funasr1.0 modelscope

This commit is contained in:
游雁 2024-01-09 20:33:12 +08:00
parent f14f9f8d15
commit d8b586e02c
22 changed files with 137 additions and 167 deletions

View File

@ -5,10 +5,13 @@
from funasr import AutoModel
model = AutoModel(model="../modelscope_models/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
vad_model="../modelscope_models/speech_fsmn_vad_zh-cn-16k-common-pytorch",
punc_model="../modelscope_models/punc_ct-transformer_zh-cn-common-vocab272727-pytorch",
model = AutoModel(model="damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
model_revision="v2.0.0",
vad_model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch",
vad_model_revision="v2.0.0",
punc_model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch",
punc_model_revision="v2.0.0",
)
res = model(input="../modelscope_models/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav", batch_size_s=300, batch_size_threshold_s=60)
res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_vad_punc_example.wav", batch_size_s=300, batch_size_threshold_s=60)
print(res)

View File

@ -1,27 +1,21 @@
# download model
local_path_root=../modelscope_models
mkdir -p ${local_path_root}
local_path=${local_path_root}/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch
git clone https://www.modelscope.cn/damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch.git ${local_path}
local_path_vad=${local_path_root}/speech_fsmn_vad_zh-cn-16k-common-pytorch
git clone https://www.modelscope.cn/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch.git ${local_path_vad}
local_path_punc=${local_path_root}/punc_ct-transformer_zh-cn-common-vocab272727-pytorch
git clone https://www.modelscope.cn/damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch.git ${local_path_punc}
model="damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
model_revision="v2.0.0"
vad_model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch"
vad_model_revision="v2.0.0"
punc_model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch"
punc_model_revision="v2.0.0"
python funasr/bin/inference.py \
+model="${local_path}" \
+vad_model="${local_path_vad}" \
+punc_model="${local_path_punc}" \
+input="${local_path}/example/asr_example.wav" \
+model=${model} \
+model_revision=${model_revision} \
+vad_model=${vad_model} \
+vad_model_revision=${vad_model_revision} \
+punc_model=${punc_model} \
+punc_model_revision=${punc_model_revision} \
+input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_vad_punc_example.wav" \
+output_dir="./outputs/debug" \
+device="cpu" \
+batch_size_s=300 \
+batch_size_threshold_s=60 \
+debug="true" \
+"hotword='达摩院 魔搭'"
+batch_size_threshold_s=60

View File

@ -5,8 +5,8 @@
from funasr import AutoModel
model = AutoModel(model="../modelscope_models/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404")
model = AutoModel(model="damo/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404", model_revision="v2.0.0")
res = model(input="../modelscope_models/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404/example/asr_example.wav",
res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav",
hotword='达摩院 魔搭')
print(res)

View File

@ -1,14 +1,11 @@
# download model
local_path_root=../modelscope_models
mkdir -p ${local_path_root}
local_path=${local_path_root}/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404
git clone https://www.modelscope.cn/damo/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404.git ${local_path}
model="damo/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404"
model_revision="v2.0.0"
python funasr/bin/inference.py \
+model="${local_path}" \
+input="${local_path}/example/asr_example.wav" \
+model=${model} \
+model_revision=${model_revision} \
+input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav" \
+output_dir="./outputs/debug" \
+device="cpu" \
+"hotword='达摩院 魔搭'"

View File

@ -5,7 +5,7 @@
from funasr import AutoModel
model = AutoModel(model="/Users/zhifu/Downloads/modelscope_models/punc_ct-transformer_zh-cn-common-vocab272727-pytorch")
model = AutoModel(model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch", model_revision="v2.0.0")
res = model(input="/Users/zhifu/Downloads/modelscope_models/punc_ct-transformer_zh-cn-common-vocab272727-pytorch/example/punc_example.txt")
res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/punc_example.txt")
print(res)

View File

@ -1,13 +1,10 @@
# download model
local_path_root=../modelscope_models
mkdir -p ${local_path_root}
local_path=${local_path_root}/punc_ct-transformer_zh-cn-common-vocab272727-pytorch
git clone https://www.modelscope.cn/damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch.git ${local_path}
model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch"
model_revision="v2.0.0"
python funasr/bin/inference.py \
+model="${local_path}" \
+input="${local_path}/example/punc_example.txt" \
+model=${model} \
+model_revision=${model_revision} \
+input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/punc_example.txt" \
+output_dir="./outputs/debug" \
+device="cpu"

View File

@ -5,7 +5,7 @@
from funasr import AutoModel
model = AutoModel(model="../modelscope_models/emotion2vec_base")
model = AutoModel(model="damo/emotion2vec_base", model_revision="v2.0.0")
res = model(input="../modelscope_models/emotion2vec_base/example/test.wav", output_dir="./outputs")
res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav", output_dir="./outputs")
print(res)

View File

@ -1,14 +1,10 @@
# download model
local_path_root=../modelscope_models
mkdir -p ${local_path_root}
local_path=${local_path_root}/emotion2vec_base
git clone https://www.modelscope.cn/damo/emotion2vec_base.git ${local_path}
#local_path=/Users/zhifu/Downloads/modelscope_models/emotion2vec_base
model="damo/emotion2vec_base"
model_revision="v2.0.0"
python funasr/bin/inference.py \
+model="${local_path}" \
+input="${local_path}/example/test.wav" \
+model=${model} \
+model_revision=${model_revision} \
+input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav" \
+output_dir="./outputs/debug" \
+device="cpu" \
+debug=true

View File

@ -5,7 +5,7 @@
from funasr import AutoModel
model = AutoModel(model="../modelscope_models/speech_fsmn_vad_zh-cn-16k-common-pytorch")
model = AutoModel(model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch", model_revision="v2.0.0")
res = model(input="../modelscope_models/speech_fsmn_vad_zh-cn-16k-common-pytorch/example/vad_example.wav")
res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav")
print(res)

View File

@ -1,13 +1,11 @@
# download model
local_path_root=../modelscope_models
mkdir -p ${local_path_root}
local_path=${local_path_root}/speech_fsmn_vad_zh-cn-16k-common-pytorch
git clone https://www.modelscope.cn/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch.git ${local_path}
model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch"
model_revision="v2.0.0"
python funasr/bin/inference.py \
+model="${local_path}" \
+input="${local_path}/example/vad_example.wav" \
+model=${model} \
+model_revision=${model_revision} \
+input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav" \
+output_dir="./outputs/debug" \
+device="cpu" \

View File

@ -5,9 +5,9 @@
from funasr import AutoModel
model = AutoModel(model="../modelscope_models/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch")
model = AutoModel(model="damo/speech_timestamp_prediction-v1-16k-offline", model_revision="v2.0.0")
res = model(input=("../modelscope_models/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav",
res = model(input=("https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav",
"欢迎大家来到魔搭社区进行体验"),
data_type=("sound", "text"),
batch_size=2,

View File

@ -1,14 +1,11 @@
# download model
local_path_root=../modelscope_models
mkdir -p ${local_path_root}
local_path=${local_path_root}/speech_timestamp_prediction-v1-16k-offline
git clone https://www.modelscope.cn/damo/speech_timestamp_prediction-v1-16k-offline.git ${local_path}
model="damo/speech_timestamp_prediction-v1-16k-offline"
model_revision="v2.0.0"
python funasr/bin/inference.py \
+model="${local_path}" \
+input='["../modelscope_models/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav", "欢迎大家来到魔搭社区进行体验"]' \
+model=${model} \
+model_revision=${model_revision} \
+input='["https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav", "欢迎大家来到魔搭社区进行体验"]' \
+data_type='["sound", "text"]' \
+output_dir="../outputs/debug" \
+device="cpu" \

View File

@ -5,17 +5,17 @@
from funasr import AutoModel
model = AutoModel(model="../modelscope_models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch")
model = AutoModel(model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch", model_revison="v2.0.0")
res = model(input="../modelscope_models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav")
res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav")
print(res)
from funasr import AutoFrontend
frontend = AutoFrontend(model="../modelscope_models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch")
frontend = AutoFrontend(model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch", model_revison="v2.0.0")
fbanks = frontend(input="../modelscope_models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav", batch_size=2)
fbanks = frontend(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav", batch_size=2)
for batch_idx, fbank_dict in enumerate(fbanks):
res = model(**fbank_dict)

View File

@ -1,14 +1,11 @@
# download model
local_path_root=../modelscope_models
mkdir -p ${local_path_root}
local_path=${local_path_root}/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch
git clone https://www.modelscope.cn/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch.git ${local_path}
model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
model_revision="v2.0.0"
python funasr/bin/inference.py \
+model="${local_path}" \
+input="${local_path}/example/asr_example.wav" \
+model=${model} \
+model_revision=${model_revision} \
+input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav" \
+output_dir="./outputs/debug" \
+device="cpu" \

View File

@ -5,12 +5,14 @@
from funasr import AutoModel
model = AutoModel(model="../modelscope_models/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
model = AutoModel(model="damo/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
model_revision="v2.0.0",
vad_model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch",
vad_model_revision="v2.0.0",
punc_model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch",
punc_model_revision="v2.0.0",
)
#vad_model="../modelscope_models/speech_fsmn_vad_zh-cn-16k-common-pytorch",
#punc_model="../modelscope_models/punc_ct-transformer_zh-cn-common-vocab272727-pytorch"
res = model(input="../modelscope_models/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav",
res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav",
hotword='达摩院 磨搭')
print(res)

View File

@ -1,23 +1,19 @@
# download model
local_path_root=../modelscope_models
mkdir -p ${local_path_root}
local_path=${local_path_root}/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch
git clone https://www.modelscope.cn/damo/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch.git ${local_path}
#local_path_vad=${local_path_root}/speech_fsmn_vad_zh-cn-16k-common-pytorch
#git clone https://www.modelscope.cn/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch.git ${local_path_vad}
#local_path_punc=${local_path_root}/punc_ct-transformer_zh-cn-common-vocab272727-pytorch
#git clone https://www.modelscope.cn/damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch.git ${local_path_punc}
model="damo/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
model_revision="v2.0.0"
vad_model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch"
vad_model_revision="v2.0.0"
punc_model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch"
punc_model_revision="v2.0.0"
python funasr/bin/inference.py \
+model="${local_path}" \
+input="${local_path}/example/asr_example.wav" \
+model=${model} \
+model_revision=${model_revision} \
+vad_model=${vad_model} \
+vad_model_revision=${vad_model_revision} \
+punc_model=${punc_model} \
+punc_model_revision=${punc_model_revision} \
+input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav" \
+output_dir="./outputs/debug" \
+device="cpu" \
+"hotword='达摩院 魔搭'"
#+vad_model="${local_path_vad}" \
#+punc_model="${local_path_punc}" \

View File

@ -20,6 +20,7 @@ from funasr.register import tables
from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank
from funasr.utils.vad_utils import slice_padding_audio_samples
from funasr.utils.timestamp_tools import time_stamp_sentence
from funasr.download.file import download_from_url
def prepare_data_iterator(data_in, input_len=None, data_type=None, key=None):
"""
@ -35,7 +36,8 @@ def prepare_data_iterator(data_in, input_len=None, data_type=None, key=None):
filelist = [".scp", ".txt", ".json", ".jsonl"]
chars = string.ascii_letters + string.digits
if isinstance(data_in, str) and data_in.startswith('http'): # url
data_in = download_from_url(data_in)
if isinstance(data_in, str) and os.path.exists(data_in): # wav_path; filelist: wav.scp, file.jsonl;text.txt;
_, file_extension = os.path.splitext(data_in)
file_extension = file_extension.lower()
@ -59,7 +61,7 @@ def prepare_data_iterator(data_in, input_len=None, data_type=None, key=None):
data_list = [data_in]
key_list = [key]
elif isinstance(data_in, (list, tuple)):
if data_type is not None and isinstance(data_type, (list, tuple)):
if data_type is not None and isinstance(data_type, (list, tuple)): # mutiple inputs
data_list_tmp = []
for data_in_i, data_type_i in zip(data_in, data_type):
key_list, data_list_i = prepare_data_iterator(data_in=data_in_i, data_type=data_type_i)
@ -68,7 +70,7 @@ def prepare_data_iterator(data_in, input_len=None, data_type=None, key=None):
for item in zip(*data_list_tmp):
data_list.append(item)
else:
# [audio sample point, fbank]
# [audio sample point, fbank, text]
data_list = data_in
key_list = ["rand_key_" + ''.join(random.choice(chars) for _ in range(13)) for _ in range(len(data_in))]
else: # raw text; audio sample point, fbank; bytes
@ -198,13 +200,12 @@ class AutoModel:
kwargs = self.kwargs if kwargs is None else kwargs
kwargs.update(cfg)
model = self.model if model is None else model
data_type = kwargs.get("data_type", "sound")
batch_size = kwargs.get("batch_size", 1)
# if kwargs.get("device", "cpu") == "cpu":
# batch_size = 1
key_list, data_list = prepare_data_iterator(input, input_len=input_len, data_type=data_type, key=key)
key_list, data_list = prepare_data_iterator(input, input_len=input_len, data_type=kwargs.get("data_type", None), key=key)
speed_stats = {}
asr_result_list = []
@ -268,8 +269,8 @@ class AutoModel:
batch_size = int(kwargs.get("batch_size_s", 300))*1000
batch_size_threshold_ms = int(kwargs.get("batch_size_threshold_s", 60))*1000
kwargs["batch_size"] = batch_size
data_type = kwargs.get("data_type", "sound")
key_list, data_list = prepare_data_iterator(input, input_len=input_len, data_type=data_type)
key_list, data_list = prepare_data_iterator(input, input_len=input_len, data_type=kwargs.get("data_type", None))
results_ret_list = []
time_speech_total_all_samples = 0.0

View File

@ -21,8 +21,6 @@ def download_fr_ms(**kwargs):
config = os.path.join(model_or_path, "config.yaml")
if os.path.exists(config) and os.path.exists(os.path.join(model_or_path, "model.pb")):
# config = os.path.join(model_or_path, "config.yaml")
# assert os.path.exists(config), "{} is not exist!".format(config)
cfg = OmegaConf.load(config)
kwargs = OmegaConf.merge(cfg, kwargs)
init_param = os.path.join(model_or_path, "model.pb")
@ -42,10 +40,10 @@ def download_fr_ms(**kwargs):
assert os.path.exists(os.path.join(model_or_path, "configuration.json"))
with open(os.path.join(model_or_path, "configuration.json"), 'r', encoding='utf-8') as f:
conf_json = json.load(f)
config = os.path.join(model_or_path, conf_json["model"]["model_config"])
config = os.path.join(model_or_path, conf_json["model_config"])
cfg = OmegaConf.load(config)
kwargs = OmegaConf.merge(cfg, kwargs)
init_param = os.path.join(model_or_path, conf_json["model"]["model_name"])
init_param = os.path.join(model_or_path, conf_json["model_file"])
kwargs["init_param"] = init_param
kwargs["model"] = cfg["model"]
return OmegaConf.to_container(kwargs, resolve=True)

View File

@ -8,7 +8,23 @@ from pathlib import Path
from typing import Generator, Union
import requests
from urllib.parse import urlparse
def download_from_url(url):
result = urlparse(url)
file_path = None
if result.scheme is not None and len(result.scheme) > 0:
storage = HTTPStorage()
# bytes
data = storage.read(url)
work_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(work_dir):
os.makedirs(work_dir)
file_path = os.path.join(work_dir, os.path.basename(url))
with open(file_path, 'wb') as fb:
fb.write(data)
assert file_path is not None, f"failed to download: {url}"
return file_path
class Storage(metaclass=ABCMeta):
"""Abstract class of storage.

View File

@ -11,6 +11,7 @@ from funasr.train_utils.device_funcs import to_device
import torch
import torch.nn as nn
from funasr.models.ct_transformer.utils import split_to_mini_sentence, split_words
from funasr.utils.load_utils import load_audio_text_image_video
from funasr.register import tables
@ -219,10 +220,10 @@ class CTTransformer(nn.Module):
**kwargs,
):
assert len(data_in) == 1
text = load_audio_text_image_video(data_in, data_type=kwargs.get("kwargs", "text"))[0]
vad_indexes = kwargs.get("vad_indexes", None)
text = data_in[0]
text_lengths = data_lengths[0] if data_lengths is not None else None
# text = data_in[0]
# text_lengths = data_lengths[0] if data_lengths is not None else None
split_size = kwargs.get("split_size", 20)
tokens = split_words(text)

View File

@ -188,9 +188,12 @@ class MonotonicAligner(torch.nn.Module):
text_postprocessed, time_stamp_postprocessed, _ = postprocess_utils.sentence_postprocess(token, timestamp)
result_i = {"key": key[i], "text": text_postprocessed,
"timestamp": time_stamp_postprocessed,
}
# ibest_writer["token"][key[i]] = " ".join(token)
ibest_writer["timestamp_list"][key[i]] = time_stamp_postprocessed
ibest_writer["timestamp_str"][key[i]] = timestamp_str
}
results.append(result_i)
if ibest_writer:
# ibest_writer["token"][key[i]] = " ".join(token)
ibest_writer["timestamp_list"][key[i]] = time_stamp_postprocessed
ibest_writer["timestamp_str"][key[i]] = timestamp_str
return results, meta_data

View File

@ -10,29 +10,13 @@ import time
import logging
from torch.nn.utils.rnn import pad_sequence
try:
from urllib.parse import urlparse
from funasr.download.file import HTTPStorage
import tempfile
from funasr.download.file import download_from_url
except:
print("urllib is not installed, if you infer from url, please install it first.")
# def load_audio(data_or_path_or_list, fs: int=16000, audio_fs: int=16000):
#
# if isinstance(data_or_path_or_list, (list, tuple)):
# return [load_audio(audio, fs=fs, audio_fs=audio_fs) for audio in data_or_path_or_list]
#
# if isinstance(data_or_path_or_list, str) and os.path.exists(data_or_path_or_list):
# data_or_path_or_list, audio_fs = torchaudio.load(data_or_path_or_list)
# data_or_path_or_list = data_or_path_or_list[0, :]
# elif isinstance(data_or_path_or_list, np.ndarray): # audio sample point
# data_or_path_or_list = np.squeeze(data_or_path_or_list) #[n_samples,]
#
# if audio_fs != fs:
# resampler = torchaudio.transforms.Resample(audio_fs, fs)
# data_or_path_or_list = resampler(data_or_path_or_list[None, :])[0, :]
# return data_or_path_or_list
def load_audio_text_image_video(data_or_path_or_list, fs: int = 16000, audio_fs: int = 16000, data_type=None, tokenizer=None):
def load_audio_text_image_video(data_or_path_or_list, fs: int = 16000, audio_fs: int = 16000, data_type="sound", tokenizer=None):
if isinstance(data_or_path_or_list, (list, tuple)):
if data_type is not None and isinstance(data_type, (list, tuple)):
@ -47,16 +31,22 @@ def load_audio_text_image_video(data_or_path_or_list, fs: int = 16000, audio_fs:
return data_or_path_or_list_ret
else:
return [load_audio_text_image_video(audio, fs=fs, audio_fs=audio_fs) for audio in data_or_path_or_list]
return [load_audio_text_image_video(audio, fs=fs, audio_fs=audio_fs, data_type=data_type) for audio in data_or_path_or_list]
if isinstance(data_or_path_or_list, str) and data_or_path_or_list.startswith('http'):
data_or_path_or_list = download_from_url(data_or_path_or_list)
if isinstance(data_or_path_or_list, str) and os.path.exists(data_or_path_or_list):
data_or_path_or_list, audio_fs = torchaudio.load(data_or_path_or_list)
data_or_path_or_list = data_or_path_or_list[0, :]
if data_type is None or data_type == "sound":
data_or_path_or_list, audio_fs = torchaudio.load(data_or_path_or_list)
data_or_path_or_list = data_or_path_or_list[0, :]
# elif data_type == "text" and tokenizer is not None:
# data_or_path_or_list = tokenizer.encode(data_or_path_or_list)
elif isinstance(data_or_path_or_list, str) and data_type == "text" and tokenizer is not None:
data_or_path_or_list = tokenizer.encode(data_or_path_or_list)
elif isinstance(data_or_path_or_list, np.ndarray): # audio sample point
data_or_path_or_list = np.squeeze(data_or_path_or_list) # [n_samples,]
elif isinstance(data_or_path_or_list, str) and data_type is not None and data_type == "text" and tokenizer is not None:
data_or_path_or_list = tokenizer.encode(data_or_path_or_list)
else:
pass
# print(f"unsupport data type: {data_or_path_or_list}, return raw data")
if audio_fs != fs and data_type != "text":
resampler = torchaudio.transforms.Resample(audio_fs, fs)
@ -107,19 +97,3 @@ def extract_fbank(data, data_len = None, data_type: str="sound", frontend=None):
data_len = torch.tensor([data_len])
return data.to(torch.float32), data_len.to(torch.int32)
def download_from_url(url):
result = urlparse(url)
file_path = None
if result.scheme is not None and len(result.scheme) > 0:
storage = HTTPStorage()
# bytes
data = storage.read(url)
work_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(work_dir):
os.makedirs(work_dir)
file_path = os.path.join(work_dir, os.path.basename(url))
with open(file_path, 'wb') as fb:
fb.write(data)
assert file_path is not None, f"failed to download: {url}"
return file_path