mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
model zoo
This commit is contained in:
parent
f0fdc051fb
commit
e94fbbb42a
@ -6,29 +6,70 @@
|
||||
## Model Zoo
|
||||
Here we provided several pretrained models on different datasets. The details of models and datasets can be found on [ModelScope](https://www.modelscope.cn/models?page=1&tasks=auto-speech-recognition).
|
||||
|
||||
| Datasets | Hours | Model | Online/Offline | Language | Framework | Checkpoint |
|
||||
|:-----:|:-----:|:--------------:|:--------------:| :---: | :---: | --- |
|
||||
| Alibaba Speech Data | 60000 | Paraformer | Offline | CN | Pytorch |[speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch](https://www.modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary) |
|
||||
| Alibaba Speech Data | 50000 | Paraformer | Offline | CN | Tensorflow |[speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8358-tensorflow1](https://www.modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8358-tensorflow1/summary) |
|
||||
| Alibaba Speech Data | 50000 | Paraformer | Offline | CN | Tensorflow |[speech_paraformer_asr_nat-zh-cn-16k-common-vocab8358-tensorflow1](https://www.modelscope.cn/models/damo/speech_paraformer_asr_nat-zh-cn-16k-common-vocab8358-tensorflow1/summary) |
|
||||
| Alibaba Speech Data | 50000 | Paraformer | Online | CN | Tensorflow |[speech_paraformer_asr_nat-zh-cn-16k-common-vocab3444-tensorflow1-online](http://www.modelscope.cn/models/damo/speech_paraformer_asr_nat-zh-cn-16k-common-vocab3444-tensorflow1-online/summary) |
|
||||
| Alibaba Speech Data | 50000 | UniASR | Online | CN | Tensorflow |[speech_UniASR_asr_2pass-zh-cn-16k-common-vocab8358-tensorflow1-online](https://www.modelscope.cn/models/damo/speech_UniASR_asr_2pass-zh-cn-16k-common-vocab8358-tensorflow1-online/summary) |
|
||||
| Alibaba Speech Data | 50000 | UniASR | Offline | CN | Tensorflow |[speech_UniASR-large_asr_2pass-zh-cn-16k-common-vocab8358-tensorflow1-offline](https://www.modelscope.cn/models/damo/speech_UniASR-large_asr_2pass-zh-cn-16k-common-vocab8358-tensorflow1-offline/summary) |
|
||||
| Alibaba Speech Data | 50000 | UniASR | Online | CN&EN | Tensorflow |[speech_UniASR_asr_2pass-cn-en-moe-16k-vocab8358-tensorflow1-online](https://www.modelscope.cn/models/damo/speech_UniASR_asr_2pass-cn-en-moe-16k-vocab8358-tensorflow1-online/summary) |
|
||||
| Alibaba Speech Data | 50000 | UniASR | Offline | CN&EN | Tensorflow |[speech_UniASR_asr_2pass-cn-en-moe-16k-vocab8358-tensorflow1-offline](https://www.modelscope.cn/models/damo/speech_UniASR_asr_2pass-cn-en-moe-16k-vocab8358-tensorflow1-offline/summary) |
|
||||
| Alibaba Speech Data | 20000 | UniASR | Online | CN-Accent | Tensorflow |[speech_UniASR_asr_2pass-cn-dialect-16k-vocab8358-tensorflow1-online](https://www.modelscope.cn/models/damo/speech_UniASR_asr_2pass-cn-dialect-16k-vocab8358-tensorflow1-online/summary) |
|
||||
| Alibaba Speech Data | 20000 | UniASR | Offline | CN-Accent | Tensorflow |[speech_UniASR_asr_2pass-cn-dialect-16k-vocab8358-tensorflow1-offline](https://www.modelscope.cn/models/damo/speech_UniASR_asr_2pass-cn-dialect-16k-vocab8358-tensorflow1-offline/summary) |
|
||||
| Alibaba Speech Data | 30000 | Paraformer-8K | Online | CN | Tensorflow |[speech_paraformer_asr_nat-zh-cn-8k-common-vocab3444-tensorflow1-online](https://www.modelscope.cn/models/damo/speech_paraformer_asr_nat-zh-cn-8k-common-vocab3444-tensorflow1-online/summary) |
|
||||
| Alibaba Speech Data | 30000 | Paraformer-8K | Offline | CN | Tensorflow |[speech_paraformer_asr_nat-zh-cn-8k-common-vocab8358-tensorflow1](https://www.modelscope.cn/models/damo/speech_paraformer_asr_nat-zh-cn-8k-common-vocab8358-tensorflow1/summary) |
|
||||
| Alibaba Speech Data | 30000 | Paraformer-8K | Online | CN | Pytorch |[speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online](https://www.modelscope.cn/models/damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/summary) |
|
||||
| Alibaba Speech Data | 30000 | Paraformer-8K | Offline | CN | Pytorch |[speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-offline](https://www.modelscope.cn/models/damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-offline/summary) |
|
||||
| Alibaba Speech Data | 30000 | UniASR-8K | Online | CN | Tensorflow |[speech_UniASR_asr_2pass-zh-cn-8k-common-vocab8358-tensorflow1-online](https://www.modelscope.cn/models/damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab8358-tensorflow1-online/summary) |
|
||||
| Alibaba Speech Data | 30000 | UniASR-8K | Offline | CN | Tensorflow |[speech_UniASR_asr_2pass-zh-cn-8k-common-vocab8358-tensorflow1-offline](https://www.modelscope.cn/models/damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab8358-tensorflow1-offline/summary) |
|
||||
| Alibaba Speech Data | 30000 | UniASR-8K | Online | CN | Pytorch |[speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online](https://www.modelscope.cn/models/damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/summary) |
|
||||
| Alibaba Speech Data | 30000 | UniASR-8K | Offline | CN | Pytorch |[speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-offline](https://www.modelscope.cn/models/damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-offline/summary) |
|
||||
| AISHELL-1 | 178 | Paraformer | Offline | CN | Pytorch | [speech_paraformer_asr_nat-aishell1-pytorch](https://www.modelscope.cn/models/damo/speech_paraformer_asr_nat-aishell1-pytorch/summary) |
|
||||
| AISHELL-2 | 1000 | Paraformer | Offline | CN | Pytorch | [speech_paraformer_asr_nat-aishell2-pytorch](https://www.modelscope.cn/models/damo/speech_paraformer_asr_nat-aishell2-pytorch/summary) |
|
||||
| AISHELL-1 | 178 | ParaformerBert | Offline | CN | Pytorch | [speech_paraformerbert_asr_nat-zh-cn-16k-aishell1-vocab4234-pytorch](https://modelscope.cn/models/damo/speech_paraformerbert_asr_nat-zh-cn-16k-aishell1-vocab4234-pytorch/summary) |
|
||||
| AISHELL-2 | 1000 | ParaformerBert | Offline | CN | Pytorch | [speech_paraformerbert_asr_nat-zh-cn-16k-aishell2-vocab5212-pytorch](https://modelscope.cn/models/damo/speech_paraformerbert_asr_nat-zh-cn-16k-aishell2-vocab5212-pytorch/summary) |
|
||||
| AISHELL-1 | 178 | Conformer | Offline | CN | Pytorch | [speech_conformer_asr_nat-zh-cn-16k-aishell1-vocab4234-pytorch](https://modelscope.cn/models/damo/speech_conformer_asr_nat-zh-cn-16k-aishell1-vocab4234-pytorch/summary) |
|
||||
| AISHELL-2 | 1000 | Conformer | Offline | CN | Pytorch | [speech_conformer_asr_nat-zh-cn-16k-aishell2-vocab5212-pytorch](https://modelscope.cn/models/damo/speech_conformer_asr_nat-zh-cn-16k-aishell2-vocab5212-pytorch/summary) |
|
||||
### Speech Recognition Models
|
||||
#### Paraformer Models
|
||||
| Model Name | Language | Training Data | Vocab Size | Parameter | Offline/Online | Notes |
|
||||
|:--------------------------------------------------------------------------------------------------------------------------------------------------:|:--------:|:--------------------------------:|:----------:|:---------:|:--------------:|:--------------------------------------------------------------------------------------------------------------------------------|
|
||||
| [Paraformer-large](https://www.modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary) | CN & EN | Alibaba Speech Data (60000hours) | 8404 | 220M | Offline | Duration of input wav <= 20s |
|
||||
| [Paraformer-large-long](https://www.modelscope.cn/models/damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary) | CN & EN | Alibaba Speech Data (60000hours) | 8404 | 220M | Offline | Which ould deal with arbitrary length input wav |
|
||||
| [paraformer-large-contextual](https://www.modelscope.cn/models/damo/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404/summary) | CN & EN | Alibaba Speech Data (60000hours) | 8404 | 220M | Offline | Which supports the hotword customization based on the incentive enhancement, and improves the recall and precision of hotwords. |
|
||||
| [Paraformer](https://modelscope.cn/models/damo/speech_paraformer_asr_nat-zh-cn-16k-common-vocab8358-tensorflow1/summary) | CN & EN | Alibaba Speech Data (50000hours) | 8358 | 68M | Offline | Duration of input wav <= 20s |
|
||||
| [Paraformer-online](https://modelscope.cn/models/damo/speech_paraformer_asr_nat-zh-cn-16k-common-vocab8358-tensorflow1/summary) | CN & EN | Alibaba Speech Data (50000hours) | 8404 | 68M | Online | Which could deal with streaming input |
|
||||
| [Paraformer-tiny](https://www.modelscope.cn/models/damo/speech_paraformer-tiny-commandword_asr_nat-zh-cn-16k-vocab544-pytorch/summary) | CN | Alibaba Speech Data (200hours) | 544 | 5.2M | Offline | Lightweight Paraformer model which supports Mandarin command words recognition |
|
||||
| [Paraformer-aishell](https://www.modelscope.cn/models/damo/speech_paraformer_asr_nat-aishell1-pytorch/summary) | CN | AISHELL (178hours) | 4234 | 43M | Offline | |
|
||||
| [ParaformerBert-aishell](https://modelscope.cn/models/damo/speech_paraformerbert_asr_nat-zh-cn-16k-aishell1-vocab4234-pytorch/summary) | CN | AISHELL (178hours) | 4234 | 43M | Offline | |
|
||||
| [Paraformer-aishell2](https://www.modelscope.cn/models/damo/speech_paraformer_asr_nat-zh-cn-16k-aishell2-vocab5212-pytorch/summary) | CN | AISHELL-2 (1000hours) | 5212 | 64M | Offline | |
|
||||
| [ParaformerBert-aishell2](https://www.modelscope.cn/models/damo/speech_paraformerbert_asr_nat-zh-cn-16k-aishell2-vocab5212-pytorch/summary) | CN | AISHELL-2 (1000hours) | 5212 | 64M | Offline | |
|
||||
|
||||
|
||||
#### UniASR Models
|
||||
| Model Name | Language | Training Data | Vocab Size | Parameter | Offline/Online | Notes |
|
||||
|:--------------------------------------------------------------------------------------------------------------------------------------:|:--------:|:--------------------------------:|:----------:|:---------:|:--------------:|:--------------------------------------------------------------------------------------------------------------------------------|
|
||||
| [UniASR](https://modelscope.cn/models/damo/speech_UniASR_asr_2pass-zh-cn-16k-common-vocab8358-tensorflow1-online/summary) | CN & EN | Alibaba Speech Data (60000hours) | 8358 | 100M | Online | UniASR streaming offline unifying models |
|
||||
| [UniASR-large](https://modelscope.cn/models/damo/speech_UniASR-large_asr_2pass-zh-cn-16k-common-vocab8358-tensorflow1-offline/summary) | CN & EN | Alibaba Speech Data (60000hours) | 8358 | 220M | Offline | UniASR streaming offline unifying models |
|
||||
| [UniASR Burmese](https://modelscope.cn/models/damo/speech_UniASR_asr_2pass-my-16k-common-vocab696-pytorch/summary) | Burmese | Alibaba Speech Data (? hours) | 696 | 95M | Online | UniASR streaming offline unifying models |
|
||||
| [UniASR Hebrew](https://modelscope.cn/models/damo/speech_UniASR_asr_2pass-he-16k-common-vocab1085-pytorch/summary) | Hebrew | Alibaba Speech Data (? hours) | 1085 | 95M | Online | UniASR streaming offline unifying models |
|
||||
| [UniASR Urdu](https://modelscope.cn/models/damo/speech_UniASR_asr_2pass-ur-16k-common-vocab877-pytorch/summary) | Urdu | Alibaba Speech Data (? hours) | 877 | 95M | Online | UniASR streaming offline unifying models |
|
||||
|
||||
#### Conformer Models
|
||||
#### Paraformer Models
|
||||
| Model Name | Language | Training Data | Vocab Size | Parameter | Offline/Online | Notes |
|
||||
|:----------------------------------------------------------------------------------------------------------------------:|:--------:|:---------------------:|:----------:|:---------:|:--------------:|:--------------------------------------------------------------------------------------------------------------------------------|
|
||||
| [Conformer](https://modelscope.cn/models/damo/speech_conformer_asr_nat-zh-cn-16k-aishell1-vocab4234-pytorch/summary) | CN | AISHELL (178hours) | 4234 | 44M | Offline | Duration of input wav <= 20s |
|
||||
| [Conformer](https://www.modelscope.cn/models/damo/speech_conformer_asr_nat-zh-cn-16k-aishell2-vocab5212-pytorch/summary) | CN | AISHELL-2 (1000hours) | 5212 | 44M | Offline | Duration of input wav <= 20s |
|
||||
|
||||
#### RNN-T Models
|
||||
|
||||
### Voice Activity Detection Models
|
||||
|
||||
| Model Name | Training Data | Parameters | Sampling Rate | Notes |
|
||||
|:----------------------------------------------------------------------------------------------:|:----------------------------:|:----------:|:-------------:|:------|
|
||||
| [FSMN-VAD](https://modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/summary) | Alibaba Speech Data (?hours) | 0.4M | 16000 | |
|
||||
| [FSMN-VAD](https://modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-8k-common/summary) | Alibaba Speech Data (?hours) | 0.4M | 8000 | |
|
||||
|
||||
### Punctuation Restoration Models
|
||||
|
||||
| Model Name | Training Data | Parameters | Vocab Size| Offline/Online | Notes |
|
||||
|:--------------------------------------------------------------------------------------------------------------------------:|:----------------------------:|:----------:|:----------:|:--------------:|:------|
|
||||
| [CT-Transformer](https://modelscope.cn/models/damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch/summary) | Alibaba Speech Data (?hours) | 70M | 272727 | Offline | |
|
||||
| [CT-Transformer](https://modelscope.cn/models/damo/punc_ct-transformer_zh-cn-common-vad_realtime-vocab272727/summary) | Alibaba Speech Data (?hours) | 70M | 272727 | Online | |
|
||||
|
||||
### Language Models
|
||||
|
||||
| Model Name | Training Data | Parameters | Vocab Size | Notes |
|
||||
|:----------------------------------------------------------------------------------------------------------------------:|:----------------------------:|:----------:|:----------:|:------|
|
||||
| [Transformer](https://www.modelscope.cn/models/damo/speech_transformer_lm_zh-cn-common-vocab8404-pytorch/summary) | Alibaba Speech Data (?hours) | 57M | 8404 | |
|
||||
|
||||
### Speaker Verification Models
|
||||
|
||||
| Model Name | Training Data | Parameters | Vocab Size | Notes |
|
||||
|:-------------------------------------------------------------------------------------------------------------:|:-----------------:|:----------:|:----------:|:------|
|
||||
| [Xvector](https://www.modelscope.cn/models/damo/speech_xvector_sv-zh-cn-cnceleb-16k-spk3465-pytorch/summary) | CNCeleb (?hours) | 17.5M | 3465 | |
|
||||
| [Xvector](https://www.modelscope.cn/models/damo/speech_xvector_sv-en-us-callhome-8k-spk6135-pytorch/summary) | CallHome (?hours) | 61M | 6135 | |
|
||||
|
||||
### Speaker diarization Models
|
||||
|
||||
| Model Name | Training Data | Parameters | Notes |
|
||||
|:----------------------------------------------------------------------------------------------------------------:|:-------------------:|:----------:|:------|
|
||||
| [SOND](https://www.modelscope.cn/models/damo/speech_diarization_sond-zh-cn-alimeeting-16k-n16k4-pytorch/summary) | AliMeeting (?hours) | 40.5M | |
|
||||
| [SOND](https://www.modelscope.cn/models/damo/speech_diarization_sond-en-us-callhome-8k-n16k4-pytorch/summary) | CallHome (?hours) | 12M | |
|
||||
|
||||
Loading…
Reference in New Issue
Block a user