs/model_zoo/modelscope_models.md):) @@ -229,10 +229,16 @@ The use of pretraining model is subject to [model license](./MODEL_LICENSE) } @inproceedings{gao22b_interspeech, author={Zhifu Gao and ShiLiang Zhang and Ian McLoughlin and Zhijie Yan}, - title={{Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition}}, + title={Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition}, year=2022, booktitle={Proc. Interspeech 2022}, pages={2063--2067}, doi={10.21437/Interspeech.2022-9996} } +@inproceedings{shi2023seaco, + author={Xian Shi and Yexin Yang and Zerui Li and Yanni Chen and Zhifu Gao and Shiliang Zhang}, + title={SeACo-Paraformer: A Non-Autoregressive ASR System with Flexible and Effective Hotword Customization Ability}, + year={2023}, + booktitle={ICASSP2024} +} ``` diff --git a/README_zh.md b/README_zh.md index 861e61c2e..dc2030222 100644 --- a/README_zh.md +++ b/README_zh.md @@ -91,7 +91,7 @@ model = AutoModel(model="paraformer-zh", model_revision="v2.0.2", \ vad_model="fsmn-vad", vad_model_revision="v2.0.2", \ punc_model="ct-punc-c", punc_model_revision="v2.0.2", \ spk_model="cam++", spk_model_revision="v2.0.2") -res = model(input=f"{model.model_path}/example/asr_example.wav", +res = model.generate(input=f"{model.model_path}/example/asr_example.wav", batch_size=64, hotword='魔搭') print(res) @@ -121,7 +121,7 @@ total_chunk_num = int(len((speech)-1)/chunk_stride+1) for i in range(total_chunk_num): speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride] is_final = i == total_chunk_num - 1 - res = model(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size, encoder_chunk_look_back=encoder_chunk_look_back, decoder_chunk_look_back=decoder_chunk_look_back) + res = model.generate(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size, encoder_chunk_look_back=encoder_chunk_look_back, decoder_chunk_look_back=decoder_chunk_look_back) print(res) ``` @@ -134,7 +134,7 @@ from funasr import AutoModel model = AutoModel(model="fsmn-vad", model_revision="v2.0.2") wav_file = f"{model.model_path}/example/asr_example.wav" -res = model(input=wav_file) +res = model.generate(input=wav_file) print(res) ``` @@ -156,7 +156,7 @@ total_chunk_num = int(len((speech)-1)/chunk_stride+1) for i in range(total_chunk_num): speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride] is_final = i == total_chunk_num - 1 - res = model(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size) + res = model.generate(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size) if len(res[0]["value"]): print(res) ``` @@ -167,7 +167,7 @@ from funasr import AutoModel model = AutoModel(model="ct-punc", model_revision="v2.0.2") -res = model(input="那今天的会就到这里吧 happy new year 明年见") +res = model.generate(input="那今天的会就到这里吧 happy new year 明年见") print(res) ``` @@ -179,7 +179,7 @@ model = AutoModel(model="fa-zh", model_revision="v2.0.0") wav_file = f"{model.model_path}/example/asr_example.wav" text_file = f"{model.model_path}/example/text.txt" -res = model(input=(wav_file, text_file), data_type=("sound", "text")) +res = model.generate(input=(wav_file, text_file), data_type=("sound", "text")) print(res) ``` 更多详细用法([示例](examples/industrial_data_pretraining)) @@ -242,4 +242,10 @@ FunASR支持预训练或者进一步微调的模型进行服务部署。目前 pages={2063--2067}, doi={10.21437/Interspeech.2022-9996} } +@article{shi2023seaco, + author={Xian Shi and Yexin Yang and Zerui Li and Yanni Chen and Zhifu Gao and Shiliang Zhang}, + title={{SeACo-Paraformer: A Non-Autoregressive ASR System with Flexible and Effective Hotword Customization Ability}}, + year=2023, + journal={arXiv preprint arXiv:2308.03266(accepted by ICASSP2024)}, +} ``` diff --git a/examples/industrial_data_pretraining/bicif_paraformer/demo.py b/examples/industrial_data_pretraining/bicif_paraformer/demo.py index 60718de08..a06b308d1 100644 --- a/examples/industrial_data_pretraining/bicif_paraformer/demo.py +++ b/examples/industrial_data_pretraining/bicif_paraformer/demo.py @@ -6,14 +6,14 @@ from funasr import AutoModel model = AutoModel(model="damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch", - model_revision="v2.0.2", - vad_model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch", - vad_model_revision="v2.0.2", - punc_model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch", - punc_model_revision="v2.0.2", - spk_model="damo/speech_campplus_sv_zh-cn_16k-common", - spk_model_revision="v2.0.2", + model_revision="v2.0.2", + vad_model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch", + vad_model_revision="v2.0.2", + punc_model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch", + punc_model_revision="v2.0.2", + spk_model="damo/speech_campplus_sv_zh-cn_16k-common", + spk_model_revision="v2.0.2", ) -res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_vad_punc_example.wav", batch_size_s=300, batch_size_threshold_s=60) +res = model.generate(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_vad_punc_example.wav", batch_size_s=300, batch_size_threshold_s=60) print(res) diff --git a/examples/industrial_data_pretraining/campplus_sv/demo.py b/examples/industrial_data_pretraining/campplus_sv/demo.py index 6a7f10548..16d629b29 100644 --- a/examples/industrial_data_pretraining/campplus_sv/demo.py +++ b/examples/industrial_data_pretraining/campplus_sv/demo.py @@ -9,5 +9,5 @@ model = AutoModel(model="damo/speech_campplus_sv_zh-cn_16k-common", model_revision="v2.0.2", ) -res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav") +res = model.generate(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav") print(res) \ No newline at end of file diff --git a/examples/industrial_data_pretraining/contextual_paraformer/demo.py b/examples/industrial_data_pretraining/contextual_paraformer/demo.py index 78693c527..d1378ca3a 100644 --- a/examples/industrial_data_pretraining/contextual_paraformer/demo.py +++ b/examples/industrial_data_pretraining/contextual_paraformer/demo.py @@ -7,6 +7,6 @@ from funasr import AutoModel model = AutoModel(model="damo/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404", model_revision="v2.0.2") -res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav", +res = model.generate(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav", hotword='达摩院 魔搭') print(res) \ No newline at end of file diff --git a/examples/industrial_data_pretraining/ct_transformer/demo.py b/examples/industrial_data_pretraining/ct_transformer/demo.py index d648f3d27..f547f0342 100644 --- a/examples/industrial_data_pretraining/ct_transformer/demo.py +++ b/examples/industrial_data_pretraining/ct_transformer/demo.py @@ -7,7 +7,7 @@ from funasr import AutoModel model = AutoModel(model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch", model_revision="v2.0.2") -res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/punc_example.txt") +res = model.generate(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/punc_example.txt") print(res) @@ -15,5 +15,5 @@ from funasr import AutoModel model = AutoModel(model="damo/punc_ct-transformer_cn-en-common-vocab471067-large", model_revision="v2.0.2") -res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/punc_example.txt") +res = model.generate(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/punc_example.txt") print(res) \ No newline at end of file diff --git a/examples/industrial_data_pretraining/ct_transformer_streaming/demo.py b/examples/industrial_data_pretraining/ct_transformer_streaming/demo.py index 5ef83813e..081fd1928 100644 --- a/examples/industrial_data_pretraining/ct_transformer_streaming/demo.py +++ b/examples/industrial_data_pretraining/ct_transformer_streaming/demo.py @@ -12,7 +12,7 @@ vads = inputs.split("|") rec_result_all = "outputs: " cache = {} for vad in vads: - rec_result = model(input=vad, cache=cache) + rec_result = model.generate(input=vad, cache=cache) print(rec_result) rec_result_all += rec_result[0]['text'] diff --git a/examples/industrial_data_pretraining/emotion2vec/demo.py b/examples/industrial_data_pretraining/emotion2vec/demo.py index abaa9f40e..ea8da99dd 100644 --- a/examples/industrial_data_pretraining/emotion2vec/demo.py +++ b/examples/industrial_data_pretraining/emotion2vec/demo.py @@ -7,5 +7,5 @@ from funasr import AutoModel model = AutoModel(model="damo/emotion2vec_base", model_revision="v2.0.1") -res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav", output_dir="./outputs") +res = model.generate(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav", output_dir="./outputs") print(res) \ No newline at end of file diff --git a/examples/industrial_data_pretraining/fsmn_vad_streaming/demo.py b/examples/industrial_data_pretraining/fsmn_vad_streaming/demo.py index 459dfff41..8084dec26 100644 --- a/examples/industrial_data_pretraining/fsmn_vad_streaming/demo.py +++ b/examples/industrial_data_pretraining/fsmn_vad_streaming/demo.py @@ -9,7 +9,7 @@ wav_file = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audi chunk_size = 60000 # ms model = AutoModel(model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch", model_revision="v2.0.2") -res = model(input=wav_file, chunk_size=chunk_size, ) +res = model.generate(input=wav_file, chunk_size=chunk_size, ) print(res) @@ -28,7 +28,7 @@ total_chunk_num = int(len((speech)-1)/chunk_stride+1) for i in range(total_chunk_num): speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride] is_final = i == total_chunk_num - 1 - res = model(input=speech_chunk, + res = model.generate(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size, diff --git a/examples/industrial_data_pretraining/monotonic_aligner/demo.py b/examples/industrial_data_pretraining/monotonic_aligner/demo.py index def6b7de8..cad9aab91 100644 --- a/examples/industrial_data_pretraining/monotonic_aligner/demo.py +++ b/examples/industrial_data_pretraining/monotonic_aligner/demo.py @@ -7,7 +7,7 @@ from funasr import AutoModel model = AutoModel(model="damo/speech_timestamp_prediction-v1-16k-offline", model_revision="v2.0.2") -res = model(input=("https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav", +res = model.generate(input=("https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav", "欢迎大家来到魔搭社区进行体验"), data_type=("sound", "text"), batch_size=2, diff --git a/examples/industrial_data_pretraining/paraformer-zh-spk/demo.py b/examples/industrial_data_pretraining/paraformer-zh-spk/demo.py index aa895eb85..b4453e927 100644 --- a/examples/industrial_data_pretraining/paraformer-zh-spk/demo.py +++ b/examples/industrial_data_pretraining/paraformer-zh-spk/demo.py @@ -15,6 +15,6 @@ model = AutoModel(model="damo/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-co spk_model_revision="v2.0.2" ) -res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav", - hotword='达摩院 磨搭') +res = model.generate(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav", + hotword='达摩院 磨搭') print(res) \ No newline at end of file diff --git a/examples/industrial_data_pretraining/paraformer/demo.py b/examples/industrial_data_pretraining/paraformer/demo.py index 6dbe33d06..ef33bf40d 100644 --- a/examples/industrial_data_pretraining/paraformer/demo.py +++ b/examples/industrial_data_pretraining/paraformer/demo.py @@ -7,7 +7,7 @@ from funasr import AutoModel model = AutoModel(model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch", model_revision="v2.0.2") -res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav") +res = model.generate(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav") print(res) @@ -18,5 +18,5 @@ frontend = AutoFrontend(model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-co fbanks = frontend(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav", batch_size=2) for batch_idx, fbank_dict in enumerate(fbanks): - res = model(**fbank_dict) + res = model.generate(**fbank_dict) print(res) \ No newline at end of file diff --git a/examples/industrial_data_pretraining/paraformer_streaming/demo.py b/examples/industrial_data_pretraining/paraformer_streaming/demo.py index 8f7eef350..07efde67c 100644 --- a/examples/industrial_data_pretraining/paraformer_streaming/demo.py +++ b/examples/industrial_data_pretraining/paraformer_streaming/demo.py @@ -11,7 +11,7 @@ decoder_chunk_look_back = 1 #number of encoder chunks to lookback for decoder cr model = AutoModel(model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online", model_revision="v2.0.2") cache = {} -res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav", +res = model.generate(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav", chunk_size=chunk_size, encoder_chunk_look_back=encoder_chunk_look_back, decoder_chunk_look_back=decoder_chunk_look_back, @@ -32,11 +32,11 @@ total_chunk_num = int(len((speech)-1)/chunk_stride+1) for i in range(total_chunk_num): speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride] is_final = i == total_chunk_num - 1 - res = model(input=speech_chunk, - cache=cache, - is_final=is_final, - chunk_size=chunk_size, - encoder_chunk_look_back=encoder_chunk_look_back, - decoder_chunk_look_back=decoder_chunk_look_back, - ) + res = model.generate(input=speech_chunk, + cache=cache, + is_final=is_final, + chunk_size=chunk_size, + encoder_chunk_look_back=encoder_chunk_look_back, + decoder_chunk_look_back=decoder_chunk_look_back, + ) print(res) diff --git a/examples/industrial_data_pretraining/seaco_paraformer/demo.py b/examples/industrial_data_pretraining/seaco_paraformer/demo.py index cf49e42c4..5f17252f9 100644 --- a/examples/industrial_data_pretraining/seaco_paraformer/demo.py +++ b/examples/industrial_data_pretraining/seaco_paraformer/demo.py @@ -15,6 +15,6 @@ model = AutoModel(model="damo/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-co spk_model_revision="v2.0.2", ) -res = model(input=f"{model.model_path}/example/asr_example.wav", - hotword='达摩院 魔搭') +res = model.generate(input=f"{model.model_path}/example/asr_example.wav", + hotword='达摩院 魔搭') print(res) \ No newline at end of file diff --git a/funasr/auto/auto_model.py b/funasr/auto/auto_model.py index 25edeb708..580cca8d4 100644 --- a/funasr/auto/auto_model.py +++ b/funasr/auto/auto_model.py @@ -264,7 +264,7 @@ class AutoModel: # step.1: compute the vad model self.vad_kwargs.update(cfg) beg_vad = time.time() - res = self.generate(input, input_len=input_len, model=self.vad_model, kwargs=self.vad_kwargs, **cfg) + res = self.inference(input, input_len=input_len, model=self.vad_model, kwargs=self.vad_kwargs, **cfg) end_vad = time.time() print(f"time cost vad: {end_vad - beg_vad:0.3f}") @@ -316,7 +316,7 @@ class AutoModel: batch_size_ms_cum = 0 end_idx = j + 1 speech_j, speech_lengths_j = slice_padding_audio_samples(speech, speech_lengths, sorted_data[beg_idx:end_idx]) - results = self.generate(speech_j, input_len=None, model=model, kwargs=kwargs, **cfg) + results = self.inference(speech_j, input_len=None, model=model, kwargs=kwargs, **cfg) if self.spk_model is not None: all_segments = [] # compose vad segments: [[start_time_sec, end_time_sec, speech], [...]] @@ -327,7 +327,7 @@ class AutoModel: segments = sv_chunk(vad_segments) all_segments.extend(segments) speech_b = [i[2] for i in segments] - spk_res = self.generate(speech_b, input_len=None, model=self.spk_model, kwargs=kwargs, **cfg) + spk_res = self.inference(speech_b, input_len=None, model=self.spk_model, kwargs=kwargs, **cfg) results[_b]['spk_embedding'] = spk_res[0]['spk_embedding'] beg_idx = end_idx if len(results) < 1: @@ -378,7 +378,7 @@ class AutoModel: # step.3 compute punc model if self.punc_model is not None: self.punc_kwargs.update(cfg) - punc_res = self.generate(result["text"], model=self.punc_model, kwargs=self.punc_kwargs, **cfg) + punc_res = self.inference(result["text"], model=self.punc_model, kwargs=self.punc_kwargs, **cfg) result["text_with_punc"] = punc_res[0]["text"] # speaker embedding cluster after resorted diff --git a/funasr/bin/inference.py b/funasr/bin/inference.py index bc435c43c..d2f0c149d 100644 --- a/funasr/bin/inference.py +++ b/funasr/bin/inference.py @@ -1,25 +1,7 @@ -import json -import time -import torch import hydra -import random -import string import logging -import os.path -from tqdm import tqdm from omegaconf import DictConfig, OmegaConf, ListConfig -from funasr.register import tables -from funasr.utils.load_utils import load_bytes -from funasr.download.file import download_from_url -from funasr.download.download_from_hub import download_model -from funasr.utils.vad_utils import slice_padding_audio_samples -from funasr.train_utils.set_all_random_seed import set_all_random_seed -from funasr.train_utils.load_pretrained_model import load_pretrained_model -from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank -from funasr.utils.timestamp_tools import timestamp_sentence -from funasr.models.campplus.utils import sv_chunk, postprocess, distribute_spk -from funasr.models.campplus.cluster_backend import ClusterBackend from funasr.auto.auto_model import AutoModel @@ -41,10 +23,9 @@ def main_hydra(cfg: DictConfig): if kwargs.get("debug", False): import pdb; pdb.set_trace() model = AutoModel(**kwargs) - res = model(input=kwargs["input"]) + res = model.generate(input=kwargs["input"]) print(res) - if __name__ == '__main__': main_hydra() \ No newline at end of file