mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
funasr1.0 emotion2vec
This commit is contained in:
parent
fb176404cf
commit
e8590bb1e9
@ -5,7 +5,7 @@
|
||||
|
||||
from funasr import AutoModel
|
||||
|
||||
model = AutoModel(model="/Users/zhifu/Downloads/modelscope_models/emotion2vec_base")
|
||||
model = AutoModel(model="../modelscope_models/emotion2vec_base")
|
||||
|
||||
res = model(input="/Users/zhifu/Downloads/modelscope_models/emotion2vec_base/example/test.wav")
|
||||
res = model(input="../modelscope_models/emotion2vec_base/example/test.wav")
|
||||
print(res)
|
||||
@ -1,5 +1,11 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- encoding: utf-8 -*-
|
||||
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
|
||||
# MIT License (https://opensource.org/licenses/MIT)
|
||||
# Modified from https://github.com/ddlBoJack/emotion2vec/tree/main
|
||||
|
||||
import logging
|
||||
import os
|
||||
from functools import partial
|
||||
import numpy as np
|
||||
|
||||
@ -21,7 +27,11 @@ from funasr.register import tables
|
||||
|
||||
@tables.register("model_classes", "Emotion2vec")
|
||||
class Emotion2vec(nn.Module):
|
||||
|
||||
"""
|
||||
Author: Ziyang Ma, Zhisheng Zheng, Jiaxin Ye, Jinchao Li, Zhifu Gao, Shiliang Zhang, Xie Chen
|
||||
emotion2vec: Self-Supervised Pre-Training for Speech Emotion Representation
|
||||
https://arxiv.org/abs/2312.15185
|
||||
"""
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__()
|
||||
# import pdb; pdb.set_trace()
|
||||
@ -196,6 +206,9 @@ class Emotion2vec(nn.Module):
|
||||
time2 = time.perf_counter()
|
||||
meta_data["load_data"] = f"{time2 - time1:0.3f}"
|
||||
results = []
|
||||
output_dir = kwargs.get("output_dir")
|
||||
if output_dir:
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
for i, wav in enumerate(audio_sample_list):
|
||||
source = wav.to(device=kwargs["device"])
|
||||
if self.cfg.normalize:
|
||||
@ -211,5 +224,7 @@ class Emotion2vec(nn.Module):
|
||||
|
||||
result_i = {"key": key[i], "feats": feats}
|
||||
results.append(result_i)
|
||||
if output_dir:
|
||||
np.save(os.path.join(output_dir, "{}.npy".format(key[i])), feats)
|
||||
|
||||
return results, meta_data
|
||||
Loading…
Reference in New Issue
Block a user