Merge branch 'main' of https://github.com/alibaba-damo-academy/FunASR into main
@ -28,6 +28,9 @@
|
||||
|
||||
<a name="whats-new"></a>
|
||||
## What's new:
|
||||
|
||||
- 2023/10/13: [SlideSpeech](https://slidespeech.github.io/): A large scale multi-modal audio-visual corpus with a significant amount of real-time synchronized slides.
|
||||
- 2023/10/10: The ASR-SpeakersDiarization combined pipeline [speech_campplus_speaker-diarization_common](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/asr_vad_spk/speech_paraformer-large-vad-punc-spk_asr_nat-zh-cn/demo.py) is now released. Experience the model to get recognition results with speaker information.
|
||||
- 2023/10/07: [FunCodec](https://github.com/alibaba-damo-academy/FunCodec): A Fundamental, Reproducible and Integrable Open-source Toolkit for Neural Speech Codec.
|
||||
- 2023/09/01: The offline file transcription service 2.0 (CPU) of Mandarin has been released, with added support for ffmpeg, timestamp, and hotword models. For more details, please refer to ([Deployment documentation](funasr/runtime/docs/SDK_tutorial.md)).
|
||||
- 2023/08/07: The real-time transcription service (CPU) of Mandarin has been released. For more details, please refer to ([Deployment documentation](funasr/runtime/docs/SDK_tutorial_online.md)).
|
||||
|
||||
@ -31,8 +31,10 @@ FunASR希望在语音识别的学术研究和工业应用之间架起一座桥
|
||||
|
||||
<a name="最新动态"></a>
|
||||
## 最新动态
|
||||
- 2023/10/13: [SlideSpeech](https://slidespeech.github.io/): 一个大规模的多模态音视频语料库,主要是在线会议或者在线课程场景,包含了大量与发言人讲话实时同步的幻灯片。
|
||||
- 2023.10.10: [Paraformer-long-Spk](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/asr_vad_spk/speech_paraformer-large-vad-punc-spk_asr_nat-zh-cn/demo.py)模型发布,支持在长语音识别的基础上获取每句话的说话人标签。
|
||||
- 2023.10.07: [FunCodec](https://github.com/alibaba-damo-academy/FunCodec): FunCodec提供开源模型和训练工具,可以用于音频离散编码,以及基于离散编码的语音识别、语音合成等任务。
|
||||
- 2023.09.01:中文离线文件转写服务2.0 CPU版本发布,新增ffmpeg、时间戳与热词模型支持,详细信息参阅([一键部署文档](funasr/runtime/docs/SDK_tutorial_zh.md))
|
||||
- 2023.09.01: 中文离线文件转写服务2.0 CPU版本发布,新增ffmpeg、时间戳与热词模型支持,详细信息参阅([一键部署文档](funasr/runtime/docs/SDK_tutorial_zh.md))
|
||||
- 2023.08.07: 中文实时语音听写服务一键部署的CPU版本发布,详细信息参阅([一键部署文档](funasr/runtime/docs/SDK_tutorial_online_zh.md))
|
||||
- 2023.07.17: BAT一种低延迟低内存消耗的RNN-T模型发布,详细信息参阅([BAT](egs/aishell/bat))
|
||||
- 2023.07.03: 中文离线文件转写服务一键部署的CPU版本发布,详细信息参阅([一键部署文档](funasr/runtime/docs/SDK_tutorial_zh.md))
|
||||
|
||||
@ -17,7 +17,8 @@ Here we provided several pretrained models on different datasets. The details of
|
||||
| Model Name | Language | Training Data | Vocab Size | Parameter | Offline/Online | Notes |
|
||||
|:--------------------------------------------------------------------------------------------------------------------------------------------------:|:--------:|:--------------------------------:|:----------:|:---------:|:--------------:|:--------------------------------------------------------------------------------------------------------------------------------|
|
||||
| [Paraformer-large](https://www.modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary) | CN & EN | Alibaba Speech Data (60000hours) | 8404 | 220M | Offline | Duration of input wav <= 20s |
|
||||
| [Paraformer-large-long](https://www.modelscope.cn/models/damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary) | CN & EN | Alibaba Speech Data (60000hours) | 8404 | 220M | Offline | Which would deal with arbitrary length input wav |
|
||||
| [Paraformer-large-long](https://www.modelscope.cn/models/damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary) | CN & EN | Alibaba Speech Data (60000hours) | 8404 | 220M | Offline | Which would deal with arbitrary length input wav |
|
||||
| [Paraformer-large-Spk](https://modelscope.cn/models/damo/speech_paraformer-large-vad-punc-spk_asr_nat-zh-cn/summary) | CN & EN | Alibaba Speech Data (60000hours) | 8404 | 220M | Offline | Supporting speaker diarizatioin for ASR results based on paraformer-large-long |
|
||||
| [Paraformer-large-contextual](https://www.modelscope.cn/models/damo/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404/summary) | CN & EN | Alibaba Speech Data (60000hours) | 8404 | 220M | Offline | Which supports the hotword customization based on the incentive enhancement, and improves the recall and precision of hotwords. |
|
||||
| [Paraformer](https://modelscope.cn/models/damo/speech_paraformer_asr_nat-zh-cn-16k-common-vocab8358-tensorflow1/summary) | CN & EN | Alibaba Speech Data (50000hours) | 8358 | 68M | Offline | Duration of input wav <= 20s |
|
||||
| [Paraformer-online](https://www.modelscope.cn/models/damo/speech_paraformer_asr_nat-zh-cn-16k-common-vocab8404-online/summary) | CN & EN | Alibaba Speech Data (50000hours) | 8404 | 68M | Online | Which could deal with streaming input |
|
||||
|
||||
@ -17,7 +17,8 @@
|
||||
| 模型名字 | 语言 | 训练数据 | 词典大小 | 参数量 | 非实时/实时 | 备注 |
|
||||
|:--------------------------------------------------------------------------------------------------------------------------------------------------:|:--------:|:---------------------:|:-----------------:|:----:|:-------:|:---------------------------|
|
||||
| [Paraformer-large](https://www.modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary) | 中文和英文 | 阿里巴巴语音数据(60000小时) | 8404 | 220M | 非实时 | 输入wav文件持续时间不超过20秒 |
|
||||
| [Paraformer-large长音频版本](https://www.modelscope.cn/models/damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary) | 中文和英文 | 阿里巴巴语音数据(60000小时) | 8404 | 220M | 非实时 || 能够处理任意长度的输入wav文件 |
|
||||
| [Paraformer-large长音频版本](https://www.modelscope.cn/models/damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary) | 中文和英文 | 阿里巴巴语音数据(60000小时) | 8404 | 220M | 非实时 | 能够处理任意长度的输入wav文件 |
|
||||
| [Paraformer-large-Spk](https://modelscope.cn/models/damo/speech_paraformer-large-vad-punc-spk_asr_nat-zh-cn/summary) | 中文和英文 | 阿里巴巴语音数据(60000小时) | 8404 | 220M | 非实时 | 在长音频功能的基础上添加说话人识别功能 |
|
||||
| [Paraformer-large热词](https://www.modelscope.cn/models/damo/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404/summary) | 中文和英文 | 阿里巴巴语音数据(60000小时) | 8404 | 220M | 非实时 | 基于激励增强的热词定制支持,可以提高热词的召回率和准确率,输入wav文件持续时间不超过20秒 |
|
||||
| [Paraformer](https://modelscope.cn/models/damo/speech_paraformer_asr_nat-zh-cn-16k-common-vocab8358-tensorflow1/summary) | 中文和英文 | 阿里巴巴语音数据(50000小时) | 8358 | 68M | 离线 | 输入wav文件持续时间不超过20秒 |
|
||||
| [Paraformer实时](https://modelscope.cn/models/damo/speech_paraformer_asr_nat-zh-cn-16k-common-vocab8404-online/summary) | 中文和英文 | 阿里巴巴语音数据 (50000hours) | 8404 | 68M | 实时 | 能够处理流式输入 |
|
||||
|
||||
@ -99,6 +99,28 @@ print(rec_result)
|
||||
```
|
||||
The decoding mode of `fast` and `normal` is fake streaming, which could be used for evaluating of recognition accuracy.
|
||||
Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/FunASR/discussions/151)
|
||||
|
||||
#### [Paraformer-Spk](https://modelscope.cn/models/damo/speech_paraformer-large-vad-punc-spk_asr_nat-zh-cn/summary)
|
||||
This model allows user to get recognition results which contain speaker info of each sentence. Refer to [CAM++](https://modelscope.cn/models/damo/speech_campplus_speaker-diarization_common/summary) for detailed information about speaker diarization model.
|
||||
```python
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
|
||||
if __name__ == '__main__':
|
||||
audio_in = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_speaker_demo.wav'
|
||||
output_dir = "./results"
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model='damo/speech_paraformer-large-vad-punc-spk_asr_nat-zh-cn',
|
||||
model_revision='v0.0.2',
|
||||
vad_model='damo/speech_fsmn_vad_zh-cn-16k-common-pytorch',
|
||||
punc_model='damo/punc_ct-transformer_cn-en-common-vocab471067-large',
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipeline(audio_in=audio_in, batch_size_token=5000, batch_size_token_threshold_s=40, max_single_segment_time=6000)
|
||||
print(rec_result)
|
||||
```
|
||||
|
||||
#### [RNN-T-online model]()
|
||||
Undo
|
||||
|
||||
|
||||
@ -100,6 +100,29 @@ print(rec_result)
|
||||
fast 和 normal 的解码模式是假流式解码,可用于评估识别准确性。
|
||||
演示的完整代码,请参见 [demo](https://github.com/alibaba-damo-academy/FunASR/discussions/151)
|
||||
|
||||
#### [Paraformer-Spk model](https://modelscope.cn/models/damo/speech_paraformer-large-vad-punc-spk_asr_nat-zh-cn/summary)
|
||||
返回识别结果的同时返回每个子句的说话人分类结果。关于说话人日志模型的详情请见[CAM++](https://modelscope.cn/models/damo/speech_campplus_speaker-diarization_common/summary)。
|
||||
|
||||
```python
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
|
||||
if __name__ == '__main__':
|
||||
audio_in = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_speaker_demo.wav'
|
||||
output_dir = "./results"
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model='damo/speech_paraformer-large-vad-punc-spk_asr_nat-zh-cn',
|
||||
model_revision='v0.0.2',
|
||||
vad_model='damo/speech_fsmn_vad_zh-cn-16k-common-pytorch',
|
||||
punc_model='damo/punc_ct-transformer_cn-en-common-vocab471067-large',
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipeline(audio_in=audio_in, batch_size_token=5000, batch_size_token_threshold_s=40, max_single_segment_time=6000)
|
||||
print(rec_result)
|
||||
```
|
||||
|
||||
|
||||
#### [RNN-T-online 模型]()
|
||||
Undo
|
||||
|
||||
|
||||
1
egs_modelscope/asr_vad_spk/TEMPLATE
Symbolic link
@ -0,0 +1 @@
|
||||
../asr/TEMPLATE
|
||||
@ -38,7 +38,9 @@ from funasr.text.build_tokenizer import build_tokenizer
|
||||
from funasr.text.token_id_converter import TokenIDConverter
|
||||
from funasr.torch_utils.device_funcs import to_device
|
||||
from funasr.utils.timestamp_tools import ts_prediction_lfr6_standard
|
||||
|
||||
from funasr.utils.whisper_utils.decoding import DecodingOptions, detect_language, decode
|
||||
from funasr.utils.whisper_utils.transcribe import transcribe
|
||||
from funasr.utils.whisper_utils.audio import pad_or_trim, log_mel_spectrogram
|
||||
|
||||
class Speech2Text:
|
||||
"""Speech2Text class
|
||||
@ -1880,3 +1882,117 @@ class Speech2TextSAASR:
|
||||
results.append((text, text_id, token, token_int, hyp))
|
||||
|
||||
return results
|
||||
|
||||
|
||||
class Speech2TextWhisper:
|
||||
"""Speech2Text class
|
||||
|
||||
Examples:
|
||||
>>> import soundfile
|
||||
>>> speech2text = Speech2Text("asr_config.yml", "asr.pb")
|
||||
>>> audio, rate = soundfile.read("speech.wav")
|
||||
>>> speech2text(audio)
|
||||
[(text, token, token_int, hypothesis object), ...]
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
asr_train_config: Union[Path, str] = None,
|
||||
asr_model_file: Union[Path, str] = None,
|
||||
cmvn_file: Union[Path, str] = None,
|
||||
lm_train_config: Union[Path, str] = None,
|
||||
lm_file: Union[Path, str] = None,
|
||||
token_type: str = None,
|
||||
bpemodel: str = None,
|
||||
device: str = "cpu",
|
||||
maxlenratio: float = 0.0,
|
||||
minlenratio: float = 0.0,
|
||||
batch_size: int = 1,
|
||||
dtype: str = "float32",
|
||||
beam_size: int = 20,
|
||||
ctc_weight: float = 0.5,
|
||||
lm_weight: float = 1.0,
|
||||
ngram_weight: float = 0.9,
|
||||
penalty: float = 0.0,
|
||||
nbest: int = 1,
|
||||
streaming: bool = False,
|
||||
frontend_conf: dict = None,
|
||||
**kwargs,
|
||||
):
|
||||
|
||||
# 1. Build ASR model
|
||||
scorers = {}
|
||||
from funasr.tasks.whisper import ASRTask
|
||||
asr_model, asr_train_args = ASRTask.build_model_from_file(
|
||||
asr_train_config, asr_model_file, cmvn_file, device
|
||||
)
|
||||
frontend = None
|
||||
|
||||
logging.info("asr_model: {}".format(asr_model))
|
||||
logging.info("asr_train_args: {}".format(asr_train_args))
|
||||
asr_model.to(dtype=getattr(torch, dtype)).eval()
|
||||
|
||||
decoder = asr_model.decoder
|
||||
|
||||
token_list = []
|
||||
|
||||
# 5. [Optional] Build Text converter: e.g. bpe-sym -> Text
|
||||
if token_type is None:
|
||||
token_type = asr_train_args.token_type
|
||||
if bpemodel is None:
|
||||
bpemodel = asr_train_args.bpemodel
|
||||
|
||||
if token_type is None:
|
||||
tokenizer = None
|
||||
elif token_type == "bpe":
|
||||
if bpemodel is not None:
|
||||
tokenizer = build_tokenizer(token_type=token_type, bpemodel=bpemodel)
|
||||
else:
|
||||
tokenizer = None
|
||||
else:
|
||||
tokenizer = build_tokenizer(token_type=token_type)
|
||||
logging.info(f"Text tokenizer: {tokenizer}")
|
||||
|
||||
self.asr_model = asr_model
|
||||
self.asr_train_args = asr_train_args
|
||||
self.tokenizer = tokenizer
|
||||
self.device = device
|
||||
self.dtype = dtype
|
||||
self.frontend = frontend
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
self, speech: Union[torch.Tensor, np.ndarray], speech_lengths: Union[torch.Tensor, np.ndarray] = None
|
||||
) -> List[
|
||||
Tuple[
|
||||
Optional[str],
|
||||
List[str],
|
||||
List[int],
|
||||
Union[Hypothesis],
|
||||
]
|
||||
]:
|
||||
"""Inference
|
||||
|
||||
Args:
|
||||
speech: Input speech data
|
||||
Returns:
|
||||
text, token, token_int, hyp
|
||||
|
||||
"""
|
||||
|
||||
speech = speech[0]
|
||||
speech = pad_or_trim(speech)
|
||||
mel = log_mel_spectrogram(speech).to(self.device)
|
||||
|
||||
if self.asr_model.is_multilingual:
|
||||
options = DecodingOptions(fp16=False)
|
||||
asr_res = decode(self.asr_model, mel, options)
|
||||
text = asr_res.text
|
||||
language = asr_res.language
|
||||
else:
|
||||
asr_res = transcribe(self.asr_model, speech, fp16=False)
|
||||
text = asr_res["text"]
|
||||
language = asr_res["language"]
|
||||
results = [(text, language)]
|
||||
return results
|
||||
|
||||
@ -29,6 +29,7 @@ from funasr.bin.asr_infer import Speech2TextParaformer, Speech2TextParaformerOnl
|
||||
from funasr.bin.asr_infer import Speech2TextSAASR
|
||||
from funasr.bin.asr_infer import Speech2TextTransducer
|
||||
from funasr.bin.asr_infer import Speech2TextUniASR
|
||||
from funasr.bin.asr_infer import Speech2TextWhisper
|
||||
from funasr.bin.punc_infer import Text2Punc
|
||||
from funasr.bin.tp_infer import Speech2Timestamp
|
||||
from funasr.bin.vad_infer import Speech2VadSegment
|
||||
@ -2020,6 +2021,161 @@ def inference_sa_asr(
|
||||
|
||||
return _forward
|
||||
|
||||
def inference_whisper(
|
||||
maxlenratio: float,
|
||||
minlenratio: float,
|
||||
batch_size: int,
|
||||
beam_size: int,
|
||||
ngpu: int,
|
||||
ctc_weight: float,
|
||||
lm_weight: float,
|
||||
penalty: float,
|
||||
log_level: Union[int, str],
|
||||
# data_path_and_name_and_type,
|
||||
asr_train_config: Optional[str],
|
||||
asr_model_file: Optional[str],
|
||||
cmvn_file: Optional[str] = None,
|
||||
lm_train_config: Optional[str] = None,
|
||||
lm_file: Optional[str] = None,
|
||||
token_type: Optional[str] = None,
|
||||
key_file: Optional[str] = None,
|
||||
word_lm_train_config: Optional[str] = None,
|
||||
bpemodel: Optional[str] = None,
|
||||
allow_variable_data_keys: bool = False,
|
||||
streaming: bool = False,
|
||||
output_dir: Optional[str] = None,
|
||||
dtype: str = "float32",
|
||||
seed: int = 0,
|
||||
ngram_weight: float = 0.9,
|
||||
nbest: int = 1,
|
||||
num_workers: int = 1,
|
||||
mc: bool = False,
|
||||
param_dict: dict = None,
|
||||
**kwargs,
|
||||
):
|
||||
|
||||
ncpu = kwargs.get("ncpu", 1)
|
||||
torch.set_num_threads(ncpu)
|
||||
if batch_size > 1:
|
||||
raise NotImplementedError("batch decoding is not implemented")
|
||||
if word_lm_train_config is not None:
|
||||
raise NotImplementedError("Word LM is not implemented")
|
||||
if ngpu > 1:
|
||||
raise NotImplementedError("only single GPU decoding is supported")
|
||||
|
||||
for handler in logging.root.handlers[:]:
|
||||
logging.root.removeHandler(handler)
|
||||
|
||||
logging.basicConfig(
|
||||
level=log_level,
|
||||
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
|
||||
)
|
||||
|
||||
if ngpu >= 1 and torch.cuda.is_available():
|
||||
device = "cuda"
|
||||
else:
|
||||
device = "cpu"
|
||||
|
||||
# 1. Set random-seed
|
||||
set_all_random_seed(seed)
|
||||
|
||||
# 2. Build speech2text
|
||||
speech2text_kwargs = dict(
|
||||
asr_train_config=asr_train_config,
|
||||
asr_model_file=asr_model_file,
|
||||
cmvn_file=cmvn_file,
|
||||
lm_train_config=lm_train_config,
|
||||
lm_file=lm_file,
|
||||
token_type=token_type,
|
||||
bpemodel=bpemodel,
|
||||
device=device,
|
||||
maxlenratio=maxlenratio,
|
||||
minlenratio=minlenratio,
|
||||
dtype=dtype,
|
||||
beam_size=beam_size,
|
||||
ctc_weight=ctc_weight,
|
||||
lm_weight=lm_weight,
|
||||
ngram_weight=ngram_weight,
|
||||
penalty=penalty,
|
||||
nbest=nbest,
|
||||
streaming=streaming,
|
||||
)
|
||||
logging.info("speech2text_kwargs: {}".format(speech2text_kwargs))
|
||||
speech2text = Speech2TextWhisper(**speech2text_kwargs)
|
||||
|
||||
def _forward(data_path_and_name_and_type,
|
||||
raw_inputs: Union[np.ndarray, torch.Tensor] = None,
|
||||
output_dir_v2: Optional[str] = None,
|
||||
fs: dict = None,
|
||||
param_dict: dict = None,
|
||||
**kwargs,
|
||||
):
|
||||
# 3. Build data-iterator
|
||||
if data_path_and_name_and_type is None and raw_inputs is not None:
|
||||
if isinstance(raw_inputs, torch.Tensor):
|
||||
raw_inputs = raw_inputs.numpy()
|
||||
data_path_and_name_and_type = [raw_inputs, "speech", "waveform"]
|
||||
loader = build_streaming_iterator(
|
||||
task_name="asr",
|
||||
preprocess_args=speech2text.asr_train_args,
|
||||
data_path_and_name_and_type=data_path_and_name_and_type,
|
||||
dtype=dtype,
|
||||
fs=fs,
|
||||
mc=mc,
|
||||
batch_size=batch_size,
|
||||
key_file=key_file,
|
||||
num_workers=num_workers,
|
||||
)
|
||||
|
||||
finish_count = 0
|
||||
file_count = 1
|
||||
# 7 .Start for-loop
|
||||
# FIXME(kamo): The output format should be discussed about
|
||||
asr_result_list = []
|
||||
output_path = output_dir_v2 if output_dir_v2 is not None else output_dir
|
||||
if output_path is not None:
|
||||
writer = DatadirWriter(output_path)
|
||||
else:
|
||||
writer = None
|
||||
|
||||
for keys, batch in loader:
|
||||
assert isinstance(batch, dict), type(batch)
|
||||
assert all(isinstance(s, str) for s in keys), keys
|
||||
_bs = len(next(iter(batch.values())))
|
||||
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
|
||||
# batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
|
||||
|
||||
# N-best list of (text, token, token_int, hyp_object)
|
||||
try:
|
||||
results = speech2text(**batch)
|
||||
except TooShortUttError as e:
|
||||
logging.warning(f"Utterance {keys} {e}")
|
||||
hyp = Hypothesis(score=0.0, scores={}, states={}, yseq=[])
|
||||
results = [[" ", ["sil"], [2], hyp]] * nbest
|
||||
|
||||
# Only supporting batch_size==1
|
||||
key = keys[0]
|
||||
|
||||
for n, (text, language) in zip(range(1, nbest + 1), results):
|
||||
# Create a directory: outdir/{n}best_recog
|
||||
if writer is not None:
|
||||
ibest_writer = writer[f"{n}best_recog"]
|
||||
|
||||
# Write the result to each file
|
||||
ibest_writer["language"][key] = language
|
||||
|
||||
if text is not None:
|
||||
item = {'key': key, 'value': text}
|
||||
asr_result_list.append(item)
|
||||
finish_count += 1
|
||||
if writer is not None:
|
||||
ibest_writer["text"][key] = text
|
||||
|
||||
logging.info("uttid: {}".format(key))
|
||||
logging.info("text predictions: {}\n".format(text))
|
||||
return asr_result_list
|
||||
|
||||
return _forward
|
||||
|
||||
def inference_launch(**kwargs):
|
||||
if 'mode' in kwargs:
|
||||
@ -2049,6 +2205,8 @@ def inference_launch(**kwargs):
|
||||
return inference_transducer(**kwargs)
|
||||
elif mode == "sa_asr":
|
||||
return inference_sa_asr(**kwargs)
|
||||
elif mode == "whisper":
|
||||
return inference_whisper(**kwargs)
|
||||
else:
|
||||
logging.info("Unknown decoding mode: {}".format(mode))
|
||||
return None
|
||||
|
||||
269
funasr/models/whisper_models/model.py
Normal file
@ -0,0 +1,269 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict
|
||||
from typing import Iterable, Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import Tensor
|
||||
from torch import nn
|
||||
|
||||
from funasr.models.base_model import FunASRModel
|
||||
from funasr.utils.whisper_utils.decoding import detect_language as detect_language_function, decode as decode_function
|
||||
|
||||
@dataclass
|
||||
class ModelDimensions:
|
||||
n_mels: int
|
||||
n_audio_ctx: int
|
||||
n_audio_state: int
|
||||
n_audio_head: int
|
||||
n_audio_layer: int
|
||||
n_vocab: int
|
||||
n_text_ctx: int
|
||||
n_text_state: int
|
||||
n_text_head: int
|
||||
n_text_layer: int
|
||||
|
||||
|
||||
class LayerNorm(nn.LayerNorm):
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
return super().forward(x.float()).type(x.dtype)
|
||||
|
||||
|
||||
class Linear(nn.Linear):
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
return F.linear(
|
||||
x, self.weight.to(x.dtype), None if self.bias is None else self.bias.to(x.dtype)
|
||||
)
|
||||
|
||||
|
||||
class Conv1d(nn.Conv1d):
|
||||
def _conv_forward(self, x: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor:
|
||||
return super()._conv_forward(
|
||||
x, weight.to(x.dtype), None if bias is None else bias.to(x.dtype)
|
||||
)
|
||||
|
||||
|
||||
def sinusoids(length, channels, max_timescale=10000):
|
||||
"""Returns sinusoids for positional embedding"""
|
||||
assert channels % 2 == 0
|
||||
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
|
||||
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
|
||||
scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
|
||||
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
|
||||
|
||||
|
||||
class MultiHeadAttention(nn.Module):
|
||||
def __init__(self, n_state: int, n_head: int):
|
||||
super().__init__()
|
||||
self.n_head = n_head
|
||||
self.query = Linear(n_state, n_state)
|
||||
self.key = Linear(n_state, n_state, bias=False)
|
||||
self.value = Linear(n_state, n_state)
|
||||
self.out = Linear(n_state, n_state)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: Tensor,
|
||||
xa: Optional[Tensor] = None,
|
||||
mask: Optional[Tensor] = None,
|
||||
kv_cache: Optional[dict] = None,
|
||||
):
|
||||
q = self.query(x)
|
||||
|
||||
if kv_cache is None or xa is None or self.key not in kv_cache:
|
||||
# hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors;
|
||||
# otherwise, perform key/value projections for self- or cross-attention as usual.
|
||||
k = self.key(x if xa is None else xa)
|
||||
v = self.value(x if xa is None else xa)
|
||||
else:
|
||||
# for cross-attention, calculate keys and values once and reuse in subsequent calls.
|
||||
k = kv_cache[self.key]
|
||||
v = kv_cache[self.value]
|
||||
|
||||
wv, qk = self.qkv_attention(q, k, v, mask)
|
||||
return self.out(wv), qk
|
||||
|
||||
def qkv_attention(self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None):
|
||||
n_batch, n_ctx, n_state = q.shape
|
||||
scale = (n_state // self.n_head) ** -0.25
|
||||
q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale
|
||||
k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 3, 1) * scale
|
||||
v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
|
||||
|
||||
qk = q @ k
|
||||
if mask is not None:
|
||||
qk = qk + mask[:n_ctx, :n_ctx]
|
||||
qk = qk.float()
|
||||
|
||||
w = F.softmax(qk, dim=-1).to(q.dtype)
|
||||
return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach()
|
||||
|
||||
|
||||
class ResidualAttentionBlock(nn.Module):
|
||||
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
|
||||
super().__init__()
|
||||
|
||||
self.attn = MultiHeadAttention(n_state, n_head)
|
||||
self.attn_ln = LayerNorm(n_state)
|
||||
|
||||
self.cross_attn = MultiHeadAttention(n_state, n_head) if cross_attention else None
|
||||
self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None
|
||||
|
||||
n_mlp = n_state * 4
|
||||
self.mlp = nn.Sequential(Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state))
|
||||
self.mlp_ln = LayerNorm(n_state)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: Tensor,
|
||||
xa: Optional[Tensor] = None,
|
||||
mask: Optional[Tensor] = None,
|
||||
kv_cache: Optional[dict] = None,
|
||||
):
|
||||
x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache)[0]
|
||||
if self.cross_attn:
|
||||
x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache)[0]
|
||||
x = x + self.mlp(self.mlp_ln(x))
|
||||
return x
|
||||
|
||||
|
||||
class AudioEncoder(nn.Module):
|
||||
def __init__(self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int):
|
||||
super().__init__()
|
||||
self.conv1 = Conv1d(n_mels, n_state, kernel_size=3, padding=1)
|
||||
self.conv2 = Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1)
|
||||
self.register_buffer("positional_embedding", sinusoids(n_ctx, n_state))
|
||||
|
||||
self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList(
|
||||
[ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)]
|
||||
)
|
||||
self.ln_post = LayerNorm(n_state)
|
||||
|
||||
def forward(self, x: Tensor):
|
||||
"""
|
||||
x : torch.Tensor, shape = (batch_size, n_mels, n_ctx)
|
||||
the mel spectrogram of the audio
|
||||
"""
|
||||
x = F.gelu(self.conv1(x))
|
||||
x = F.gelu(self.conv2(x))
|
||||
x = x.permute(0, 2, 1)
|
||||
|
||||
assert x.shape[1:] == self.positional_embedding.shape, "incorrect audio shape"
|
||||
x = (x + self.positional_embedding).to(x.dtype)
|
||||
|
||||
for block in self.blocks:
|
||||
x = block(x)
|
||||
|
||||
x = self.ln_post(x)
|
||||
return x
|
||||
|
||||
|
||||
class TextDecoder(nn.Module):
|
||||
def __init__(self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int):
|
||||
super().__init__()
|
||||
|
||||
self.token_embedding = nn.Embedding(n_vocab, n_state)
|
||||
self.positional_embedding = nn.Parameter(torch.empty(n_ctx, n_state))
|
||||
|
||||
self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList(
|
||||
[ResidualAttentionBlock(n_state, n_head, cross_attention=True) for _ in range(n_layer)]
|
||||
)
|
||||
self.ln = LayerNorm(n_state)
|
||||
|
||||
mask = torch.empty(n_ctx, n_ctx).fill_(-np.inf).triu_(1)
|
||||
self.register_buffer("mask", mask, persistent=False)
|
||||
|
||||
def forward(self, x: Tensor, xa: Tensor, kv_cache: Optional[dict] = None):
|
||||
"""
|
||||
x : torch.LongTensor, shape = (batch_size, <= n_ctx)
|
||||
the text tokens
|
||||
xa : torch.Tensor, shape = (batch_size, n_mels, n_audio_ctx)
|
||||
the encoded audio features to be attended on
|
||||
"""
|
||||
offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0
|
||||
x = self.token_embedding(x) + self.positional_embedding[offset : offset + x.shape[-1]]
|
||||
x = x.to(xa.dtype)
|
||||
|
||||
for block in self.blocks:
|
||||
x = block(x, xa, mask=self.mask, kv_cache=kv_cache)
|
||||
|
||||
x = self.ln(x)
|
||||
logits = (x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1)).float()
|
||||
|
||||
return logits
|
||||
|
||||
|
||||
class Whisper(FunASRModel):
|
||||
def __init__(self, dims: dict):
|
||||
super().__init__()
|
||||
dims = ModelDimensions(**dims)
|
||||
self.dims = dims
|
||||
self.sos = 1
|
||||
self.eos = 1
|
||||
self.encoder = AudioEncoder(
|
||||
self.dims.n_mels,
|
||||
self.dims.n_audio_ctx,
|
||||
self.dims.n_audio_state,
|
||||
self.dims.n_audio_head,
|
||||
self.dims.n_audio_layer,
|
||||
)
|
||||
self.decoder = TextDecoder(
|
||||
self.dims.n_vocab,
|
||||
self.dims.n_text_ctx,
|
||||
self.dims.n_text_state,
|
||||
self.dims.n_text_head,
|
||||
self.dims.n_text_layer,
|
||||
)
|
||||
|
||||
def embed_audio(self, mel: torch.Tensor):
|
||||
return self.encoder(mel)
|
||||
|
||||
def logits(self, tokens: torch.Tensor, audio_features: torch.Tensor):
|
||||
return self.decoder(tokens, audio_features)
|
||||
|
||||
def forward(self, mel: torch.Tensor, tokens: torch.Tensor) -> Dict[str, torch.Tensor]:
|
||||
return self.decoder(tokens, self.encoder(mel))
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
return next(self.parameters()).device
|
||||
|
||||
@property
|
||||
def is_multilingual(self):
|
||||
return self.dims.n_vocab == 51865
|
||||
|
||||
def install_kv_cache_hooks(self, cache: Optional[dict] = None):
|
||||
"""
|
||||
The `MultiHeadAttention` module optionally accepts `kv_cache` which stores the key and value
|
||||
tensors calculated for the previous positions. This method returns a dictionary that stores
|
||||
all caches, and the necessary hooks for the key and value projection modules that save the
|
||||
intermediate tensors to be reused during later calculations.
|
||||
|
||||
Returns
|
||||
-------
|
||||
cache : Dict[nn.Module, torch.Tensor]
|
||||
A dictionary object mapping the key/value projection modules to its cache
|
||||
hooks : List[RemovableHandle]
|
||||
List of PyTorch RemovableHandle objects to stop the hooks to be called
|
||||
"""
|
||||
cache = {**cache} if cache is not None else {}
|
||||
hooks = []
|
||||
|
||||
def save_to_cache(module, _, output):
|
||||
if module not in cache or output.shape[1] > self.decoder.positional_embedding.shape[0]:
|
||||
cache[module] = output # save as-is, for the first token or cross attention
|
||||
else:
|
||||
cache[module] = torch.cat([cache[module], output], dim=1).detach()
|
||||
return cache[module]
|
||||
|
||||
def install_hooks(layer: nn.Module):
|
||||
if isinstance(layer, MultiHeadAttention):
|
||||
hooks.append(layer.key.register_forward_hook(save_to_cache))
|
||||
hooks.append(layer.value.register_forward_hook(save_to_cache))
|
||||
|
||||
self.decoder.apply(install_hooks)
|
||||
return cache, hooks
|
||||
|
||||
detect_language = detect_language_function
|
||||
decode = decode_function
|
||||
71
funasr/runtime/android/AndroidClient/app/build.gradle
Normal file
@ -0,0 +1,71 @@
|
||||
plugins {
|
||||
id 'com.android.application'
|
||||
id 'org.jetbrains.kotlin.android'
|
||||
}
|
||||
|
||||
android {
|
||||
namespace 'com.yeyupiaoling.androidclient'
|
||||
compileSdk 33
|
||||
|
||||
defaultConfig {
|
||||
applicationId "com.yeyupiaoling.androidclient"
|
||||
minSdk 24
|
||||
targetSdk 33
|
||||
versionCode 1
|
||||
versionName "1.0"
|
||||
|
||||
testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
|
||||
vectorDrawables {
|
||||
useSupportLibrary true
|
||||
}
|
||||
}
|
||||
|
||||
buildTypes {
|
||||
release {
|
||||
minifyEnabled false
|
||||
proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
|
||||
}
|
||||
}
|
||||
compileOptions {
|
||||
sourceCompatibility JavaVersion.VERSION_1_8
|
||||
targetCompatibility JavaVersion.VERSION_1_8
|
||||
}
|
||||
kotlinOptions {
|
||||
jvmTarget = '1.8'
|
||||
}
|
||||
buildFeatures {
|
||||
compose true
|
||||
}
|
||||
composeOptions {
|
||||
kotlinCompilerExtensionVersion '1.4.3'
|
||||
}
|
||||
packaging {
|
||||
resources {
|
||||
excludes += '/META-INF/{AL2.0,LGPL2.1}'
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
dependencies {
|
||||
|
||||
implementation 'androidx.core:core-ktx:1.9.0'
|
||||
implementation 'androidx.lifecycle:lifecycle-runtime-ktx:2.6.1'
|
||||
implementation 'androidx.activity:activity-compose:1.7.0'
|
||||
implementation platform('androidx.compose:compose-bom:2023.03.00')
|
||||
implementation 'androidx.compose.ui:ui'
|
||||
implementation 'androidx.compose.ui:ui-graphics'
|
||||
implementation 'androidx.compose.ui:ui-tooling-preview'
|
||||
implementation 'androidx.compose.material3:material3'
|
||||
implementation 'androidx.appcompat:appcompat:1.6.1'
|
||||
implementation 'com.google.android.material:material:1.8.0'
|
||||
implementation 'androidx.constraintlayout:constraintlayout:2.1.4'
|
||||
testImplementation 'junit:junit:4.13.2'
|
||||
androidTestImplementation 'androidx.test.ext:junit:1.1.5'
|
||||
androidTestImplementation 'androidx.test.espresso:espresso-core:3.5.1'
|
||||
androidTestImplementation platform('androidx.compose:compose-bom:2023.03.00')
|
||||
androidTestImplementation 'androidx.compose.ui:ui-test-junit4'
|
||||
debugImplementation 'androidx.compose.ui:ui-tooling'
|
||||
debugImplementation 'androidx.compose.ui:ui-test-manifest'
|
||||
|
||||
implementation 'com.squareup.okhttp3:okhttp:4.9.1'
|
||||
}
|
||||
21
funasr/runtime/android/AndroidClient/app/proguard-rules.pro
vendored
Normal file
@ -0,0 +1,21 @@
|
||||
# Add project specific ProGuard rules here.
|
||||
# You can control the set of applied configuration files using the
|
||||
# proguardFiles setting in build.gradle.
|
||||
#
|
||||
# For more details, see
|
||||
# http://developer.android.com/guide/developing/tools/proguard.html
|
||||
|
||||
# If your project uses WebView with JS, uncomment the following
|
||||
# and specify the fully qualified class name to the JavaScript interface
|
||||
# class:
|
||||
#-keepclassmembers class fqcn.of.javascript.interface.for.webview {
|
||||
# public *;
|
||||
#}
|
||||
|
||||
# Uncomment this to preserve the line number information for
|
||||
# debugging stack traces.
|
||||
#-keepattributes SourceFile,LineNumberTable
|
||||
|
||||
# If you keep the line number information, uncomment this to
|
||||
# hide the original source file name.
|
||||
#-renamesourcefileattribute SourceFile
|
||||
@ -0,0 +1,24 @@
|
||||
package com.yeyupiaoling.androidclient
|
||||
|
||||
import androidx.test.platform.app.InstrumentationRegistry
|
||||
import androidx.test.ext.junit.runners.AndroidJUnit4
|
||||
|
||||
import org.junit.Test
|
||||
import org.junit.runner.RunWith
|
||||
|
||||
import org.junit.Assert.*
|
||||
|
||||
/**
|
||||
* Instrumented test, which will execute on an Android device.
|
||||
*
|
||||
* See [testing documentation](http://d.android.com/tools/testing).
|
||||
*/
|
||||
@RunWith(AndroidJUnit4::class)
|
||||
class ExampleInstrumentedTest {
|
||||
@Test
|
||||
fun useAppContext() {
|
||||
// Context of the app under test.
|
||||
val appContext = InstrumentationRegistry.getInstrumentation().targetContext
|
||||
assertEquals("com.yeyupiaoling.androidclient", appContext.packageName)
|
||||
}
|
||||
}
|
||||
@ -0,0 +1,30 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
|
||||
xmlns:tools="http://schemas.android.com/tools">
|
||||
|
||||
<uses-permission android:name="android.permission.INTERNET" />
|
||||
<uses-permission android:name="android.permission.RECORD_AUDIO" />
|
||||
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
|
||||
|
||||
<application
|
||||
android:allowBackup="true"
|
||||
android:dataExtractionRules="@xml/data_extraction_rules"
|
||||
android:fullBackupContent="@xml/backup_rules"
|
||||
android:icon="@mipmap/ic_launcher"
|
||||
android:label="@string/app_name"
|
||||
android:roundIcon="@mipmap/ic_launcher_round"
|
||||
android:supportsRtl="true"
|
||||
android:theme="@style/Theme.AndroidClient"
|
||||
tools:targetApi="31">
|
||||
<activity
|
||||
android:name=".MainActivity"
|
||||
android:exported="true">
|
||||
<intent-filter>
|
||||
<action android:name="android.intent.action.MAIN" />
|
||||
|
||||
<category android:name="android.intent.category.LAUNCHER" />
|
||||
</intent-filter>
|
||||
</activity>
|
||||
</application>
|
||||
|
||||
</manifest>
|
||||
@ -0,0 +1,216 @@
|
||||
package com.yeyupiaoling.androidclient;
|
||||
|
||||
import android.content.Context;
|
||||
import android.graphics.Canvas;
|
||||
import android.graphics.Color;
|
||||
import android.graphics.Paint;
|
||||
import android.graphics.Path;
|
||||
import android.graphics.Point;
|
||||
import android.util.AttributeSet;
|
||||
import android.view.View;
|
||||
|
||||
import androidx.annotation.Nullable;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
public class AudioView extends View {
|
||||
|
||||
// 频谱数量
|
||||
private static final int LUMP_COUNT = 128;
|
||||
private static final int LUMP_WIDTH = 6;
|
||||
private static final int LUMP_SPACE = 2;
|
||||
private static final int LUMP_MIN_HEIGHT = LUMP_WIDTH;
|
||||
private static final int LUMP_MAX_HEIGHT = 200;//TODO: HEIGHT
|
||||
private static final int LUMP_SIZE = LUMP_WIDTH + LUMP_SPACE;
|
||||
private static final int LUMP_COLOR = Color.parseColor("#6de8fd");
|
||||
|
||||
private static final int WAVE_SAMPLING_INTERVAL = 3;
|
||||
|
||||
private static final float SCALE = LUMP_MAX_HEIGHT / LUMP_COUNT;
|
||||
|
||||
private ShowStyle upShowStyle = ShowStyle.STYLE_HOLLOW_LUMP;
|
||||
private ShowStyle downShowStyle = ShowStyle.STYLE_WAVE;
|
||||
|
||||
private byte[] waveData;
|
||||
List<Point> pointList;
|
||||
|
||||
private Paint lumpPaint;
|
||||
Path wavePath = new Path();
|
||||
|
||||
|
||||
public AudioView(Context context) {
|
||||
super(context);
|
||||
init();
|
||||
}
|
||||
|
||||
public AudioView(Context context, @Nullable AttributeSet attrs) {
|
||||
super(context, attrs);
|
||||
init();
|
||||
}
|
||||
|
||||
public AudioView(Context context, @Nullable AttributeSet attrs, int defStyleAttr) {
|
||||
super(context, attrs, defStyleAttr);
|
||||
init();
|
||||
}
|
||||
|
||||
private void init() {
|
||||
lumpPaint = new Paint();
|
||||
lumpPaint.setAntiAlias(true);
|
||||
lumpPaint.setColor(LUMP_COLOR);
|
||||
|
||||
lumpPaint.setStrokeWidth(2);
|
||||
lumpPaint.setStyle(Paint.Style.STROKE);
|
||||
}
|
||||
|
||||
public void setWaveData(byte[] data) {
|
||||
this.waveData = readyData(data);
|
||||
genSamplingPoint(data);
|
||||
invalidate();
|
||||
}
|
||||
|
||||
|
||||
public void setStyle(ShowStyle upShowStyle, ShowStyle downShowStyle) {
|
||||
this.upShowStyle = upShowStyle;
|
||||
this.downShowStyle = downShowStyle;
|
||||
}
|
||||
|
||||
|
||||
@Override
|
||||
protected void onDraw(Canvas canvas) {
|
||||
super.onDraw(canvas);
|
||||
wavePath.reset();
|
||||
|
||||
for (int i = 0; i < LUMP_COUNT; i++) {
|
||||
if (waveData == null) {
|
||||
canvas.drawRect((LUMP_WIDTH + LUMP_SPACE) * i,
|
||||
LUMP_MAX_HEIGHT - LUMP_MIN_HEIGHT,
|
||||
(LUMP_WIDTH + LUMP_SPACE) * i + LUMP_WIDTH,
|
||||
LUMP_MAX_HEIGHT,
|
||||
lumpPaint);
|
||||
continue;
|
||||
}
|
||||
|
||||
switch (upShowStyle) {
|
||||
case STYLE_HOLLOW_LUMP:
|
||||
drawLump(canvas, i, false);
|
||||
break;
|
||||
case STYLE_WAVE:
|
||||
drawWave(canvas, i, false);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
switch (downShowStyle) {
|
||||
case STYLE_HOLLOW_LUMP:
|
||||
drawLump(canvas, i, true);
|
||||
break;
|
||||
case STYLE_WAVE:
|
||||
drawWave(canvas, i, true);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* 预处理数据
|
||||
*
|
||||
* @return
|
||||
*/
|
||||
private static byte[] readyData(byte[] fft) {
|
||||
byte[] newData = new byte[LUMP_COUNT];
|
||||
byte abs;
|
||||
for (int i = 0; i < LUMP_COUNT; i++) {
|
||||
abs = (byte) Math.abs(fft[i]);
|
||||
//描述:Math.abs -128时越界
|
||||
newData[i] = abs < 0 ? 127 : abs;
|
||||
}
|
||||
return newData;
|
||||
}
|
||||
|
||||
/**
|
||||
* 绘制曲线
|
||||
*
|
||||
* @param canvas
|
||||
* @param i
|
||||
* @param reversal
|
||||
*/
|
||||
private void drawWave(Canvas canvas, int i, boolean reversal) {
|
||||
if (pointList == null || pointList.size() < 2) {
|
||||
return;
|
||||
}
|
||||
float ratio = SCALE * (reversal ? -1 : 1);
|
||||
if (i < pointList.size() - 2) {
|
||||
Point point = pointList.get(i);
|
||||
Point nextPoint = pointList.get(i + 1);
|
||||
int midX = (point.x + nextPoint.x) >> 1;
|
||||
if (i == 0) {
|
||||
wavePath.moveTo(point.x, LUMP_MAX_HEIGHT - point.y * ratio);
|
||||
}
|
||||
wavePath.cubicTo(midX, LUMP_MAX_HEIGHT - point.y * ratio,
|
||||
midX, LUMP_MAX_HEIGHT - nextPoint.y * ratio,
|
||||
nextPoint.x, LUMP_MAX_HEIGHT - nextPoint.y * ratio);
|
||||
|
||||
canvas.drawPath(wavePath, lumpPaint);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* 绘制矩形条
|
||||
*/
|
||||
private void drawLump(Canvas canvas, int i, boolean reversal) {
|
||||
int minus = reversal ? -1 : 1;
|
||||
float top = (LUMP_MAX_HEIGHT - (LUMP_MIN_HEIGHT + waveData[i] * SCALE) * minus);
|
||||
|
||||
canvas.drawRect(LUMP_SIZE * i,
|
||||
top,
|
||||
LUMP_SIZE * i + LUMP_WIDTH,
|
||||
LUMP_MAX_HEIGHT,
|
||||
lumpPaint);
|
||||
}
|
||||
|
||||
/**
|
||||
* 生成波形图的采样数据,减少计算量
|
||||
*
|
||||
* @param data
|
||||
*/
|
||||
private void genSamplingPoint(byte[] data) {
|
||||
if (upShowStyle != ShowStyle.STYLE_WAVE && downShowStyle != ShowStyle.STYLE_WAVE) {
|
||||
return;
|
||||
}
|
||||
if (pointList == null) {
|
||||
pointList = new ArrayList<>();
|
||||
} else {
|
||||
pointList.clear();
|
||||
}
|
||||
pointList.add(new Point(0, 0));
|
||||
for (int i = WAVE_SAMPLING_INTERVAL; i < LUMP_COUNT; i += WAVE_SAMPLING_INTERVAL) {
|
||||
pointList.add(new Point(LUMP_SIZE * i, waveData[i]));
|
||||
}
|
||||
pointList.add(new Point(LUMP_SIZE * LUMP_COUNT, 0));
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* 可视化样式
|
||||
*/
|
||||
public enum ShowStyle {
|
||||
/**
|
||||
* 空心的矩形小块
|
||||
*/
|
||||
STYLE_HOLLOW_LUMP,
|
||||
|
||||
/**
|
||||
* 曲线
|
||||
*/
|
||||
STYLE_WAVE,
|
||||
|
||||
/**
|
||||
* 不显示
|
||||
*/
|
||||
STYLE_NOTHING
|
||||
}
|
||||
}
|
||||
@ -0,0 +1,248 @@
|
||||
package com.yeyupiaoling.androidclient;
|
||||
|
||||
import android.Manifest;
|
||||
import android.annotation.SuppressLint;
|
||||
import android.content.pm.PackageManager;
|
||||
import android.media.AudioFormat;
|
||||
import android.media.AudioRecord;
|
||||
import android.media.MediaRecorder;
|
||||
import android.os.Bundle;
|
||||
import android.util.Log;
|
||||
import android.view.MotionEvent;
|
||||
import android.view.View;
|
||||
import android.widget.Button;
|
||||
import android.widget.TextView;
|
||||
|
||||
import androidx.annotation.NonNull;
|
||||
import androidx.appcompat.app.AppCompatActivity;
|
||||
import androidx.core.app.ActivityCompat;
|
||||
|
||||
import org.json.JSONArray;
|
||||
import org.json.JSONException;
|
||||
import org.json.JSONObject;
|
||||
|
||||
import javax.net.ssl.HostnameVerifier;
|
||||
|
||||
import okhttp3.OkHttpClient;
|
||||
import okhttp3.Request;
|
||||
import okhttp3.Response;
|
||||
import okhttp3.WebSocket;
|
||||
import okhttp3.WebSocketListener;
|
||||
import okio.ByteString;
|
||||
|
||||
public class MainActivity extends AppCompatActivity {
|
||||
public static final String TAG = MainActivity.class.getSimpleName();
|
||||
// WebSocket地址,如果服务端没有使用SSL,请使用ws://
|
||||
public static final String ASR_HOST = "wss://192.168.0.1:10095";
|
||||
// 采样率
|
||||
public static final int SAMPLE_RATE = 16000;
|
||||
// 声道数
|
||||
public static final int CHANNEL = AudioFormat.CHANNEL_IN_MONO;
|
||||
// 返回的音频数据的格式
|
||||
public static final int AUDIO_FORMAT = AudioFormat.ENCODING_PCM_16BIT;
|
||||
private AudioRecord audioRecord;
|
||||
private boolean isRecording = false;
|
||||
private int minBufferSize;
|
||||
private AudioView audioView;
|
||||
private String allAsrText = "";
|
||||
private String asrText = "";
|
||||
// 控件
|
||||
private Button recordBtn;
|
||||
private TextView resultText;
|
||||
private WebSocket webSocket;
|
||||
|
||||
@SuppressLint("ClickableViewAccessibility")
|
||||
@Override
|
||||
protected void onCreate(Bundle savedInstanceState) {
|
||||
super.onCreate(savedInstanceState);
|
||||
setContentView(R.layout.activity_main);
|
||||
// 请求权限
|
||||
if (!hasPermission()) {
|
||||
requestPermission();
|
||||
}
|
||||
// 录音参数
|
||||
minBufferSize = AudioRecord.getMinBufferSize(SAMPLE_RATE, CHANNEL, AUDIO_FORMAT);
|
||||
// 显示识别结果控件
|
||||
resultText = findViewById(R.id.result_text);
|
||||
// 显示录音状态控件
|
||||
audioView = findViewById(R.id.audioView);
|
||||
audioView.setStyle(AudioView.ShowStyle.STYLE_HOLLOW_LUMP, AudioView.ShowStyle.STYLE_NOTHING);
|
||||
// 按下识别按钮
|
||||
recordBtn = findViewById(R.id.record_button);
|
||||
recordBtn.setOnTouchListener((v, event) -> {
|
||||
if (event.getAction() == MotionEvent.ACTION_UP) {
|
||||
isRecording = false;
|
||||
stopRecording();
|
||||
recordBtn.setText("按下录音");
|
||||
} else if (event.getAction() == MotionEvent.ACTION_DOWN) {
|
||||
if (webSocket != null){
|
||||
webSocket.cancel();
|
||||
webSocket = null;
|
||||
}
|
||||
allAsrText = "";
|
||||
asrText = "";
|
||||
isRecording = true;
|
||||
startRecording();
|
||||
recordBtn.setText("录音中...");
|
||||
}
|
||||
return true;
|
||||
});
|
||||
}
|
||||
|
||||
// 开始录音
|
||||
private void startRecording() {
|
||||
// 准备录音器
|
||||
try {
|
||||
// 确保有权限
|
||||
if (ActivityCompat.checkSelfPermission(this, android.Manifest.permission.RECORD_AUDIO) != PackageManager.PERMISSION_GRANTED) {
|
||||
requestPermission();
|
||||
return;
|
||||
}
|
||||
// 创建录音器
|
||||
audioRecord = new AudioRecord(MediaRecorder.AudioSource.MIC, SAMPLE_RATE, CHANNEL, AUDIO_FORMAT, minBufferSize);
|
||||
} catch (IllegalStateException e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
// 开启一个线程将录音数据写入文件
|
||||
Thread recordingAudioThread = new Thread(() -> {
|
||||
try {
|
||||
setAudioData();
|
||||
} catch (Exception e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
});
|
||||
recordingAudioThread.start();
|
||||
// 启动录音器
|
||||
audioRecord.startRecording();
|
||||
audioView.setVisibility(View.VISIBLE);
|
||||
}
|
||||
|
||||
// 停止录音器
|
||||
private void stopRecording() {
|
||||
audioRecord.stop();
|
||||
audioRecord.release();
|
||||
audioRecord = null;
|
||||
audioView.setVisibility(View.GONE);
|
||||
}
|
||||
|
||||
// 读取录音数据
|
||||
private void setAudioData() throws Exception {
|
||||
// 如果使用正常的wss,可以去掉这个
|
||||
HostnameVerifier hostnameVerifier = (hostname, session) -> {
|
||||
// 总是返回true,表示不验证域名
|
||||
return true;
|
||||
};
|
||||
// 建立WebSocket连接
|
||||
OkHttpClient client = new OkHttpClient.Builder()
|
||||
.hostnameVerifier(hostnameVerifier)
|
||||
.build();
|
||||
Request request = new Request.Builder()
|
||||
.url(ASR_HOST)
|
||||
.build();
|
||||
webSocket = client.newWebSocket(request, new WebSocketListener() {
|
||||
|
||||
@Override
|
||||
public void onOpen(@NonNull WebSocket webSocket, @NonNull Response response) {
|
||||
// 连接成功时的处理
|
||||
Log.d(TAG, "WebSocket连接成功");
|
||||
}
|
||||
|
||||
@Override
|
||||
public void onMessage(@NonNull WebSocket webSocket, @NonNull String text) {
|
||||
// 接收到消息时的处理
|
||||
Log.d(TAG, "WebSocket接收到消息: " + text);
|
||||
try {
|
||||
JSONObject jsonObject = new JSONObject(text);
|
||||
String t = jsonObject.getString("text");
|
||||
boolean isFinal = jsonObject.getBoolean("is_final");
|
||||
if (!t.equals("")) {
|
||||
// 拼接识别结果
|
||||
String mode = jsonObject.getString("mode");
|
||||
if (mode.equals("2pass-offline")) {
|
||||
asrText = "";
|
||||
allAsrText = allAsrText + t;
|
||||
// 这里可以做一些自动停止录音识别的程序
|
||||
} else {
|
||||
asrText = asrText + t;
|
||||
}
|
||||
}
|
||||
// 显示语音识别结果消息
|
||||
if (!(allAsrText + asrText).equals("")) {
|
||||
runOnUiThread(() -> resultText.setText(allAsrText + asrText));
|
||||
}
|
||||
// 如果检测的录音停止就关闭WebSocket连接
|
||||
if (isFinal) {
|
||||
webSocket.close(1000, "关闭WebSocket连接");
|
||||
}
|
||||
} catch (JSONException e) {
|
||||
throw new RuntimeException(e);
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public void onClosing(@NonNull WebSocket webSocket, int code, @NonNull String reason) {
|
||||
// 关闭连接时的处理
|
||||
Log.d(TAG, "WebSocket关闭连接: " + reason);
|
||||
}
|
||||
|
||||
@Override
|
||||
public void onFailure(@NonNull WebSocket webSocket, @NonNull Throwable t, Response response) {
|
||||
// 连接失败时的处理
|
||||
Log.d(TAG, "WebSocket连接失败: " + t + ": " + response);
|
||||
}
|
||||
});
|
||||
String message = getMessage("2pass", "5, 10, 5", 10, true);
|
||||
webSocket.send(message);
|
||||
|
||||
audioRecord.startRecording();
|
||||
byte[] bytes = new byte[minBufferSize];
|
||||
while (isRecording) {
|
||||
int readSize = audioRecord.read(bytes, 0, minBufferSize);
|
||||
if (readSize > 0) {
|
||||
ByteString byteString = ByteString.of(bytes);
|
||||
webSocket.send(byteString);
|
||||
audioView.post(() -> audioView.setWaveData(bytes));
|
||||
}
|
||||
}
|
||||
JSONObject obj = new JSONObject();
|
||||
obj.put("is_speaking", false);
|
||||
webSocket.send(obj.toString());
|
||||
// webSocket.close(1000, "关闭WebSocket连接");
|
||||
}
|
||||
|
||||
// 发送第一步的JSON数据
|
||||
public String getMessage(String mode, String strChunkSize, int chunkInterval, boolean isSpeaking) {
|
||||
try {
|
||||
JSONObject obj = new JSONObject();
|
||||
obj.put("mode", mode);
|
||||
JSONArray array = new JSONArray();
|
||||
String[] chunkList = strChunkSize.split(",");
|
||||
for (String s : chunkList) {
|
||||
array.put(Integer.valueOf(s.trim()));
|
||||
}
|
||||
obj.put("chunk_size", array);
|
||||
obj.put("chunk_interval", chunkInterval);
|
||||
obj.put("wav_name", "default");
|
||||
// 热词
|
||||
obj.put("hotwords", "阿里巴巴 达摩院");
|
||||
obj.put("wav_format", "pcm");
|
||||
obj.put("is_speaking", isSpeaking);
|
||||
return obj.toString();
|
||||
} catch (Exception e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
return "";
|
||||
}
|
||||
|
||||
// 检查权限
|
||||
private boolean hasPermission() {
|
||||
return checkSelfPermission(android.Manifest.permission.RECORD_AUDIO) == PackageManager.PERMISSION_GRANTED &&
|
||||
checkSelfPermission(android.Manifest.permission.WRITE_EXTERNAL_STORAGE) == PackageManager.PERMISSION_GRANTED;
|
||||
}
|
||||
|
||||
// 请求权限
|
||||
private void requestPermission() {
|
||||
requestPermissions(new String[]{android.Manifest.permission.RECORD_AUDIO,
|
||||
Manifest.permission.WRITE_EXTERNAL_STORAGE}, 1);
|
||||
}
|
||||
}
|
||||
@ -0,0 +1,170 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<vector xmlns:android="http://schemas.android.com/apk/res/android"
|
||||
android:width="108dp"
|
||||
android:height="108dp"
|
||||
android:viewportWidth="108"
|
||||
android:viewportHeight="108">
|
||||
<path
|
||||
android:fillColor="#3DDC84"
|
||||
android:pathData="M0,0h108v108h-108z" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M9,0L9,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M19,0L19,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M29,0L29,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M39,0L39,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M49,0L49,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M59,0L59,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M69,0L69,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M79,0L79,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M89,0L89,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M99,0L99,108"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,9L108,9"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,19L108,19"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,29L108,29"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,39L108,39"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,49L108,49"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,59L108,59"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,69L108,69"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,79L108,79"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,89L108,89"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M0,99L108,99"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M19,29L89,29"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M19,39L89,39"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M19,49L89,49"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M19,59L89,59"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M19,69L89,69"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M19,79L89,79"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M29,19L29,89"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M39,19L39,89"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M49,19L49,89"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M59,19L59,89"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M69,19L69,89"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
<path
|
||||
android:fillColor="#00000000"
|
||||
android:pathData="M79,19L79,89"
|
||||
android:strokeWidth="0.8"
|
||||
android:strokeColor="#33FFFFFF" />
|
||||
</vector>
|
||||
@ -0,0 +1,30 @@
|
||||
<vector xmlns:android="http://schemas.android.com/apk/res/android"
|
||||
xmlns:aapt="http://schemas.android.com/aapt"
|
||||
android:width="108dp"
|
||||
android:height="108dp"
|
||||
android:viewportWidth="108"
|
||||
android:viewportHeight="108">
|
||||
<path android:pathData="M31,63.928c0,0 6.4,-11 12.1,-13.1c7.2,-2.6 26,-1.4 26,-1.4l38.1,38.1L107,108.928l-32,-1L31,63.928z">
|
||||
<aapt:attr name="android:fillColor">
|
||||
<gradient
|
||||
android:endX="85.84757"
|
||||
android:endY="92.4963"
|
||||
android:startX="42.9492"
|
||||
android:startY="49.59793"
|
||||
android:type="linear">
|
||||
<item
|
||||
android:color="#44000000"
|
||||
android:offset="0.0" />
|
||||
<item
|
||||
android:color="#00000000"
|
||||
android:offset="1.0" />
|
||||
</gradient>
|
||||
</aapt:attr>
|
||||
</path>
|
||||
<path
|
||||
android:fillColor="#FFFFFF"
|
||||
android:fillType="nonZero"
|
||||
android:pathData="M65.3,45.828l3.8,-6.6c0.2,-0.4 0.1,-0.9 -0.3,-1.1c-0.4,-0.2 -0.9,-0.1 -1.1,0.3l-3.9,6.7c-6.3,-2.8 -13.4,-2.8 -19.7,0l-3.9,-6.7c-0.2,-0.4 -0.7,-0.5 -1.1,-0.3C38.8,38.328 38.7,38.828 38.9,39.228l3.8,6.6C36.2,49.428 31.7,56.028 31,63.928h46C76.3,56.028 71.8,49.428 65.3,45.828zM43.4,57.328c-0.8,0 -1.5,-0.5 -1.8,-1.2c-0.3,-0.7 -0.1,-1.5 0.4,-2.1c0.5,-0.5 1.4,-0.7 2.1,-0.4c0.7,0.3 1.2,1 1.2,1.8C45.3,56.528 44.5,57.328 43.4,57.328L43.4,57.328zM64.6,57.328c-0.8,0 -1.5,-0.5 -1.8,-1.2s-0.1,-1.5 0.4,-2.1c0.5,-0.5 1.4,-0.7 2.1,-0.4c0.7,0.3 1.2,1 1.2,1.8C66.5,56.528 65.6,57.328 64.6,57.328L64.6,57.328z"
|
||||
android:strokeWidth="1"
|
||||
android:strokeColor="#00000000" />
|
||||
</vector>
|
||||
@ -0,0 +1,35 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
|
||||
xmlns:tools="http://schemas.android.com/tools"
|
||||
android:layout_width="match_parent"
|
||||
android:layout_height="match_parent"
|
||||
android:orientation="vertical"
|
||||
tools:context=".MainActivity">
|
||||
|
||||
<Button
|
||||
android:id="@+id/record_button"
|
||||
android:layout_width="match_parent"
|
||||
android:layout_height="wrap_content"
|
||||
android:layout_alignParentBottom="true"
|
||||
android:layout_marginLeft="10dp"
|
||||
android:layout_marginRight="10dp"
|
||||
android:layout_marginBottom="10dp"
|
||||
android:text="按下录音" />
|
||||
|
||||
<com.yeyupiaoling.androidclient.AudioView
|
||||
android:id="@+id/audioView"
|
||||
android:layout_width="match_parent"
|
||||
android:layout_height="100dp"
|
||||
android:layout_above="@id/record_button"
|
||||
android:layout_marginStart="10dp"
|
||||
android:visibility="gone" />
|
||||
|
||||
<TextView
|
||||
android:id="@+id/result_text"
|
||||
android:layout_above="@id/record_button"
|
||||
android:layout_width="match_parent"
|
||||
android:hint="显示识别结果"
|
||||
android:textSize="22sp"
|
||||
android:layout_height="match_parent"/>
|
||||
|
||||
</RelativeLayout>
|
||||
@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<adaptive-icon xmlns:android="http://schemas.android.com/apk/res/android">
|
||||
<background android:drawable="@drawable/ic_launcher_background" />
|
||||
<foreground android:drawable="@drawable/ic_launcher_foreground" />
|
||||
<monochrome android:drawable="@drawable/ic_launcher_foreground" />
|
||||
</adaptive-icon>
|
||||
@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<adaptive-icon xmlns:android="http://schemas.android.com/apk/res/android">
|
||||
<background android:drawable="@drawable/ic_launcher_background" />
|
||||
<foreground android:drawable="@drawable/ic_launcher_foreground" />
|
||||
<monochrome android:drawable="@drawable/ic_launcher_foreground" />
|
||||
</adaptive-icon>
|
||||
|
After Width: | Height: | Size: 1.4 KiB |
|
After Width: | Height: | Size: 2.8 KiB |
|
After Width: | Height: | Size: 982 B |
|
After Width: | Height: | Size: 1.7 KiB |
|
After Width: | Height: | Size: 1.9 KiB |
|
After Width: | Height: | Size: 3.8 KiB |
|
After Width: | Height: | Size: 2.8 KiB |
|
After Width: | Height: | Size: 5.8 KiB |
|
After Width: | Height: | Size: 3.8 KiB |
|
After Width: | Height: | Size: 7.6 KiB |
@ -0,0 +1,10 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<resources>
|
||||
<color name="purple_200">#FFBB86FC</color>
|
||||
<color name="purple_500">#FF6200EE</color>
|
||||
<color name="purple_700">#FF3700B3</color>
|
||||
<color name="teal_200">#FF03DAC5</color>
|
||||
<color name="teal_700">#FF018786</color>
|
||||
<color name="black">#FF000000</color>
|
||||
<color name="white">#FFFFFFFF</color>
|
||||
</resources>
|
||||
@ -0,0 +1,3 @@
|
||||
<resources>
|
||||
<string name="app_name">FunASR</string>
|
||||
</resources>
|
||||
@ -0,0 +1,16 @@
|
||||
<resources xmlns:tools="http://schemas.android.com/tools">
|
||||
<!-- Base application theme. -->
|
||||
<style name="Theme.AndroidClient" parent="Theme.MaterialComponents.DayNight.DarkActionBar">
|
||||
<!-- Primary brand color. -->
|
||||
<item name="colorPrimary">@color/purple_500</item>
|
||||
<item name="colorPrimaryVariant">@color/purple_700</item>
|
||||
<item name="colorOnPrimary">@color/white</item>
|
||||
<!-- Secondary brand color. -->
|
||||
<item name="colorSecondary">@color/teal_200</item>
|
||||
<item name="colorSecondaryVariant">@color/teal_700</item>
|
||||
<item name="colorOnSecondary">@color/black</item>
|
||||
<!-- Status bar color. -->
|
||||
<item name="android:statusBarColor">?attr/colorPrimaryVariant</item>
|
||||
<!-- Customize your theme here. -->
|
||||
</style>
|
||||
</resources>
|
||||
@ -0,0 +1,13 @@
|
||||
<?xml version="1.0" encoding="utf-8"?><!--
|
||||
Sample backup rules file; uncomment and customize as necessary.
|
||||
See https://developer.android.com/guide/topics/data/autobackup
|
||||
for details.
|
||||
Note: This file is ignored for devices older that API 31
|
||||
See https://developer.android.com/about/versions/12/backup-restore
|
||||
-->
|
||||
<full-backup-content>
|
||||
<!--
|
||||
<include domain="sharedpref" path="."/>
|
||||
<exclude domain="sharedpref" path="device.xml"/>
|
||||
-->
|
||||
</full-backup-content>
|
||||
@ -0,0 +1,19 @@
|
||||
<?xml version="1.0" encoding="utf-8"?><!--
|
||||
Sample data extraction rules file; uncomment and customize as necessary.
|
||||
See https://developer.android.com/about/versions/12/backup-restore#xml-changes
|
||||
for details.
|
||||
-->
|
||||
<data-extraction-rules>
|
||||
<cloud-backup>
|
||||
<!--
|
||||
<include .../>
|
||||
<exclude .../>
|
||||
-->
|
||||
</cloud-backup>
|
||||
<!--
|
||||
<device-transfer>
|
||||
<include .../>
|
||||
<exclude .../>
|
||||
</device-transfer>
|
||||
-->
|
||||
</data-extraction-rules>
|
||||
@ -0,0 +1,17 @@
|
||||
package com.yeyupiaoling.androidclient
|
||||
|
||||
import org.junit.Test
|
||||
|
||||
import org.junit.Assert.*
|
||||
|
||||
/**
|
||||
* Example local unit test, which will execute on the development machine (host).
|
||||
*
|
||||
* See [testing documentation](http://d.android.com/tools/testing).
|
||||
*/
|
||||
class ExampleUnitTest {
|
||||
@Test
|
||||
fun addition_isCorrect() {
|
||||
assertEquals(4, 2 + 2)
|
||||
}
|
||||
}
|
||||
5
funasr/runtime/android/AndroidClient/build.gradle
Normal file
@ -0,0 +1,5 @@
|
||||
// Top-level build file where you can add configuration options common to all sub-projects/modules.
|
||||
plugins {
|
||||
id 'com.android.application' version '8.1.2' apply false
|
||||
id 'org.jetbrains.kotlin.android' version '1.8.10' apply false
|
||||
}
|
||||
23
funasr/runtime/android/AndroidClient/gradle.properties
Normal file
@ -0,0 +1,23 @@
|
||||
# Project-wide Gradle settings.
|
||||
# IDE (e.g. Android Studio) users:
|
||||
# Gradle settings configured through the IDE *will override*
|
||||
# any settings specified in this file.
|
||||
# For more details on how to configure your build environment visit
|
||||
# http://www.gradle.org/docs/current/userguide/build_environment.html
|
||||
# Specifies the JVM arguments used for the daemon process.
|
||||
# The setting is particularly useful for tweaking memory settings.
|
||||
org.gradle.jvmargs=-Xmx2048m -Dfile.encoding=UTF-8
|
||||
# When configured, Gradle will run in incubating parallel mode.
|
||||
# This option should only be used with decoupled projects. More details, visit
|
||||
# http://www.gradle.org/docs/current/userguide/multi_project_builds.html#sec:decoupled_projects
|
||||
# org.gradle.parallel=true
|
||||
# AndroidX package structure to make it clearer which packages are bundled with the
|
||||
# Android operating system, and which are packaged with your app's APK
|
||||
# https://developer.android.com/topic/libraries/support-library/androidx-rn
|
||||
android.useAndroidX=true
|
||||
# Kotlin code style for this project: "official" or "obsolete":
|
||||
kotlin.code.style=official
|
||||
# Enables namespacing of each library's R class so that its R class includes only the
|
||||
# resources declared in the library itself and none from the library's dependencies,
|
||||
# thereby reducing the size of the R class for that library
|
||||
android.nonTransitiveRClass=true
|
||||
BIN
funasr/runtime/android/AndroidClient/gradle/wrapper/gradle-wrapper.jar
vendored
Normal file
6
funasr/runtime/android/AndroidClient/gradle/wrapper/gradle-wrapper.properties
vendored
Normal file
@ -0,0 +1,6 @@
|
||||
#Fri Oct 13 14:55:29 CST 2023
|
||||
distributionBase=GRADLE_USER_HOME
|
||||
distributionPath=wrapper/dists
|
||||
distributionUrl=https\://services.gradle.org/distributions/gradle-8.0-bin.zip
|
||||
zipStoreBase=GRADLE_USER_HOME
|
||||
zipStorePath=wrapper/dists
|
||||
185
funasr/runtime/android/AndroidClient/gradlew
vendored
Normal file
@ -0,0 +1,185 @@
|
||||
#!/usr/bin/env sh
|
||||
|
||||
#
|
||||
# Copyright 2015 the original author or authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# https://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
##############################################################################
|
||||
##
|
||||
## Gradle start up script for UN*X
|
||||
##
|
||||
##############################################################################
|
||||
|
||||
# Attempt to set APP_HOME
|
||||
# Resolve links: $0 may be a link
|
||||
PRG="$0"
|
||||
# Need this for relative symlinks.
|
||||
while [ -h "$PRG" ] ; do
|
||||
ls=`ls -ld "$PRG"`
|
||||
link=`expr "$ls" : '.*-> \(.*\)$'`
|
||||
if expr "$link" : '/.*' > /dev/null; then
|
||||
PRG="$link"
|
||||
else
|
||||
PRG=`dirname "$PRG"`"/$link"
|
||||
fi
|
||||
done
|
||||
SAVED="`pwd`"
|
||||
cd "`dirname \"$PRG\"`/" >/dev/null
|
||||
APP_HOME="`pwd -P`"
|
||||
cd "$SAVED" >/dev/null
|
||||
|
||||
APP_NAME="Gradle"
|
||||
APP_BASE_NAME=`basename "$0"`
|
||||
|
||||
# Add default JVM options here. You can also use JAVA_OPTS and GRADLE_OPTS to pass JVM options to this script.
|
||||
DEFAULT_JVM_OPTS='"-Xmx64m" "-Xms64m"'
|
||||
|
||||
# Use the maximum available, or set MAX_FD != -1 to use that value.
|
||||
MAX_FD="maximum"
|
||||
|
||||
warn () {
|
||||
echo "$*"
|
||||
}
|
||||
|
||||
die () {
|
||||
echo
|
||||
echo "$*"
|
||||
echo
|
||||
exit 1
|
||||
}
|
||||
|
||||
# OS specific support (must be 'true' or 'false').
|
||||
cygwin=false
|
||||
msys=false
|
||||
darwin=false
|
||||
nonstop=false
|
||||
case "`uname`" in
|
||||
CYGWIN* )
|
||||
cygwin=true
|
||||
;;
|
||||
Darwin* )
|
||||
darwin=true
|
||||
;;
|
||||
MINGW* )
|
||||
msys=true
|
||||
;;
|
||||
NONSTOP* )
|
||||
nonstop=true
|
||||
;;
|
||||
esac
|
||||
|
||||
CLASSPATH=$APP_HOME/gradle/wrapper/gradle-wrapper.jar
|
||||
|
||||
|
||||
# Determine the Java command to use to start the JVM.
|
||||
if [ -n "$JAVA_HOME" ] ; then
|
||||
if [ -x "$JAVA_HOME/jre/sh/java" ] ; then
|
||||
# IBM's JDK on AIX uses strange locations for the executables
|
||||
JAVACMD="$JAVA_HOME/jre/sh/java"
|
||||
else
|
||||
JAVACMD="$JAVA_HOME/bin/java"
|
||||
fi
|
||||
if [ ! -x "$JAVACMD" ] ; then
|
||||
die "ERROR: JAVA_HOME is set to an invalid directory: $JAVA_HOME
|
||||
|
||||
Please set the JAVA_HOME variable in your environment to match the
|
||||
location of your Java installation."
|
||||
fi
|
||||
else
|
||||
JAVACMD="java"
|
||||
which java >/dev/null 2>&1 || die "ERROR: JAVA_HOME is not set and no 'java' command could be found in your PATH.
|
||||
|
||||
Please set the JAVA_HOME variable in your environment to match the
|
||||
location of your Java installation."
|
||||
fi
|
||||
|
||||
# Increase the maximum file descriptors if we can.
|
||||
if [ "$cygwin" = "false" -a "$darwin" = "false" -a "$nonstop" = "false" ] ; then
|
||||
MAX_FD_LIMIT=`ulimit -H -n`
|
||||
if [ $? -eq 0 ] ; then
|
||||
if [ "$MAX_FD" = "maximum" -o "$MAX_FD" = "max" ] ; then
|
||||
MAX_FD="$MAX_FD_LIMIT"
|
||||
fi
|
||||
ulimit -n $MAX_FD
|
||||
if [ $? -ne 0 ] ; then
|
||||
warn "Could not set maximum file descriptor limit: $MAX_FD"
|
||||
fi
|
||||
else
|
||||
warn "Could not query maximum file descriptor limit: $MAX_FD_LIMIT"
|
||||
fi
|
||||
fi
|
||||
|
||||
# For Darwin, add options to specify how the application appears in the dock
|
||||
if $darwin; then
|
||||
GRADLE_OPTS="$GRADLE_OPTS \"-Xdock:name=$APP_NAME\" \"-Xdock:icon=$APP_HOME/media/gradle.icns\""
|
||||
fi
|
||||
|
||||
# For Cygwin or MSYS, switch paths to Windows format before running java
|
||||
if [ "$cygwin" = "true" -o "$msys" = "true" ] ; then
|
||||
APP_HOME=`cygpath --path --mixed "$APP_HOME"`
|
||||
CLASSPATH=`cygpath --path --mixed "$CLASSPATH"`
|
||||
|
||||
JAVACMD=`cygpath --unix "$JAVACMD"`
|
||||
|
||||
# We build the pattern for arguments to be converted via cygpath
|
||||
ROOTDIRSRAW=`find -L / -maxdepth 1 -mindepth 1 -type d 2>/dev/null`
|
||||
SEP=""
|
||||
for dir in $ROOTDIRSRAW ; do
|
||||
ROOTDIRS="$ROOTDIRS$SEP$dir"
|
||||
SEP="|"
|
||||
done
|
||||
OURCYGPATTERN="(^($ROOTDIRS))"
|
||||
# Add a user-defined pattern to the cygpath arguments
|
||||
if [ "$GRADLE_CYGPATTERN" != "" ] ; then
|
||||
OURCYGPATTERN="$OURCYGPATTERN|($GRADLE_CYGPATTERN)"
|
||||
fi
|
||||
# Now convert the arguments - kludge to limit ourselves to /bin/sh
|
||||
i=0
|
||||
for arg in "$@" ; do
|
||||
CHECK=`echo "$arg"|egrep -c "$OURCYGPATTERN" -`
|
||||
CHECK2=`echo "$arg"|egrep -c "^-"` ### Determine if an option
|
||||
|
||||
if [ $CHECK -ne 0 ] && [ $CHECK2 -eq 0 ] ; then ### Added a condition
|
||||
eval `echo args$i`=`cygpath --path --ignore --mixed "$arg"`
|
||||
else
|
||||
eval `echo args$i`="\"$arg\""
|
||||
fi
|
||||
i=`expr $i + 1`
|
||||
done
|
||||
case $i in
|
||||
0) set -- ;;
|
||||
1) set -- "$args0" ;;
|
||||
2) set -- "$args0" "$args1" ;;
|
||||
3) set -- "$args0" "$args1" "$args2" ;;
|
||||
4) set -- "$args0" "$args1" "$args2" "$args3" ;;
|
||||
5) set -- "$args0" "$args1" "$args2" "$args3" "$args4" ;;
|
||||
6) set -- "$args0" "$args1" "$args2" "$args3" "$args4" "$args5" ;;
|
||||
7) set -- "$args0" "$args1" "$args2" "$args3" "$args4" "$args5" "$args6" ;;
|
||||
8) set -- "$args0" "$args1" "$args2" "$args3" "$args4" "$args5" "$args6" "$args7" ;;
|
||||
9) set -- "$args0" "$args1" "$args2" "$args3" "$args4" "$args5" "$args6" "$args7" "$args8" ;;
|
||||
esac
|
||||
fi
|
||||
|
||||
# Escape application args
|
||||
save () {
|
||||
for i do printf %s\\n "$i" | sed "s/'/'\\\\''/g;1s/^/'/;\$s/\$/' \\\\/" ; done
|
||||
echo " "
|
||||
}
|
||||
APP_ARGS=`save "$@"`
|
||||
|
||||
# Collect all arguments for the java command, following the shell quoting and substitution rules
|
||||
eval set -- $DEFAULT_JVM_OPTS $JAVA_OPTS $GRADLE_OPTS "\"-Dorg.gradle.appname=$APP_BASE_NAME\"" -classpath "\"$CLASSPATH\"" org.gradle.wrapper.GradleWrapperMain "$APP_ARGS"
|
||||
|
||||
exec "$JAVACMD" "$@"
|
||||
89
funasr/runtime/android/AndroidClient/gradlew.bat
vendored
Normal file
@ -0,0 +1,89 @@
|
||||
@rem
|
||||
@rem Copyright 2015 the original author or authors.
|
||||
@rem
|
||||
@rem Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@rem you may not use this file except in compliance with the License.
|
||||
@rem You may obtain a copy of the License at
|
||||
@rem
|
||||
@rem https://www.apache.org/licenses/LICENSE-2.0
|
||||
@rem
|
||||
@rem Unless required by applicable law or agreed to in writing, software
|
||||
@rem distributed under the License is distributed on an "AS IS" BASIS,
|
||||
@rem WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
@rem See the License for the specific language governing permissions and
|
||||
@rem limitations under the License.
|
||||
@rem
|
||||
|
||||
@if "%DEBUG%" == "" @echo off
|
||||
@rem ##########################################################################
|
||||
@rem
|
||||
@rem Gradle startup script for Windows
|
||||
@rem
|
||||
@rem ##########################################################################
|
||||
|
||||
@rem Set local scope for the variables with windows NT shell
|
||||
if "%OS%"=="Windows_NT" setlocal
|
||||
|
||||
set DIRNAME=%~dp0
|
||||
if "%DIRNAME%" == "" set DIRNAME=.
|
||||
set APP_BASE_NAME=%~n0
|
||||
set APP_HOME=%DIRNAME%
|
||||
|
||||
@rem Resolve any "." and ".." in APP_HOME to make it shorter.
|
||||
for %%i in ("%APP_HOME%") do set APP_HOME=%%~fi
|
||||
|
||||
@rem Add default JVM options here. You can also use JAVA_OPTS and GRADLE_OPTS to pass JVM options to this script.
|
||||
set DEFAULT_JVM_OPTS="-Xmx64m" "-Xms64m"
|
||||
|
||||
@rem Find java.exe
|
||||
if defined JAVA_HOME goto findJavaFromJavaHome
|
||||
|
||||
set JAVA_EXE=java.exe
|
||||
%JAVA_EXE% -version >NUL 2>&1
|
||||
if "%ERRORLEVEL%" == "0" goto execute
|
||||
|
||||
echo.
|
||||
echo ERROR: JAVA_HOME is not set and no 'java' command could be found in your PATH.
|
||||
echo.
|
||||
echo Please set the JAVA_HOME variable in your environment to match the
|
||||
echo location of your Java installation.
|
||||
|
||||
goto fail
|
||||
|
||||
:findJavaFromJavaHome
|
||||
set JAVA_HOME=%JAVA_HOME:"=%
|
||||
set JAVA_EXE=%JAVA_HOME%/bin/java.exe
|
||||
|
||||
if exist "%JAVA_EXE%" goto execute
|
||||
|
||||
echo.
|
||||
echo ERROR: JAVA_HOME is set to an invalid directory: %JAVA_HOME%
|
||||
echo.
|
||||
echo Please set the JAVA_HOME variable in your environment to match the
|
||||
echo location of your Java installation.
|
||||
|
||||
goto fail
|
||||
|
||||
:execute
|
||||
@rem Setup the command line
|
||||
|
||||
set CLASSPATH=%APP_HOME%\gradle\wrapper\gradle-wrapper.jar
|
||||
|
||||
|
||||
@rem Execute Gradle
|
||||
"%JAVA_EXE%" %DEFAULT_JVM_OPTS% %JAVA_OPTS% %GRADLE_OPTS% "-Dorg.gradle.appname=%APP_BASE_NAME%" -classpath "%CLASSPATH%" org.gradle.wrapper.GradleWrapperMain %*
|
||||
|
||||
:end
|
||||
@rem End local scope for the variables with windows NT shell
|
||||
if "%ERRORLEVEL%"=="0" goto mainEnd
|
||||
|
||||
:fail
|
||||
rem Set variable GRADLE_EXIT_CONSOLE if you need the _script_ return code instead of
|
||||
rem the _cmd.exe /c_ return code!
|
||||
if not "" == "%GRADLE_EXIT_CONSOLE%" exit 1
|
||||
exit /b 1
|
||||
|
||||
:mainEnd
|
||||
if "%OS%"=="Windows_NT" endlocal
|
||||
|
||||
:omega
|
||||
17
funasr/runtime/android/AndroidClient/settings.gradle
Normal file
@ -0,0 +1,17 @@
|
||||
pluginManagement {
|
||||
repositories {
|
||||
google()
|
||||
mavenCentral()
|
||||
gradlePluginPortal()
|
||||
}
|
||||
}
|
||||
dependencyResolutionManagement {
|
||||
repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)
|
||||
repositories {
|
||||
google()
|
||||
mavenCentral()
|
||||
}
|
||||
}
|
||||
|
||||
rootProject.name = "AndroidClient"
|
||||
include ':app'
|
||||
BIN
funasr/runtime/android/images/demo.png
Normal file
|
After Width: | Height: | Size: 44 KiB |
13
funasr/runtime/android/readme.md
Normal file
@ -0,0 +1,13 @@
|
||||
# AndroidClient
|
||||
|
||||
先说明,本项目是使用WebSocket连接服务器的语音识别服务,并不是将FunASR部署到Android里,服务启动方式请查看文档[SDK_advanced_guide_online_zh.md](https://github.com/alibaba-damo-academy/FunASR/blob/main/funasr/runtime/docs/SDK_advanced_guide_online_zh.md)。
|
||||
|
||||
使用最新的 Android Studio 打开`AndroidClient`项目,运行即可,在运行之前还需要修改`ASR_HOST`参数,该参数是语音识别服务的WebSocket接口地址,需要修复为开发者自己的服务地址。
|
||||
|
||||
应用只有一个功能,按钮下开始识别,松开按钮结束识别。
|
||||
|
||||
应用效果图:
|
||||
|
||||
<div align="center">
|
||||
<img src="./images/demo.png" alt="应用效果图" width="300">
|
||||
</div>
|
||||
@ -149,3 +149,34 @@ Node: '--quantize false' means fp32, otherwise it will be int8
|
||||
| 64 (onnx int8) | 81s | 0.002232 | 448 |
|
||||
| 96 (onnx fp32) | 117s | 0.003257 | 307 |
|
||||
| 96 (onnx int8) | 81s | 0.002258 | 442 |
|
||||
|
||||
## [FSMN-VAD](https://www.modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/summary) + [Paraformer-en](https://www.modelscope.cn/models/damo/speech_paraformer-large_asr_nat-en-16k-common-vocab10020-onnx/summary) + [CT-Transformer](https://www.modelscope.cn/models/damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch/summary)
|
||||
|
||||
```shell
|
||||
./funasr-onnx-offline-rtf \
|
||||
--model-dir ./asrmodel/speech_paraformer-large_asr_nat-en-16k-common-vocab10020-onnx \
|
||||
--quantize true \
|
||||
--vad-dir ./asrmodel/speech_fsmn_vad_zh-cn-16k-common-pytorch \
|
||||
--punc-dir ./asrmodel/punc_ct-transformer_zh-cn-common-vocab272727-pytorch \
|
||||
--wav-path ./librispeech_test_clean.scp \
|
||||
--thread-num 32
|
||||
|
||||
Node: '--quantize false' means fp32, otherwise it will be int8
|
||||
```
|
||||
|
||||
### Intel(R) Xeon(R) Platinum 8369B CPU @ 2.90GHz 16core-32processor with avx512_vnni
|
||||
|
||||
| concurrent-tasks | processing time(s) | RTF | Speedup Rate |
|
||||
|---------------------|:------------------:|----------|:------------:|
|
||||
| 1 (onnx fp32) | 1327s | 0.0682 | 15 |
|
||||
| 1 (onnx int8) | 734s | 0.0377 | 26 |
|
||||
| 8 (onnx fp32) | 169s | 0.0087 | 114 |
|
||||
| 8 (onnx int8) | 94s | 0.0048 | 205 |
|
||||
| 16 (onnx fp32) | 89s | 0.0046 | 217 |
|
||||
| 16 (onnx int8) | 50s | 0.0025 | 388 |
|
||||
| 32 (onnx fp32) | 78s | 0.0040 | 248 |
|
||||
| 32 (onnx int8) | 43s | 0.0022 | 448 |
|
||||
| 64 (onnx fp32) | 79s | 0.0041 | 243 |
|
||||
| 64 (onnx int8) | 44s | 0.0022 | 438 |
|
||||
| 96 (onnx fp32) | 80s | 0.0041 | 240 |
|
||||
| 96 (onnx int8) | 45s | 0.0023 | 428 |
|
||||
@ -1,13 +1,17 @@
|
||||
# ONNXRuntime-python
|
||||
|
||||
|
||||
## Install `funasr_onnx`
|
||||
## Install `funasr-onnx`
|
||||
|
||||
install from pip
|
||||
```shell
|
||||
pip install -U funasr_onnx
|
||||
pip install -U funasr-onnx
|
||||
# For the users in China, you could install with the command:
|
||||
# pip install -U funasr_onnx -i https://mirror.sjtu.edu.cn/pypi/web/simple
|
||||
# pip install -U funasr-onnx -i https://mirror.sjtu.edu.cn/pypi/web/simple
|
||||
# If you want to export .onnx file, you should install modelscope and funasr
|
||||
pip install -U modelscope funasr
|
||||
# For the users in China, you could install with the command:
|
||||
# pip install -U modelscope funasr -i https://mirror.sjtu.edu.cn/pypi/web/simple
|
||||
```
|
||||
|
||||
or install from source code
|
||||
|
||||
675
funasr/tasks/whisper.py
Normal file
@ -0,0 +1,675 @@
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Callable
|
||||
from typing import Collection
|
||||
from typing import Dict
|
||||
from typing import List
|
||||
from typing import Optional
|
||||
from typing import Tuple
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import yaml
|
||||
|
||||
from funasr.datasets.collate_fn import CommonCollateFn
|
||||
from funasr.datasets.preprocessor import CommonPreprocessor
|
||||
from funasr.layers.abs_normalize import AbsNormalize
|
||||
from funasr.layers.global_mvn import GlobalMVN
|
||||
from funasr.layers.utterance_mvn import UtteranceMVN
|
||||
from funasr.models.ctc import CTC
|
||||
from funasr.models.decoder.abs_decoder import AbsDecoder
|
||||
from funasr.models.decoder.rnn_decoder import RNNDecoder
|
||||
from funasr.models.decoder.sanm_decoder import ParaformerSANMDecoder, FsmnDecoderSCAMAOpt
|
||||
from funasr.models.decoder.transformer_decoder import (
|
||||
DynamicConvolution2DTransformerDecoder, # noqa: H301
|
||||
)
|
||||
from funasr.models.decoder.transformer_decoder import DynamicConvolutionTransformerDecoder
|
||||
from funasr.models.decoder.transformer_decoder import (
|
||||
LightweightConvolution2DTransformerDecoder, # noqa: H301
|
||||
)
|
||||
from funasr.models.decoder.transformer_decoder import (
|
||||
LightweightConvolutionTransformerDecoder, # noqa: H301
|
||||
)
|
||||
from funasr.models.decoder.transformer_decoder import ParaformerDecoderSAN
|
||||
from funasr.models.decoder.transformer_decoder import TransformerDecoder
|
||||
from funasr.models.decoder.contextual_decoder import ContextualParaformerDecoder
|
||||
from funasr.models.decoder.transformer_decoder import SAAsrTransformerDecoder
|
||||
from funasr.models.e2e_asr import ASRModel
|
||||
from funasr.models.decoder.rnnt_decoder import RNNTDecoder
|
||||
from funasr.models.joint_net.joint_network import JointNetwork
|
||||
from funasr.models.e2e_asr_paraformer import Paraformer, ParaformerOnline, ParaformerBert, BiCifParaformer, ContextualParaformer
|
||||
from funasr.models.e2e_asr_contextual_paraformer import NeatContextualParaformer
|
||||
from funasr.models.e2e_tp import TimestampPredictor
|
||||
from funasr.models.e2e_asr_mfcca import MFCCA
|
||||
from funasr.models.e2e_sa_asr import SAASRModel
|
||||
from funasr.models.e2e_uni_asr import UniASR
|
||||
from funasr.models.e2e_asr_transducer import TransducerModel, UnifiedTransducerModel
|
||||
from funasr.models.e2e_asr_bat import BATModel
|
||||
from funasr.models.encoder.abs_encoder import AbsEncoder
|
||||
from funasr.models.encoder.conformer_encoder import ConformerEncoder, ConformerChunkEncoder
|
||||
from funasr.models.encoder.data2vec_encoder import Data2VecEncoder
|
||||
from funasr.models.encoder.rnn_encoder import RNNEncoder
|
||||
from funasr.models.encoder.sanm_encoder import SANMEncoder, SANMEncoderChunkOpt
|
||||
from funasr.models.encoder.transformer_encoder import TransformerEncoder
|
||||
from funasr.models.encoder.mfcca_encoder import MFCCAEncoder
|
||||
from funasr.models.encoder.resnet34_encoder import ResNet34Diar
|
||||
from funasr.models.frontend.abs_frontend import AbsFrontend
|
||||
from funasr.models.frontend.default import DefaultFrontend
|
||||
from funasr.models.frontend.default import MultiChannelFrontend
|
||||
from funasr.models.frontend.fused import FusedFrontends
|
||||
from funasr.models.frontend.s3prl import S3prlFrontend
|
||||
from funasr.models.frontend.wav_frontend import WavFrontend
|
||||
from funasr.models.frontend.windowing import SlidingWindow
|
||||
from funasr.models.postencoder.abs_postencoder import AbsPostEncoder
|
||||
from funasr.models.postencoder.hugging_face_transformers_postencoder import (
|
||||
HuggingFaceTransformersPostEncoder, # noqa: H301
|
||||
)
|
||||
from funasr.models.predictor.cif import CifPredictor, CifPredictorV2, CifPredictorV3, BATPredictor
|
||||
from funasr.models.preencoder.abs_preencoder import AbsPreEncoder
|
||||
from funasr.models.preencoder.linear import LinearProjection
|
||||
from funasr.models.preencoder.sinc import LightweightSincConvs
|
||||
from funasr.models.specaug.abs_specaug import AbsSpecAug
|
||||
from funasr.models.specaug.specaug import SpecAug
|
||||
from funasr.models.specaug.specaug import SpecAugLFR
|
||||
from funasr.modules.subsampling import Conv1dSubsampling
|
||||
from funasr.tasks.abs_task import AbsTask
|
||||
from funasr.text.phoneme_tokenizer import g2p_choices
|
||||
from funasr.torch_utils.initialize import initialize
|
||||
from funasr.models.base_model import FunASRModel
|
||||
from funasr.train.class_choices import ClassChoices
|
||||
from funasr.train.trainer import Trainer
|
||||
from funasr.utils.get_default_kwargs import get_default_kwargs
|
||||
from funasr.utils.nested_dict_action import NestedDictAction
|
||||
from funasr.utils.types import float_or_none
|
||||
from funasr.utils.types import int_or_none
|
||||
from funasr.utils.types import str2bool
|
||||
from funasr.utils.types import str_or_none
|
||||
|
||||
from funasr.models.whisper_models.model import Whisper, AudioEncoder, TextDecoder
|
||||
|
||||
frontend_choices = ClassChoices(
|
||||
name="frontend",
|
||||
classes=dict(
|
||||
default=DefaultFrontend,
|
||||
sliding_window=SlidingWindow,
|
||||
s3prl=S3prlFrontend,
|
||||
fused=FusedFrontends,
|
||||
wav_frontend=WavFrontend,
|
||||
multichannelfrontend=MultiChannelFrontend,
|
||||
),
|
||||
type_check=AbsFrontend,
|
||||
default="default",
|
||||
)
|
||||
specaug_choices = ClassChoices(
|
||||
name="specaug",
|
||||
classes=dict(
|
||||
specaug=SpecAug,
|
||||
specaug_lfr=SpecAugLFR,
|
||||
),
|
||||
type_check=AbsSpecAug,
|
||||
default=None,
|
||||
optional=True,
|
||||
)
|
||||
normalize_choices = ClassChoices(
|
||||
"normalize",
|
||||
classes=dict(
|
||||
global_mvn=GlobalMVN,
|
||||
utterance_mvn=UtteranceMVN,
|
||||
),
|
||||
type_check=AbsNormalize,
|
||||
default=None,
|
||||
optional=True,
|
||||
)
|
||||
model_choices = ClassChoices(
|
||||
"model",
|
||||
classes=dict(
|
||||
asr=ASRModel,
|
||||
uniasr=UniASR,
|
||||
paraformer=Paraformer,
|
||||
paraformer_online=ParaformerOnline,
|
||||
paraformer_bert=ParaformerBert,
|
||||
bicif_paraformer=BiCifParaformer,
|
||||
contextual_paraformer=ContextualParaformer,
|
||||
neatcontextual_paraformer=NeatContextualParaformer,
|
||||
mfcca=MFCCA,
|
||||
timestamp_prediction=TimestampPredictor,
|
||||
rnnt=TransducerModel,
|
||||
rnnt_unified=UnifiedTransducerModel,
|
||||
bat=BATModel,
|
||||
sa_asr=SAASRModel,
|
||||
whisper=Whisper,
|
||||
),
|
||||
type_check=FunASRModel,
|
||||
default="asr",
|
||||
)
|
||||
preencoder_choices = ClassChoices(
|
||||
name="preencoder",
|
||||
classes=dict(
|
||||
sinc=LightweightSincConvs,
|
||||
linear=LinearProjection,
|
||||
),
|
||||
type_check=AbsPreEncoder,
|
||||
default=None,
|
||||
optional=True,
|
||||
)
|
||||
encoder_choices = ClassChoices(
|
||||
"encoder",
|
||||
classes=dict(
|
||||
conformer=ConformerEncoder,
|
||||
transformer=TransformerEncoder,
|
||||
rnn=RNNEncoder,
|
||||
sanm=SANMEncoder,
|
||||
sanm_chunk_opt=SANMEncoderChunkOpt,
|
||||
data2vec_encoder=Data2VecEncoder,
|
||||
mfcca_enc=MFCCAEncoder,
|
||||
chunk_conformer=ConformerChunkEncoder,
|
||||
),
|
||||
type_check=AbsEncoder,
|
||||
default="rnn",
|
||||
)
|
||||
encoder_choices2 = ClassChoices(
|
||||
"encoder2",
|
||||
classes=dict(
|
||||
conformer=ConformerEncoder,
|
||||
transformer=TransformerEncoder,
|
||||
rnn=RNNEncoder,
|
||||
sanm=SANMEncoder,
|
||||
sanm_chunk_opt=SANMEncoderChunkOpt,
|
||||
),
|
||||
type_check=AbsEncoder,
|
||||
default="rnn",
|
||||
)
|
||||
asr_encoder_choices = ClassChoices(
|
||||
"asr_encoder",
|
||||
classes=dict(
|
||||
conformer=ConformerEncoder,
|
||||
transformer=TransformerEncoder,
|
||||
rnn=RNNEncoder,
|
||||
sanm=SANMEncoder,
|
||||
sanm_chunk_opt=SANMEncoderChunkOpt,
|
||||
data2vec_encoder=Data2VecEncoder,
|
||||
mfcca_enc=MFCCAEncoder,
|
||||
),
|
||||
type_check=AbsEncoder,
|
||||
default="rnn",
|
||||
)
|
||||
spk_encoder_choices = ClassChoices(
|
||||
"spk_encoder",
|
||||
classes=dict(
|
||||
resnet34_diar=ResNet34Diar,
|
||||
),
|
||||
default="resnet34_diar",
|
||||
)
|
||||
postencoder_choices = ClassChoices(
|
||||
name="postencoder",
|
||||
classes=dict(
|
||||
hugging_face_transformers=HuggingFaceTransformersPostEncoder,
|
||||
),
|
||||
type_check=AbsPostEncoder,
|
||||
default=None,
|
||||
optional=True,
|
||||
)
|
||||
decoder_choices = ClassChoices(
|
||||
"decoder",
|
||||
classes=dict(
|
||||
transformer=TransformerDecoder,
|
||||
lightweight_conv=LightweightConvolutionTransformerDecoder,
|
||||
lightweight_conv2d=LightweightConvolution2DTransformerDecoder,
|
||||
dynamic_conv=DynamicConvolutionTransformerDecoder,
|
||||
dynamic_conv2d=DynamicConvolution2DTransformerDecoder,
|
||||
rnn=RNNDecoder,
|
||||
fsmn_scama_opt=FsmnDecoderSCAMAOpt,
|
||||
paraformer_decoder_sanm=ParaformerSANMDecoder,
|
||||
paraformer_decoder_san=ParaformerDecoderSAN,
|
||||
contextual_paraformer_decoder=ContextualParaformerDecoder,
|
||||
sa_decoder=SAAsrTransformerDecoder,
|
||||
),
|
||||
type_check=AbsDecoder,
|
||||
default="rnn",
|
||||
)
|
||||
decoder_choices2 = ClassChoices(
|
||||
"decoder2",
|
||||
classes=dict(
|
||||
transformer=TransformerDecoder,
|
||||
lightweight_conv=LightweightConvolutionTransformerDecoder,
|
||||
lightweight_conv2d=LightweightConvolution2DTransformerDecoder,
|
||||
dynamic_conv=DynamicConvolutionTransformerDecoder,
|
||||
dynamic_conv2d=DynamicConvolution2DTransformerDecoder,
|
||||
rnn=RNNDecoder,
|
||||
fsmn_scama_opt=FsmnDecoderSCAMAOpt,
|
||||
paraformer_decoder_sanm=ParaformerSANMDecoder,
|
||||
),
|
||||
type_check=AbsDecoder,
|
||||
default="rnn",
|
||||
)
|
||||
|
||||
rnnt_decoder_choices = ClassChoices(
|
||||
"rnnt_decoder",
|
||||
classes=dict(
|
||||
rnnt=RNNTDecoder,
|
||||
),
|
||||
type_check=RNNTDecoder,
|
||||
default="rnnt",
|
||||
)
|
||||
|
||||
joint_network_choices = ClassChoices(
|
||||
name="joint_network",
|
||||
classes=dict(
|
||||
joint_network=JointNetwork,
|
||||
),
|
||||
default="joint_network",
|
||||
optional=True,
|
||||
)
|
||||
|
||||
predictor_choices = ClassChoices(
|
||||
name="predictor",
|
||||
classes=dict(
|
||||
cif_predictor=CifPredictor,
|
||||
ctc_predictor=None,
|
||||
cif_predictor_v2=CifPredictorV2,
|
||||
cif_predictor_v3=CifPredictorV3,
|
||||
bat_predictor=BATPredictor,
|
||||
),
|
||||
type_check=None,
|
||||
default="cif_predictor",
|
||||
optional=True,
|
||||
)
|
||||
predictor_choices2 = ClassChoices(
|
||||
name="predictor2",
|
||||
classes=dict(
|
||||
cif_predictor=CifPredictor,
|
||||
ctc_predictor=None,
|
||||
cif_predictor_v2=CifPredictorV2,
|
||||
),
|
||||
type_check=None,
|
||||
default="cif_predictor",
|
||||
optional=True,
|
||||
)
|
||||
stride_conv_choices = ClassChoices(
|
||||
name="stride_conv",
|
||||
classes=dict(
|
||||
stride_conv1d=Conv1dSubsampling
|
||||
),
|
||||
type_check=None,
|
||||
default="stride_conv1d",
|
||||
optional=True,
|
||||
)
|
||||
|
||||
|
||||
class ASRTask(AbsTask):
|
||||
# If you need more than one optimizers, change this value
|
||||
num_optimizers: int = 1
|
||||
|
||||
# Add variable objects configurations
|
||||
class_choices_list = [
|
||||
# --frontend and --frontend_conf
|
||||
frontend_choices,
|
||||
# --specaug and --specaug_conf
|
||||
specaug_choices,
|
||||
# --normalize and --normalize_conf
|
||||
normalize_choices,
|
||||
# --model and --model_conf
|
||||
model_choices,
|
||||
# --preencoder and --preencoder_conf
|
||||
preencoder_choices,
|
||||
# --encoder and --encoder_conf
|
||||
encoder_choices,
|
||||
# --postencoder and --postencoder_conf
|
||||
postencoder_choices,
|
||||
# --decoder and --decoder_conf
|
||||
decoder_choices,
|
||||
# --predictor and --predictor_conf
|
||||
predictor_choices,
|
||||
# --encoder2 and --encoder2_conf
|
||||
encoder_choices2,
|
||||
# --decoder2 and --decoder2_conf
|
||||
decoder_choices2,
|
||||
# --predictor2 and --predictor2_conf
|
||||
predictor_choices2,
|
||||
# --stride_conv and --stride_conv_conf
|
||||
stride_conv_choices,
|
||||
# --rnnt_decoder and --rnnt_decoder_conf
|
||||
rnnt_decoder_choices,
|
||||
]
|
||||
|
||||
# If you need to modify train() or eval() procedures, change Trainer class here
|
||||
trainer = Trainer
|
||||
|
||||
@classmethod
|
||||
def add_task_arguments(cls, parser: argparse.ArgumentParser):
|
||||
group = parser.add_argument_group(description="Task related")
|
||||
|
||||
# NOTE(kamo): add_arguments(..., required=True) can't be used
|
||||
# to provide --print_config mode. Instead of it, do as
|
||||
# required = parser.get_default("required")
|
||||
# required += ["token_list"]
|
||||
|
||||
group.add_argument(
|
||||
"--token_list",
|
||||
type=str_or_none,
|
||||
default=None,
|
||||
help="A text mapping int-id to token",
|
||||
)
|
||||
group.add_argument(
|
||||
"--split_with_space",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="whether to split text using <space>",
|
||||
)
|
||||
group.add_argument(
|
||||
"--max_spk_num",
|
||||
type=int_or_none,
|
||||
default=None,
|
||||
help="A text mapping int-id to token",
|
||||
)
|
||||
group.add_argument(
|
||||
"--seg_dict_file",
|
||||
type=str,
|
||||
default=None,
|
||||
help="seg_dict_file for text processing",
|
||||
)
|
||||
group.add_argument(
|
||||
"--init",
|
||||
type=lambda x: str_or_none(x.lower()),
|
||||
default=None,
|
||||
help="The initialization method",
|
||||
choices=[
|
||||
"chainer",
|
||||
"xavier_uniform",
|
||||
"xavier_normal",
|
||||
"kaiming_uniform",
|
||||
"kaiming_normal",
|
||||
None,
|
||||
],
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--input_size",
|
||||
type=int_or_none,
|
||||
default=None,
|
||||
help="The number of input dimension of the feature",
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--ctc_conf",
|
||||
action=NestedDictAction,
|
||||
default=get_default_kwargs(CTC),
|
||||
help="The keyword arguments for CTC class.",
|
||||
)
|
||||
|
||||
group = parser.add_argument_group(description="Preprocess related")
|
||||
group.add_argument(
|
||||
"--use_preprocessor",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Apply preprocessing to data or not",
|
||||
)
|
||||
group.add_argument(
|
||||
"--token_type",
|
||||
type=str,
|
||||
default="bpe",
|
||||
choices=["bpe", "char", "word", "phn"],
|
||||
help="The text will be tokenized " "in the specified level token",
|
||||
)
|
||||
group.add_argument(
|
||||
"--bpemodel",
|
||||
type=str_or_none,
|
||||
default=None,
|
||||
help="The model file of sentencepiece",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--non_linguistic_symbols",
|
||||
type=str_or_none,
|
||||
default=None,
|
||||
help="non_linguistic_symbols file path",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cleaner",
|
||||
type=str_or_none,
|
||||
choices=[None, "tacotron", "jaconv", "vietnamese"],
|
||||
default=None,
|
||||
help="Apply text cleaning",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--g2p",
|
||||
type=str_or_none,
|
||||
choices=g2p_choices,
|
||||
default=None,
|
||||
help="Specify g2p method if --token_type=phn",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--speech_volume_normalize",
|
||||
type=float_or_none,
|
||||
default=None,
|
||||
help="Scale the maximum amplitude to the given value.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--rir_scp",
|
||||
type=str_or_none,
|
||||
default=None,
|
||||
help="The file path of rir scp file.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--rir_apply_prob",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="THe probability for applying RIR convolution.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cmvn_file",
|
||||
type=str_or_none,
|
||||
default=None,
|
||||
help="The file path of noise scp file.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--noise_scp",
|
||||
type=str_or_none,
|
||||
default=None,
|
||||
help="The file path of noise scp file.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--noise_apply_prob",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="The probability applying Noise adding.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--noise_db_range",
|
||||
type=str,
|
||||
default="13_15",
|
||||
help="The range of noise decibel level.",
|
||||
)
|
||||
|
||||
for class_choices in cls.class_choices_list:
|
||||
# Append --<name> and --<name>_conf.
|
||||
# e.g. --encoder and --encoder_conf
|
||||
class_choices.add_arguments(group)
|
||||
|
||||
@classmethod
|
||||
def build_collate_fn(
|
||||
cls, args: argparse.Namespace, train: bool
|
||||
) -> Callable[
|
||||
[Collection[Tuple[str, Dict[str, np.ndarray]]]],
|
||||
Tuple[List[str], Dict[str, torch.Tensor]],
|
||||
]:
|
||||
# NOTE(kamo): int value = 0 is reserved by CTC-blank symbol
|
||||
return CommonCollateFn(float_pad_value=0.0, int_pad_value=-1)
|
||||
|
||||
@classmethod
|
||||
def build_preprocess_fn(
|
||||
cls, args: argparse.Namespace, train: bool
|
||||
) -> Optional[Callable[[str, Dict[str, np.array]], Dict[str, np.ndarray]]]:
|
||||
if args.use_preprocessor:
|
||||
retval = CommonPreprocessor(
|
||||
train=train,
|
||||
token_type=args.token_type,
|
||||
token_list=args.token_list,
|
||||
bpemodel=args.bpemodel,
|
||||
non_linguistic_symbols=args.non_linguistic_symbols if hasattr(args, "non_linguistic_symbols") else None,
|
||||
text_cleaner=args.cleaner,
|
||||
g2p_type=args.g2p,
|
||||
split_with_space=args.split_with_space if hasattr(args, "split_with_space") else False,
|
||||
seg_dict_file=args.seg_dict_file if hasattr(args, "seg_dict_file") else None,
|
||||
# NOTE(kamo): Check attribute existence for backward compatibility
|
||||
rir_scp=args.rir_scp if hasattr(args, "rir_scp") else None,
|
||||
rir_apply_prob=args.rir_apply_prob
|
||||
if hasattr(args, "rir_apply_prob")
|
||||
else 1.0,
|
||||
noise_scp=args.noise_scp if hasattr(args, "noise_scp") else None,
|
||||
noise_apply_prob=args.noise_apply_prob
|
||||
if hasattr(args, "noise_apply_prob")
|
||||
else 1.0,
|
||||
noise_db_range=args.noise_db_range
|
||||
if hasattr(args, "noise_db_range")
|
||||
else "13_15",
|
||||
speech_volume_normalize=args.speech_volume_normalize
|
||||
if hasattr(args, "rir_scp")
|
||||
else None,
|
||||
)
|
||||
else:
|
||||
retval = None
|
||||
return retval
|
||||
|
||||
@classmethod
|
||||
def required_data_names(
|
||||
cls, train: bool = True, inference: bool = False
|
||||
) -> Tuple[str, ...]:
|
||||
if not inference:
|
||||
retval = ("speech", "text")
|
||||
else:
|
||||
# Recognition mode
|
||||
retval = ("speech",)
|
||||
return retval
|
||||
|
||||
@classmethod
|
||||
def optional_data_names(
|
||||
cls, train: bool = True, inference: bool = False
|
||||
) -> Tuple[str, ...]:
|
||||
retval = ()
|
||||
return retval
|
||||
|
||||
@classmethod
|
||||
def build_model(cls, args: argparse.Namespace):
|
||||
if args.token_list is not None:
|
||||
if isinstance(args.token_list, str):
|
||||
with open(args.token_list, encoding="utf-8") as f:
|
||||
token_list = [line.rstrip() for line in f]
|
||||
|
||||
# Overwriting token_list to keep it as "portable".
|
||||
args.token_list = list(token_list)
|
||||
elif isinstance(args.token_list, (tuple, list)):
|
||||
token_list = list(args.token_list)
|
||||
else:
|
||||
raise RuntimeError("token_list must be str or list")
|
||||
vocab_size = len(token_list)
|
||||
logging.info(f"Vocabulary size: {vocab_size}")
|
||||
else:
|
||||
vocab_size = args.vocab_size
|
||||
|
||||
# 1. frontend
|
||||
if args.input_size is None:
|
||||
# Extract features in the model
|
||||
frontend_class = frontend_choices.get_class(args.frontend)
|
||||
if args.frontend == 'wav_frontend':
|
||||
frontend = frontend_class(cmvn_file=args.cmvn_file, **args.frontend_conf)
|
||||
else:
|
||||
frontend = frontend_class(**args.frontend_conf)
|
||||
input_size = frontend.output_size()
|
||||
else:
|
||||
# Give features from data-loader
|
||||
args.frontend = None
|
||||
args.frontend_conf = {}
|
||||
frontend = None
|
||||
input_size = args.input_size
|
||||
|
||||
# 2. Data augmentation for spectrogram
|
||||
if args.specaug is not None:
|
||||
specaug_class = specaug_choices.get_class(args.specaug)
|
||||
specaug = specaug_class(**args.specaug_conf)
|
||||
else:
|
||||
specaug = None
|
||||
|
||||
# 3. Normalization layer
|
||||
if args.normalize is not None:
|
||||
normalize_class = normalize_choices.get_class(args.normalize)
|
||||
normalize = normalize_class(**args.normalize_conf)
|
||||
else:
|
||||
normalize = None
|
||||
|
||||
# 9. Build model
|
||||
try:
|
||||
model_class = model_choices.get_class(args.model)
|
||||
except AttributeError:
|
||||
model_class = model_choices.get_class("asr")
|
||||
model = model_class(
|
||||
args.whisper_dims,
|
||||
)
|
||||
|
||||
# 10. Initialize
|
||||
if args.init is not None:
|
||||
initialize(model, args.init)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
# ~~~~~~~~~ The methods below are mainly used for inference ~~~~~~~~~
|
||||
@classmethod
|
||||
def build_model_from_file(
|
||||
cls,
|
||||
config_file: Union[Path, str] = None,
|
||||
model_file: Union[Path, str] = None,
|
||||
cmvn_file: Union[Path, str] = None,
|
||||
device: str = "cpu",
|
||||
):
|
||||
"""Build model from the files.
|
||||
|
||||
This method is used for inference or fine-tuning.
|
||||
|
||||
Args:
|
||||
config_file: The yaml file saved when training.
|
||||
model_file: The model file saved when training.
|
||||
device: Device type, "cpu", "cuda", or "cuda:N".
|
||||
|
||||
"""
|
||||
if config_file is None:
|
||||
assert model_file is not None, (
|
||||
"The argument 'model_file' must be provided "
|
||||
"if the argument 'config_file' is not specified."
|
||||
)
|
||||
config_file = Path(model_file).parent / "config.yaml"
|
||||
else:
|
||||
config_file = Path(config_file)
|
||||
|
||||
with config_file.open("r", encoding="utf-8") as f:
|
||||
args = yaml.safe_load(f)
|
||||
if cmvn_file is not None:
|
||||
args["cmvn_file"] = cmvn_file
|
||||
args = argparse.Namespace(**args)
|
||||
|
||||
if model_file is not None:
|
||||
model_dict = torch.load(model_file, map_location=device)
|
||||
args.whisper_dims = model_dict["dims"]
|
||||
model = cls.build_model(args)
|
||||
if not isinstance(model, FunASRModel):
|
||||
raise RuntimeError(
|
||||
f"model must inherit {FunASRModel.__name__}, but got {type(model)}"
|
||||
)
|
||||
model.to(device)
|
||||
model_dict = dict()
|
||||
model_name_pth = None
|
||||
if model_file is not None:
|
||||
logging.info("model_file is {}".format(model_file))
|
||||
if device == "cuda":
|
||||
device = f"cuda:{torch.cuda.current_device()}"
|
||||
model_dir = os.path.dirname(model_file)
|
||||
model_name = os.path.basename(model_file)
|
||||
model_dict = torch.load(model_file, map_location=device)
|
||||
model.load_state_dict(model_dict["model_state_dict"])
|
||||
if model_name_pth is not None and not os.path.exists(model_name_pth):
|
||||
torch.save(model_dict, model_name_pth)
|
||||
logging.info("model_file is saved to pth: {}".format(model_name_pth))
|
||||
|
||||
return model, args
|
||||
50001
funasr/utils/whisper_utils/assets/gpt2/merges.txt
Normal file
@ -0,0 +1 @@
|
||||
{"bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "unk_token": "<|endoftext|>"}
|
||||
@ -0,0 +1 @@
|
||||
{"unk_token": "<|endoftext|>", "bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "add_prefix_space": false, "model_max_length": 1024, "special_tokens_map_file": null, "name_or_path": "gpt2", "tokenizer_class": "GPT2Tokenizer"}
|
||||
1
funasr/utils/whisper_utils/assets/gpt2/vocab.json
Normal file
BIN
funasr/utils/whisper_utils/assets/mel_filters.npz
Normal file
@ -0,0 +1 @@
|
||||
{"<|endoftext|>": 50257}
|
||||
50000
funasr/utils/whisper_utils/assets/multilingual/merges.txt
Normal file
@ -0,0 +1 @@
|
||||
{"bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "unk_token": "<|endoftext|>"}
|
||||
@ -0,0 +1 @@
|
||||
{"unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "model_max_length": 1024, "special_tokens_map_file": null, "name_or_path": "multilingual", "errors": "replace", "tokenizer_class": "GPT2Tokenizer"}
|
||||
124
funasr/utils/whisper_utils/audio.py
Normal file
@ -0,0 +1,124 @@
|
||||
import os
|
||||
from functools import lru_cache
|
||||
from typing import Union
|
||||
|
||||
import ffmpeg
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from funasr.utils.whisper_utils.utils import exact_div
|
||||
|
||||
# hard-coded audio hyperparameters
|
||||
SAMPLE_RATE = 16000
|
||||
N_FFT = 400
|
||||
N_MELS = 80
|
||||
HOP_LENGTH = 160
|
||||
CHUNK_LENGTH = 30
|
||||
N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000: number of samples in a chunk
|
||||
N_FRAMES = exact_div(N_SAMPLES, HOP_LENGTH) # 3000: number of frames in a mel spectrogram input
|
||||
|
||||
|
||||
def load_audio(file: str, sr: int = SAMPLE_RATE):
|
||||
"""
|
||||
Open an audio file and read as mono waveform, resampling as necessary
|
||||
|
||||
Parameters
|
||||
----------
|
||||
file: str
|
||||
The audio file to open
|
||||
|
||||
sr: int
|
||||
The sample rate to resample the audio if necessary
|
||||
|
||||
Returns
|
||||
-------
|
||||
A NumPy array containing the audio waveform, in float32 dtype.
|
||||
"""
|
||||
try:
|
||||
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
|
||||
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
|
||||
out, _ = (
|
||||
ffmpeg.input(file, threads=0)
|
||||
.output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr)
|
||||
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
|
||||
)
|
||||
except ffmpeg.Error as e:
|
||||
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
|
||||
|
||||
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
|
||||
|
||||
|
||||
def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
|
||||
"""
|
||||
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
|
||||
"""
|
||||
if torch.is_tensor(array):
|
||||
if array.shape[axis] > length:
|
||||
array = array.index_select(dim=axis, index=torch.arange(length, device=array.device))
|
||||
|
||||
if array.shape[axis] < length:
|
||||
pad_widths = [(0, 0)] * array.ndim
|
||||
pad_widths[axis] = (0, length - array.shape[axis])
|
||||
array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes])
|
||||
else:
|
||||
if array.shape[axis] > length:
|
||||
array = array.take(indices=range(length), axis=axis)
|
||||
|
||||
if array.shape[axis] < length:
|
||||
pad_widths = [(0, 0)] * array.ndim
|
||||
pad_widths[axis] = (0, length - array.shape[axis])
|
||||
array = np.pad(array, pad_widths)
|
||||
|
||||
return array
|
||||
|
||||
|
||||
@lru_cache(maxsize=None)
|
||||
def mel_filters(device, n_mels: int = N_MELS) -> torch.Tensor:
|
||||
"""
|
||||
load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
|
||||
Allows decoupling librosa dependency; saved using:
|
||||
|
||||
np.savez_compressed(
|
||||
"mel_filters.npz",
|
||||
mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
|
||||
)
|
||||
"""
|
||||
assert n_mels == 80, f"Unsupported n_mels: {n_mels}"
|
||||
with np.load(os.path.join(os.path.dirname(__file__), "assets", "mel_filters.npz")) as f:
|
||||
return torch.from_numpy(f[f"mel_{n_mels}"]).to(device)
|
||||
|
||||
|
||||
def log_mel_spectrogram(audio: Union[str, np.ndarray, torch.Tensor], n_mels: int = N_MELS):
|
||||
"""
|
||||
Compute the log-Mel spectrogram of
|
||||
|
||||
Parameters
|
||||
----------
|
||||
audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
|
||||
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
|
||||
|
||||
n_mels: int
|
||||
The number of Mel-frequency filters, only 80 is supported
|
||||
|
||||
Returns
|
||||
-------
|
||||
torch.Tensor, shape = (80, n_frames)
|
||||
A Tensor that contains the Mel spectrogram
|
||||
"""
|
||||
if not torch.is_tensor(audio):
|
||||
if isinstance(audio, str):
|
||||
audio = load_audio(audio)
|
||||
audio = torch.from_numpy(audio)
|
||||
|
||||
window = torch.hann_window(N_FFT).to(audio.device)
|
||||
stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True)
|
||||
magnitudes = stft[..., :-1].abs() ** 2
|
||||
|
||||
filters = mel_filters(audio.device, n_mels)
|
||||
mel_spec = filters @ magnitudes
|
||||
|
||||
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
|
||||
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
|
||||
log_spec = (log_spec + 4.0) / 4.0
|
||||
return log_spec
|
||||
710
funasr/utils/whisper_utils/decoding.py
Normal file
@ -0,0 +1,710 @@
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Dict, List, Tuple, Iterable, Optional, Sequence, Union, TYPE_CHECKING
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import Tensor
|
||||
from torch.distributions import Categorical
|
||||
|
||||
from funasr.utils.whisper_utils.audio import CHUNK_LENGTH
|
||||
from funasr.utils.whisper_utils.tokenizer import Tokenizer, get_tokenizer
|
||||
from funasr.utils.whisper_utils.utils import compression_ratio
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from funasr.models.whisper_models.model import Whisper
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def detect_language(model: "Whisper", mel: Tensor, tokenizer: Tokenizer = None) -> Tuple[Tensor, List[dict]]:
|
||||
"""
|
||||
Detect the spoken language in the audio, and return them as list of strings, along with the ids
|
||||
of the most probable language tokens and the probability distribution over all language tokens.
|
||||
This is performed outside the main decode loop in order to not interfere with kv-caching.
|
||||
|
||||
Returns
|
||||
-------
|
||||
language_tokens : Tensor, shape = (n_audio,)
|
||||
ids of the most probable language tokens, which appears after the startoftranscript token.
|
||||
language_probs : List[Dict[str, float]], length = n_audio
|
||||
list of dictionaries containing the probability distribution over all languages.
|
||||
"""
|
||||
if tokenizer is None:
|
||||
tokenizer = get_tokenizer(model.is_multilingual)
|
||||
if tokenizer.language is None or tokenizer.language_token not in tokenizer.sot_sequence:
|
||||
raise ValueError(f"This model doesn't have language tokens so it can't perform lang id")
|
||||
|
||||
single = mel.ndim == 2
|
||||
if single:
|
||||
mel = mel.unsqueeze(0)
|
||||
|
||||
# skip encoder forward pass if already-encoded audio features were given
|
||||
if mel.shape[-2:] != (model.dims.n_audio_ctx, model.dims.n_audio_state):
|
||||
mel = model.encoder(mel)
|
||||
|
||||
# forward pass using a single token, startoftranscript
|
||||
n_audio = mel.shape[0]
|
||||
x = torch.tensor([[tokenizer.sot]] * n_audio).to(mel.device) # [n_audio, 1]
|
||||
logits = model.logits(x, mel)[:, 0]
|
||||
|
||||
# collect detected languages; suppress all non-language tokens
|
||||
mask = torch.ones(logits.shape[-1], dtype=torch.bool)
|
||||
mask[list(tokenizer.all_language_tokens)] = False
|
||||
logits[:, mask] = -np.inf
|
||||
language_tokens = logits.argmax(dim=-1)
|
||||
language_token_probs = logits.softmax(dim=-1).cpu()
|
||||
language_probs = [
|
||||
{
|
||||
c: language_token_probs[i, j].item()
|
||||
for j, c in zip(tokenizer.all_language_tokens, tokenizer.all_language_codes)
|
||||
}
|
||||
for i in range(n_audio)
|
||||
]
|
||||
|
||||
if single:
|
||||
language_tokens = language_tokens[0]
|
||||
language_probs = language_probs[0]
|
||||
|
||||
return language_tokens, language_probs
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class DecodingOptions:
|
||||
task: str = "transcribe" # whether to perform X->X "transcribe" or X->English "translate"
|
||||
language: Optional[str] = None # language that the audio is in; uses detected language if None
|
||||
|
||||
# sampling-related options
|
||||
temperature: float = 0.0
|
||||
sample_len: Optional[int] = None # maximum number of tokens to sample
|
||||
best_of: Optional[int] = None # number of independent samples to collect, when t > 0
|
||||
beam_size: Optional[int] = None # number of beams in beam search, when t == 0
|
||||
patience: Optional[float] = None # patience in beam search (https://arxiv.org/abs/2204.05424)
|
||||
|
||||
# options for ranking generations (either beams or best-of-N samples)
|
||||
length_penalty: Optional[float] = None # "alpha" in Google NMT, None defaults to length norm
|
||||
|
||||
# prompt, prefix, and token suppression
|
||||
prompt: Optional[Union[str, List[int]]] = None # text or tokens for the previous context
|
||||
prefix: Optional[Union[str, List[int]]] = None # text or tokens to prefix the current context
|
||||
suppress_blank: bool = True # this will suppress blank outputs
|
||||
|
||||
# list of tokens ids (or comma-separated token ids) to suppress
|
||||
# "-1" will suppress a set of symbols as defined in `tokenizer.non_speech_tokens()`
|
||||
suppress_tokens: Optional[Union[str, Iterable[int]]] = "-1"
|
||||
|
||||
# timestamp sampling options
|
||||
without_timestamps: bool = False # use <|notimestamps|> to sample text tokens only
|
||||
max_initial_timestamp: Optional[float] = 1.0 # the initial timestamp cannot be later than this
|
||||
|
||||
# implementation details
|
||||
fp16: bool = True # use fp16 for most of the calculation
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class DecodingResult:
|
||||
audio_features: Tensor
|
||||
language: str
|
||||
language_probs: Optional[Dict[str, float]] = None
|
||||
tokens: List[int] = field(default_factory=list)
|
||||
text: str = ""
|
||||
avg_logprob: float = np.nan
|
||||
no_speech_prob: float = np.nan
|
||||
temperature: float = np.nan
|
||||
compression_ratio: float = np.nan
|
||||
|
||||
|
||||
class Inference:
|
||||
def logits(self, tokens: Tensor, audio_features: Tensor) -> Tensor:
|
||||
"""Perform a forward pass on the decoder and return per-token logits"""
|
||||
raise NotImplementedError
|
||||
|
||||
def rearrange_kv_cache(self, source_indices) -> None:
|
||||
"""Update the key-value cache according to the updated beams"""
|
||||
raise NotImplementedError
|
||||
|
||||
def cleanup_caching(self) -> None:
|
||||
"""Clean up any resources or hooks after decoding is finished"""
|
||||
pass
|
||||
|
||||
|
||||
class PyTorchInference(Inference):
|
||||
def __init__(self, model: "Whisper", initial_token_length: int):
|
||||
self.model: "Whisper" = model
|
||||
self.initial_token_length = initial_token_length
|
||||
self.kv_cache = {}
|
||||
self.hooks = []
|
||||
|
||||
def logits(self, tokens: Tensor, audio_features: Tensor) -> Tensor:
|
||||
if not self.kv_cache:
|
||||
self.kv_cache, self.hooks = self.model.install_kv_cache_hooks()
|
||||
|
||||
if tokens.shape[-1] > self.initial_token_length:
|
||||
# only need to use the last token except in the first forward pass
|
||||
tokens = tokens[:, -1:]
|
||||
|
||||
return self.model.decoder(tokens, audio_features, kv_cache=self.kv_cache)
|
||||
|
||||
def cleanup_caching(self):
|
||||
for hook in self.hooks:
|
||||
hook.remove()
|
||||
|
||||
self.kv_cache = {}
|
||||
self.hooks = []
|
||||
|
||||
def rearrange_kv_cache(self, source_indices):
|
||||
for module, tensor in self.kv_cache.items():
|
||||
# update the key/value cache to contain the selected sequences
|
||||
self.kv_cache[module] = tensor[source_indices].detach()
|
||||
|
||||
|
||||
class SequenceRanker:
|
||||
def rank(self, tokens: List[List[Tensor]], sum_logprobs: List[List[float]]) -> List[int]:
|
||||
"""
|
||||
Given a list of groups of samples and their cumulative log probabilities,
|
||||
return the indices of the samples in each group to select as the final result
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class MaximumLikelihoodRanker(SequenceRanker):
|
||||
"""
|
||||
Select the sample with the highest log probabilities, penalized using either
|
||||
a simple length normalization or Google NMT paper's length penalty
|
||||
"""
|
||||
|
||||
def __init__(self, length_penalty: Optional[float]):
|
||||
self.length_penalty = length_penalty
|
||||
|
||||
def rank(self, tokens: List[List[Tensor]], sum_logprobs: List[List[float]]):
|
||||
def scores(logprobs, lengths):
|
||||
result = []
|
||||
for logprob, length in zip(logprobs, lengths):
|
||||
if self.length_penalty is None:
|
||||
penalty = length
|
||||
else:
|
||||
# from the Google NMT paper
|
||||
penalty = ((5 + length) / 6) ** self.length_penalty
|
||||
result.append(logprob / penalty)
|
||||
return result
|
||||
|
||||
# get the sequence with the highest score
|
||||
lengths = [[len(t) for t in s] for s in tokens]
|
||||
return [np.argmax(scores(p, l)) for p, l in zip(sum_logprobs, lengths)]
|
||||
|
||||
|
||||
class TokenDecoder:
|
||||
def reset(self):
|
||||
"""Initialize any stateful variables for decoding a new sequence"""
|
||||
|
||||
def update(self, tokens: Tensor, logits: Tensor, sum_logprobs: Tensor) -> Tuple[Tensor, bool]:
|
||||
"""Specify how to select the next token, based on the current trace and logits
|
||||
|
||||
Parameters
|
||||
----------
|
||||
tokens : Tensor, shape = (n_batch, current_sequence_length)
|
||||
all tokens in the context so far, including the prefix and sot_sequence tokens
|
||||
|
||||
logits : Tensor, shape = (n_batch, vocab_size)
|
||||
per-token logits of the probability distribution at the current step
|
||||
|
||||
sum_logprobs : Tensor, shape = (n_batch)
|
||||
cumulative log probabilities for each sequence
|
||||
|
||||
Returns
|
||||
-------
|
||||
tokens : Tensor, shape = (n_batch, current_sequence_length + 1)
|
||||
the tokens, appended with the selected next token
|
||||
|
||||
completed : bool
|
||||
True if all sequences has reached the end of text
|
||||
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def finalize(
|
||||
self, tokens: Tensor, sum_logprobs: Tensor
|
||||
) -> Tuple[Sequence[Sequence[Tensor]], List[List[float]]]:
|
||||
"""Finalize search and return the final candidate sequences
|
||||
|
||||
Parameters
|
||||
----------
|
||||
tokens : Tensor, shape = (n_audio, n_group, current_sequence_length)
|
||||
all tokens in the context so far, including the prefix and sot_sequence
|
||||
|
||||
sum_logprobs : Tensor, shape = (n_audio, n_group)
|
||||
cumulative log probabilities for each sequence
|
||||
|
||||
Returns
|
||||
-------
|
||||
tokens : Sequence[Sequence[Tensor]], length = n_audio
|
||||
sequence of Tensors containing candidate token sequences, for each audio input
|
||||
|
||||
sum_logprobs : List[List[float]], length = n_audio
|
||||
sequence of cumulative log probabilities corresponding to the above
|
||||
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class GreedyDecoder(TokenDecoder):
|
||||
def __init__(self, temperature: float, eot: int):
|
||||
self.temperature = temperature
|
||||
self.eot = eot
|
||||
|
||||
def update(self, tokens: Tensor, logits: Tensor, sum_logprobs: Tensor) -> Tuple[Tensor, bool]:
|
||||
temperature = self.temperature
|
||||
if temperature == 0:
|
||||
next_tokens = logits.argmax(dim=-1)
|
||||
else:
|
||||
next_tokens = Categorical(logits=logits / temperature).sample()
|
||||
|
||||
logprobs = F.log_softmax(logits.float(), dim=-1)
|
||||
current_logprobs = logprobs[torch.arange(logprobs.shape[0]), next_tokens]
|
||||
sum_logprobs += current_logprobs * (tokens[:, -1] != self.eot)
|
||||
|
||||
next_tokens[tokens[:, -1] == self.eot] = self.eot
|
||||
tokens = torch.cat([tokens, next_tokens[:, None]], dim=-1)
|
||||
|
||||
completed = (tokens[:, -1] == self.eot).all()
|
||||
return tokens, completed
|
||||
|
||||
def finalize(self, tokens: Tensor, sum_logprobs: Tensor):
|
||||
# make sure each sequence has at least one EOT token at the end
|
||||
tokens = F.pad(tokens, (0, 1), value=self.eot)
|
||||
return tokens, sum_logprobs.tolist()
|
||||
|
||||
|
||||
class BeamSearchDecoder(TokenDecoder):
|
||||
def __init__(self, beam_size: int, eot: int, inference: Inference, patience: Optional[float] = None):
|
||||
self.beam_size = beam_size
|
||||
self.eot = eot
|
||||
self.inference = inference
|
||||
self.patience = patience or 1.0
|
||||
self.max_candidates: int = round(beam_size * self.patience)
|
||||
self.finished_sequences = None
|
||||
|
||||
assert self.max_candidates > 0, f"Invalid beam size ({beam_size}) or patience ({patience})"
|
||||
|
||||
def reset(self):
|
||||
self.finished_sequences = None
|
||||
|
||||
def update(self, tokens: Tensor, logits: Tensor, sum_logprobs: Tensor) -> Tuple[Tensor, bool]:
|
||||
if tokens.shape[0] % self.beam_size != 0:
|
||||
raise ValueError(f"{tokens.shape}[0] % {self.beam_size} != 0")
|
||||
|
||||
n_audio = tokens.shape[0] // self.beam_size
|
||||
if self.finished_sequences is None: # for the first update
|
||||
self.finished_sequences = [{} for _ in range(n_audio)]
|
||||
|
||||
logprobs = F.log_softmax(logits.float(), dim=-1)
|
||||
next_tokens, source_indices, finished_sequences = [], [], []
|
||||
for i in range(n_audio):
|
||||
scores, sources, finished = {}, {}, {}
|
||||
|
||||
# STEP 1: calculate the cumulative log probabilities for possible candidates
|
||||
for j in range(self.beam_size):
|
||||
idx = i * self.beam_size + j
|
||||
prefix = tokens[idx].tolist()
|
||||
for logprob, token in zip(*logprobs[idx].topk(self.beam_size + 1)):
|
||||
new_logprob = (sum_logprobs[idx] + logprob).item()
|
||||
sequence = tuple(prefix + [token.item()])
|
||||
scores[sequence] = new_logprob
|
||||
sources[sequence] = idx
|
||||
|
||||
# STEP 2: rank the candidates and keep the top beam_size sequences for each audio
|
||||
saved = 0
|
||||
for sequence in sorted(scores, key=scores.get, reverse=True):
|
||||
if sequence[-1] == self.eot:
|
||||
finished[sequence] = scores[sequence]
|
||||
else:
|
||||
sum_logprobs[len(next_tokens)] = scores[sequence]
|
||||
next_tokens.append(sequence)
|
||||
source_indices.append(sources[sequence])
|
||||
|
||||
saved += 1
|
||||
if saved == self.beam_size:
|
||||
break
|
||||
|
||||
finished_sequences.append(finished)
|
||||
|
||||
tokens = torch.tensor(next_tokens, device=tokens.device)
|
||||
self.inference.rearrange_kv_cache(source_indices)
|
||||
|
||||
# add newly finished sequences to self.finished_sequences
|
||||
assert len(self.finished_sequences) == len(finished_sequences)
|
||||
for previously_finished, newly_finished in zip(self.finished_sequences, finished_sequences):
|
||||
for seq in sorted(newly_finished, key=newly_finished.get, reverse=True):
|
||||
if len(previously_finished) >= self.max_candidates:
|
||||
break # the candidate list is full
|
||||
previously_finished[seq] = newly_finished[seq]
|
||||
|
||||
# mark as completed if all audio has enough number of samples
|
||||
completed = all(
|
||||
len(sequences) >= self.max_candidates for sequences in self.finished_sequences
|
||||
)
|
||||
return tokens, completed
|
||||
|
||||
def finalize(self, preceding_tokens: Tensor, sum_logprobs: Tensor):
|
||||
# collect all finished sequences, including patience, and add unfinished ones if not enough
|
||||
sum_logprobs = sum_logprobs.cpu()
|
||||
for i, sequences in enumerate(self.finished_sequences):
|
||||
if len(sequences) < self.beam_size: # when not enough sequences are finished
|
||||
for j in list(np.argsort(sum_logprobs[i]))[::-1]:
|
||||
sequence = preceding_tokens[i, j].tolist() + [self.eot]
|
||||
sequences[tuple(sequence)] = sum_logprobs[i][j].item()
|
||||
if len(sequences) >= self.beam_size:
|
||||
break
|
||||
|
||||
tokens: List[List[Tensor]] = [
|
||||
[torch.tensor(seq) for seq in sequences.keys()] for sequences in self.finished_sequences
|
||||
]
|
||||
sum_logprobs: List[List[float]] = [
|
||||
list(sequences.values()) for sequences in self.finished_sequences
|
||||
]
|
||||
return tokens, sum_logprobs
|
||||
|
||||
|
||||
class LogitFilter:
|
||||
def apply(self, logits: Tensor, tokens: Tensor) -> None:
|
||||
"""Apply any filtering or masking to logits in-place
|
||||
|
||||
Parameters
|
||||
----------
|
||||
logits : Tensor, shape = (n_batch, vocab_size)
|
||||
per-token logits of the probability distribution at the current step
|
||||
|
||||
tokens : Tensor, shape = (n_batch, current_sequence_length)
|
||||
all tokens in the context so far, including the prefix and sot_sequence tokens
|
||||
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class SuppressBlank(LogitFilter):
|
||||
def __init__(self, tokenizer: Tokenizer, sample_begin: int):
|
||||
self.tokenizer = tokenizer
|
||||
self.sample_begin = sample_begin
|
||||
|
||||
def apply(self, logits: Tensor, tokens: Tensor):
|
||||
if tokens.shape[1] == self.sample_begin:
|
||||
logits[:, self.tokenizer.encode(" ") + [self.tokenizer.eot]] = -np.inf
|
||||
|
||||
|
||||
class SuppressTokens(LogitFilter):
|
||||
def __init__(self, suppress_tokens: Sequence[int]):
|
||||
self.suppress_tokens = list(suppress_tokens)
|
||||
|
||||
def apply(self, logits: Tensor, tokens: Tensor):
|
||||
logits[:, self.suppress_tokens] = -np.inf
|
||||
|
||||
|
||||
class ApplyTimestampRules(LogitFilter):
|
||||
def __init__(
|
||||
self, tokenizer: Tokenizer, sample_begin: int, max_initial_timestamp_index: Optional[int]
|
||||
):
|
||||
self.tokenizer = tokenizer
|
||||
self.sample_begin = sample_begin
|
||||
self.max_initial_timestamp_index = max_initial_timestamp_index
|
||||
|
||||
def apply(self, logits: Tensor, tokens: Tensor):
|
||||
# suppress <|notimestamps|> which is handled by without_timestamps
|
||||
if self.tokenizer.no_timestamps is not None:
|
||||
logits[:, self.tokenizer.no_timestamps] = -np.inf
|
||||
|
||||
# timestamps have to appear in pairs, except directly before EOT; mask logits accordingly
|
||||
for k in range(tokens.shape[0]):
|
||||
seq = [t for t in tokens[k, self.sample_begin :].tolist()]
|
||||
last_was_timestamp = len(seq) >= 1 and seq[-1] >= self.tokenizer.timestamp_begin
|
||||
penultimate_was_timestamp = len(seq) < 2 or seq[-2] >= self.tokenizer.timestamp_begin
|
||||
|
||||
if last_was_timestamp:
|
||||
if penultimate_was_timestamp: # has to be non-timestamp
|
||||
logits[k, self.tokenizer.timestamp_begin :] = -np.inf
|
||||
else: # cannot be normal text tokens
|
||||
logits[k, : self.tokenizer.eot] = -np.inf
|
||||
|
||||
if tokens.shape[1] == self.sample_begin:
|
||||
# suppress generating non-timestamp tokens at the beginning
|
||||
logits[:, : self.tokenizer.timestamp_begin] = -np.inf
|
||||
|
||||
# apply the `max_initial_timestamp` option
|
||||
if self.max_initial_timestamp_index is not None:
|
||||
last_allowed = self.tokenizer.timestamp_begin + self.max_initial_timestamp_index
|
||||
logits[:, last_allowed + 1 :] = -np.inf
|
||||
|
||||
# if sum of probability over timestamps is above any other token, sample timestamp
|
||||
logprobs = F.log_softmax(logits.float(), dim=-1)
|
||||
for k in range(tokens.shape[0]):
|
||||
timestamp_logprob = logprobs[k, self.tokenizer.timestamp_begin :].logsumexp(dim=-1)
|
||||
max_text_token_logprob = logprobs[k, : self.tokenizer.timestamp_begin].max()
|
||||
if timestamp_logprob > max_text_token_logprob:
|
||||
logits[k, : self.tokenizer.timestamp_begin] = -np.inf
|
||||
|
||||
|
||||
class DecodingTask:
|
||||
inference: Inference
|
||||
sequence_ranker: SequenceRanker
|
||||
decoder: TokenDecoder
|
||||
logit_filters: List[LogitFilter]
|
||||
|
||||
def __init__(self, model: "Whisper", options: DecodingOptions):
|
||||
self.model = model
|
||||
|
||||
language = options.language or "en"
|
||||
tokenizer = get_tokenizer(model.is_multilingual, language=language, task=options.task)
|
||||
self.tokenizer: Tokenizer = tokenizer
|
||||
self.options: DecodingOptions = self._verify_options(options)
|
||||
|
||||
self.n_group: int = options.beam_size or options.best_of or 1
|
||||
self.n_ctx: int = model.dims.n_text_ctx
|
||||
self.sample_len: int = options.sample_len or model.dims.n_text_ctx // 2
|
||||
|
||||
self.sot_sequence: Tuple[int] = tokenizer.sot_sequence
|
||||
if self.options.without_timestamps:
|
||||
self.sot_sequence = tokenizer.sot_sequence_including_notimestamps
|
||||
|
||||
self.initial_tokens: Tuple[int] = self._get_initial_tokens()
|
||||
self.sample_begin: int = len(self.initial_tokens)
|
||||
self.sot_index: int = self.initial_tokens.index(tokenizer.sot)
|
||||
|
||||
# inference: implements the forward pass through the decoder, including kv caching
|
||||
self.inference = PyTorchInference(model, len(self.initial_tokens))
|
||||
|
||||
# sequence ranker: implements how to rank a group of sampled sequences
|
||||
self.sequence_ranker = MaximumLikelihoodRanker(options.length_penalty)
|
||||
|
||||
# decoder: implements how to select the next tokens, given the autoregressive distribution
|
||||
if options.beam_size is not None:
|
||||
self.decoder = BeamSearchDecoder(
|
||||
options.beam_size, tokenizer.eot, self.inference, options.patience
|
||||
)
|
||||
else:
|
||||
self.decoder = GreedyDecoder(options.temperature, tokenizer.eot)
|
||||
|
||||
# logit filters: applies various rules to suppress or penalize certain tokens
|
||||
self.logit_filters = []
|
||||
if self.options.suppress_blank:
|
||||
self.logit_filters.append(SuppressBlank(self.tokenizer, self.sample_begin))
|
||||
if self.options.suppress_tokens:
|
||||
self.logit_filters.append(SuppressTokens(self._get_suppress_tokens()))
|
||||
if not options.without_timestamps:
|
||||
precision = CHUNK_LENGTH / model.dims.n_audio_ctx # usually 0.02 seconds
|
||||
max_initial_timestamp_index = None
|
||||
if options.max_initial_timestamp:
|
||||
max_initial_timestamp_index = round(self.options.max_initial_timestamp / precision)
|
||||
self.logit_filters.append(
|
||||
ApplyTimestampRules(tokenizer, self.sample_begin, max_initial_timestamp_index)
|
||||
)
|
||||
|
||||
def _verify_options(self, options: DecodingOptions) -> DecodingOptions:
|
||||
if options.beam_size is not None and options.best_of is not None:
|
||||
raise ValueError("beam_size and best_of can't be given together")
|
||||
if options.temperature == 0:
|
||||
if options.best_of is not None:
|
||||
raise ValueError("best_of with greedy sampling (T=0) is not compatible")
|
||||
if options.patience is not None and options.beam_size is None:
|
||||
raise ValueError("patience requires beam_size to be given")
|
||||
if options.length_penalty is not None and not (0 <= options.length_penalty <= 1):
|
||||
raise ValueError("length_penalty (alpha) should be a value between 0 and 1")
|
||||
|
||||
return options
|
||||
|
||||
def _get_initial_tokens(self) -> Tuple[int]:
|
||||
tokens = list(self.sot_sequence)
|
||||
prefix = self.options.prefix
|
||||
prompt = self.options.prompt
|
||||
|
||||
if prefix:
|
||||
prefix_tokens = (
|
||||
self.tokenizer.encode(" " + prefix.strip()) if isinstance(prefix, str) else prefix
|
||||
)
|
||||
if self.sample_len is not None:
|
||||
max_prefix_len = self.n_ctx // 2 - self.sample_len
|
||||
prefix_tokens = prefix_tokens[-max_prefix_len:]
|
||||
tokens = tokens + prefix_tokens
|
||||
|
||||
if prompt:
|
||||
prompt_tokens = (
|
||||
self.tokenizer.encode(" " + prompt.strip()) if isinstance(prompt, str) else prompt
|
||||
)
|
||||
tokens = [self.tokenizer.sot_prev] + prompt_tokens[-(self.n_ctx // 2 - 1) :] + tokens
|
||||
|
||||
return tuple(tokens)
|
||||
|
||||
def _get_suppress_tokens(self) -> Tuple[int]:
|
||||
suppress_tokens = self.options.suppress_tokens
|
||||
|
||||
if isinstance(suppress_tokens, str):
|
||||
suppress_tokens = [int(t) for t in suppress_tokens.split(",")]
|
||||
|
||||
if -1 in suppress_tokens:
|
||||
suppress_tokens = [t for t in suppress_tokens if t >= 0]
|
||||
suppress_tokens.extend(self.tokenizer.non_speech_tokens)
|
||||
elif suppress_tokens is None or len(suppress_tokens) == 0:
|
||||
suppress_tokens = [] # interpret empty string as an empty list
|
||||
else:
|
||||
assert isinstance(suppress_tokens, list), "suppress_tokens must be a list"
|
||||
|
||||
suppress_tokens.extend(
|
||||
[self.tokenizer.sot, self.tokenizer.sot_prev, self.tokenizer.sot_lm]
|
||||
)
|
||||
if self.tokenizer.no_speech is not None:
|
||||
# no-speech probability is collected separately
|
||||
suppress_tokens.append(self.tokenizer.no_speech)
|
||||
|
||||
return tuple(sorted(set(suppress_tokens)))
|
||||
|
||||
def _get_audio_features(self, mel: Tensor):
|
||||
if self.options.fp16:
|
||||
mel = mel.half()
|
||||
|
||||
if mel.shape[-2:] == (self.model.dims.n_audio_ctx, self.model.dims.n_audio_state):
|
||||
# encoded audio features are given; skip audio encoding
|
||||
audio_features = mel
|
||||
else:
|
||||
audio_features = self.model.encoder(mel)
|
||||
|
||||
if audio_features.dtype != (torch.float16 if self.options.fp16 else torch.float32):
|
||||
return TypeError(f"audio_features has an incorrect dtype: {audio_features.dtype}")
|
||||
|
||||
return audio_features
|
||||
|
||||
def _detect_language(self, audio_features: Tensor, tokens: Tensor):
|
||||
languages = [self.options.language] * audio_features.shape[0]
|
||||
lang_probs = None
|
||||
|
||||
if self.options.language is None or self.options.task == "lang_id":
|
||||
lang_tokens, lang_probs = self.model.detect_language(audio_features, self.tokenizer)
|
||||
languages = [max(probs, key=probs.get) for probs in lang_probs]
|
||||
if self.options.language is None:
|
||||
tokens[:, self.sot_index + 1] = lang_tokens # write language tokens
|
||||
|
||||
return languages, lang_probs
|
||||
|
||||
def _main_loop(self, audio_features: Tensor, tokens: Tensor):
|
||||
assert audio_features.shape[0] == tokens.shape[0]
|
||||
n_batch = tokens.shape[0]
|
||||
sum_logprobs: Tensor = torch.zeros(n_batch, device=audio_features.device)
|
||||
no_speech_probs = [np.nan] * n_batch
|
||||
|
||||
try:
|
||||
for i in range(self.sample_len):
|
||||
logits = self.inference.logits(tokens, audio_features)
|
||||
|
||||
if i == 0 and self.tokenizer.no_speech is not None: # save no_speech_probs
|
||||
probs_at_sot = logits[:, self.sot_index].float().softmax(dim=-1)
|
||||
no_speech_probs = probs_at_sot[:, self.tokenizer.no_speech].tolist()
|
||||
|
||||
# now we need to consider the logits at the last token only
|
||||
logits = logits[:, -1]
|
||||
|
||||
# apply the logit filters, e.g. for suppressing or applying penalty to
|
||||
for logit_filter in self.logit_filters:
|
||||
logit_filter.apply(logits, tokens)
|
||||
|
||||
# expand the tokens tensor with the selected next tokens
|
||||
tokens, completed = self.decoder.update(tokens, logits, sum_logprobs)
|
||||
|
||||
if completed or tokens.shape[-1] > self.n_ctx:
|
||||
break
|
||||
finally:
|
||||
self.inference.cleanup_caching()
|
||||
|
||||
return tokens, sum_logprobs, no_speech_probs
|
||||
|
||||
@torch.no_grad()
|
||||
def run(self, mel: Tensor) -> List[DecodingResult]:
|
||||
self.decoder.reset()
|
||||
tokenizer: Tokenizer = self.tokenizer
|
||||
n_audio: int = mel.shape[0]
|
||||
|
||||
audio_features: Tensor = self._get_audio_features(mel) # encoder forward pass
|
||||
tokens: Tensor = torch.tensor([self.initial_tokens]).repeat(n_audio, 1)
|
||||
|
||||
# detect language if requested, overwriting the language token
|
||||
languages, language_probs = self._detect_language(audio_features, tokens)
|
||||
if self.options.task == "lang_id":
|
||||
return [
|
||||
DecodingResult(audio_features=features, language=language, language_probs=probs)
|
||||
for features, language, probs in zip(audio_features, languages, language_probs)
|
||||
]
|
||||
|
||||
# repeat the audio & text tensors by the group size, for beam search or best-of-n sampling
|
||||
audio_features = audio_features.repeat_interleave(self.n_group, dim=0)
|
||||
tokens = tokens.repeat_interleave(self.n_group, dim=0).to(audio_features.device)
|
||||
|
||||
# call the main sampling loop
|
||||
tokens, sum_logprobs, no_speech_probs = self._main_loop(audio_features, tokens)
|
||||
|
||||
# reshape the tensors to have (n_audio, n_group) as the first two dimensions
|
||||
audio_features = audio_features[:: self.n_group]
|
||||
no_speech_probs = no_speech_probs[:: self.n_group]
|
||||
assert audio_features.shape[0] == len(no_speech_probs) == n_audio
|
||||
|
||||
tokens = tokens.reshape(n_audio, self.n_group, -1)
|
||||
sum_logprobs = sum_logprobs.reshape(n_audio, self.n_group)
|
||||
|
||||
# get the final candidates for each group, and slice between the first sampled token and EOT
|
||||
tokens, sum_logprobs = self.decoder.finalize(tokens, sum_logprobs)
|
||||
tokens: List[List[Tensor]] = [
|
||||
[t[self.sample_begin : (t == tokenizer.eot).nonzero()[0, 0]] for t in s] for s in tokens
|
||||
]
|
||||
|
||||
# select the top-ranked sample in each group
|
||||
selected = self.sequence_ranker.rank(tokens, sum_logprobs)
|
||||
tokens: List[List[int]] = [t[i].tolist() for i, t in zip(selected, tokens)]
|
||||
texts: List[str] = [tokenizer.decode(t).strip() for t in tokens]
|
||||
|
||||
sum_logprobs: List[float] = [lp[i] for i, lp in zip(selected, sum_logprobs)]
|
||||
avg_logprobs: List[float] = [lp / (len(t) + 1) for t, lp in zip(tokens, sum_logprobs)]
|
||||
|
||||
fields = (texts, languages, tokens, audio_features, avg_logprobs, no_speech_probs)
|
||||
if len(set(map(len, fields))) != 1:
|
||||
raise RuntimeError(f"inconsistent result lengths: {list(map(len, fields))}")
|
||||
|
||||
return [
|
||||
DecodingResult(
|
||||
audio_features=features,
|
||||
language=language,
|
||||
tokens=tokens,
|
||||
text=text,
|
||||
avg_logprob=avg_logprob,
|
||||
no_speech_prob=no_speech_prob,
|
||||
temperature=self.options.temperature,
|
||||
compression_ratio=compression_ratio(text),
|
||||
)
|
||||
for text, language, tokens, features, avg_logprob, no_speech_prob in zip(*fields)
|
||||
]
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def decode(model: "Whisper", mel: Tensor, options: DecodingOptions = DecodingOptions()) -> Union[DecodingResult, List[DecodingResult]]:
|
||||
"""
|
||||
Performs decoding of 30-second audio segment(s), provided as Mel spectrogram(s).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
model: Whisper
|
||||
the Whisper model instance
|
||||
|
||||
mel: torch.Tensor, shape = (80, 3000) or (*, 80, 3000)
|
||||
A tensor containing the Mel spectrogram(s)
|
||||
|
||||
options: DecodingOptions
|
||||
A dataclass that contains all necessary options for decoding 30-second segments
|
||||
|
||||
Returns
|
||||
-------
|
||||
result: Union[DecodingResult, List[DecodingResult]]
|
||||
The result(s) of decoding contained in `DecodingResult` dataclass instance(s)
|
||||
"""
|
||||
single = mel.ndim == 2
|
||||
if single:
|
||||
mel = mel.unsqueeze(0)
|
||||
|
||||
result = DecodingTask(model, options).run(mel)
|
||||
|
||||
if single:
|
||||
result = result[0]
|
||||
|
||||
return result
|
||||
334
funasr/utils/whisper_utils/tokenizer.py
Normal file
@ -0,0 +1,334 @@
|
||||
import os
|
||||
from dataclasses import dataclass
|
||||
from functools import lru_cache
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import GPT2TokenizerFast
|
||||
|
||||
LANGUAGES = {
|
||||
"en": "english",
|
||||
"zh": "chinese",
|
||||
"de": "german",
|
||||
"es": "spanish",
|
||||
"ru": "russian",
|
||||
"ko": "korean",
|
||||
"fr": "french",
|
||||
"ja": "japanese",
|
||||
"pt": "portuguese",
|
||||
"tr": "turkish",
|
||||
"pl": "polish",
|
||||
"ca": "catalan",
|
||||
"nl": "dutch",
|
||||
"ar": "arabic",
|
||||
"sv": "swedish",
|
||||
"it": "italian",
|
||||
"id": "indonesian",
|
||||
"hi": "hindi",
|
||||
"fi": "finnish",
|
||||
"vi": "vietnamese",
|
||||
"he": "hebrew",
|
||||
"uk": "ukrainian",
|
||||
"el": "greek",
|
||||
"ms": "malay",
|
||||
"cs": "czech",
|
||||
"ro": "romanian",
|
||||
"da": "danish",
|
||||
"hu": "hungarian",
|
||||
"ta": "tamil",
|
||||
"no": "norwegian",
|
||||
"th": "thai",
|
||||
"ur": "urdu",
|
||||
"hr": "croatian",
|
||||
"bg": "bulgarian",
|
||||
"lt": "lithuanian",
|
||||
"la": "latin",
|
||||
"mi": "maori",
|
||||
"ml": "malayalam",
|
||||
"cy": "welsh",
|
||||
"sk": "slovak",
|
||||
"te": "telugu",
|
||||
"fa": "persian",
|
||||
"lv": "latvian",
|
||||
"bn": "bengali",
|
||||
"sr": "serbian",
|
||||
"az": "azerbaijani",
|
||||
"sl": "slovenian",
|
||||
"kn": "kannada",
|
||||
"et": "estonian",
|
||||
"mk": "macedonian",
|
||||
"br": "breton",
|
||||
"eu": "basque",
|
||||
"is": "icelandic",
|
||||
"hy": "armenian",
|
||||
"ne": "nepali",
|
||||
"mn": "mongolian",
|
||||
"bs": "bosnian",
|
||||
"kk": "kazakh",
|
||||
"sq": "albanian",
|
||||
"sw": "swahili",
|
||||
"gl": "galician",
|
||||
"mr": "marathi",
|
||||
"pa": "punjabi",
|
||||
"si": "sinhala",
|
||||
"km": "khmer",
|
||||
"sn": "shona",
|
||||
"yo": "yoruba",
|
||||
"so": "somali",
|
||||
"af": "afrikaans",
|
||||
"oc": "occitan",
|
||||
"ka": "georgian",
|
||||
"be": "belarusian",
|
||||
"tg": "tajik",
|
||||
"sd": "sindhi",
|
||||
"gu": "gujarati",
|
||||
"am": "amharic",
|
||||
"yi": "yiddish",
|
||||
"lo": "lao",
|
||||
"uz": "uzbek",
|
||||
"fo": "faroese",
|
||||
"ht": "haitian creole",
|
||||
"ps": "pashto",
|
||||
"tk": "turkmen",
|
||||
"nn": "nynorsk",
|
||||
"mt": "maltese",
|
||||
"sa": "sanskrit",
|
||||
"lb": "luxembourgish",
|
||||
"my": "myanmar",
|
||||
"bo": "tibetan",
|
||||
"tl": "tagalog",
|
||||
"mg": "malagasy",
|
||||
"as": "assamese",
|
||||
"tt": "tatar",
|
||||
"haw": "hawaiian",
|
||||
"ln": "lingala",
|
||||
"ha": "hausa",
|
||||
"ba": "bashkir",
|
||||
"jw": "javanese",
|
||||
"su": "sundanese",
|
||||
}
|
||||
|
||||
# language code lookup by name, with a few language aliases
|
||||
TO_LANGUAGE_CODE = {
|
||||
**{language: code for code, language in LANGUAGES.items()},
|
||||
"burmese": "my",
|
||||
"valencian": "ca",
|
||||
"flemish": "nl",
|
||||
"haitian": "ht",
|
||||
"letzeburgesch": "lb",
|
||||
"pushto": "ps",
|
||||
"panjabi": "pa",
|
||||
"moldavian": "ro",
|
||||
"moldovan": "ro",
|
||||
"sinhalese": "si",
|
||||
"castilian": "es",
|
||||
}
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class Tokenizer:
|
||||
"""A thin wrapper around `GPT2TokenizerFast` providing quick access to special tokens"""
|
||||
|
||||
tokenizer: "GPT2TokenizerFast"
|
||||
language: Optional[str]
|
||||
sot_sequence: Tuple[int]
|
||||
|
||||
def encode(self, text, **kwargs):
|
||||
return self.tokenizer.encode(text, **kwargs)
|
||||
|
||||
def decode(self, token_ids: Union[int, List[int], np.ndarray, torch.Tensor], **kwargs):
|
||||
return self.tokenizer.decode(token_ids, **kwargs)
|
||||
|
||||
def decode_with_timestamps(self, tokens) -> str:
|
||||
"""
|
||||
Timestamp tokens are above the special tokens' id range and are ignored by `decode()`.
|
||||
This method decodes given tokens with timestamps tokens annotated, e.g. "<|1.08|>".
|
||||
"""
|
||||
outputs = [[]]
|
||||
for token in tokens:
|
||||
if token >= self.timestamp_begin:
|
||||
timestamp = f"<|{(token - self.timestamp_begin) * 0.02:.2f}|>"
|
||||
outputs.append(timestamp)
|
||||
outputs.append([])
|
||||
else:
|
||||
outputs[-1].append(token)
|
||||
outputs = [s if isinstance(s, str) else self.tokenizer.decode(s) for s in outputs]
|
||||
return "".join(outputs)
|
||||
|
||||
@property
|
||||
@lru_cache()
|
||||
def eot(self) -> int:
|
||||
return self.tokenizer.eos_token_id
|
||||
|
||||
@property
|
||||
@lru_cache()
|
||||
def sot(self) -> int:
|
||||
return self._get_single_token_id("<|startoftranscript|>")
|
||||
|
||||
@property
|
||||
@lru_cache()
|
||||
def sot_lm(self) -> int:
|
||||
return self._get_single_token_id("<|startoflm|>")
|
||||
|
||||
@property
|
||||
@lru_cache()
|
||||
def sot_prev(self) -> int:
|
||||
return self._get_single_token_id("<|startofprev|>")
|
||||
|
||||
@property
|
||||
@lru_cache()
|
||||
def no_speech(self) -> int:
|
||||
return self._get_single_token_id("<|nospeech|>")
|
||||
|
||||
@property
|
||||
@lru_cache()
|
||||
def no_timestamps(self) -> int:
|
||||
return self._get_single_token_id("<|notimestamps|>")
|
||||
|
||||
@property
|
||||
@lru_cache()
|
||||
def timestamp_begin(self) -> int:
|
||||
return self.tokenizer.all_special_ids[-1] + 1
|
||||
|
||||
@property
|
||||
@lru_cache()
|
||||
def language_token(self) -> int:
|
||||
"""Returns the token id corresponding to the value of the `language` field"""
|
||||
if self.language is None:
|
||||
raise ValueError(f"This tokenizer does not have language token configured")
|
||||
|
||||
additional_tokens = dict(
|
||||
zip(
|
||||
self.tokenizer.additional_special_tokens,
|
||||
self.tokenizer.additional_special_tokens_ids,
|
||||
)
|
||||
)
|
||||
candidate = f"<|{self.language}|>"
|
||||
if candidate in additional_tokens:
|
||||
return additional_tokens[candidate]
|
||||
|
||||
raise KeyError(f"Language {self.language} not found in tokenizer.")
|
||||
|
||||
@property
|
||||
@lru_cache()
|
||||
def all_language_tokens(self) -> Tuple[int]:
|
||||
result = []
|
||||
for token, token_id in zip(
|
||||
self.tokenizer.additional_special_tokens,
|
||||
self.tokenizer.additional_special_tokens_ids,
|
||||
):
|
||||
if token.strip("<|>") in LANGUAGES:
|
||||
result.append(token_id)
|
||||
return tuple(result)
|
||||
|
||||
@property
|
||||
@lru_cache()
|
||||
def all_language_codes(self) -> Tuple[str]:
|
||||
return tuple(self.decode([l]).strip("<|>") for l in self.all_language_tokens)
|
||||
|
||||
@property
|
||||
@lru_cache()
|
||||
def sot_sequence_including_notimestamps(self) -> Tuple[int]:
|
||||
return tuple(list(self.sot_sequence) + [self.no_timestamps])
|
||||
|
||||
@property
|
||||
@lru_cache()
|
||||
def non_speech_tokens(self) -> Tuple[int]:
|
||||
"""
|
||||
Returns the list of tokens to suppress in order to avoid any speaker tags or non-speech
|
||||
annotations, to prevent sampling texts that are not actually spoken in the audio, e.g.
|
||||
|
||||
- ♪♪♪
|
||||
- ( SPEAKING FOREIGN LANGUAGE )
|
||||
- [DAVID] Hey there,
|
||||
|
||||
keeping basic punctuations like commas, periods, question marks, exclamation points, etc.
|
||||
"""
|
||||
symbols = list("\"#()*+/:;<=>@[\\]^_`{|}~「」『』")
|
||||
symbols += "<< >> <<< >>> -- --- -( -[ (' (\" (( )) ((( ))) [[ ]] {{ }} ♪♪ ♪♪♪".split()
|
||||
|
||||
# symbols that may be a single token or multiple tokens depending on the tokenizer.
|
||||
# In case they're multiple tokens, suppress the first token, which is safe because:
|
||||
# These are between U+2640 and U+267F miscellaneous symbols that are okay to suppress
|
||||
# in generations, and in the 3-byte UTF-8 representation they share the first two bytes.
|
||||
miscellaneous = set("♩♪♫♬♭♮♯")
|
||||
assert all(0x2640 <= ord(c) <= 0x267F for c in miscellaneous)
|
||||
|
||||
# allow hyphens "-" and single quotes "'" between words, but not at the beginning of a word
|
||||
result = {self.tokenizer.encode(" -")[0], self.tokenizer.encode(" '")[0]}
|
||||
for symbol in symbols + list(miscellaneous):
|
||||
for tokens in [self.tokenizer.encode(symbol), self.tokenizer.encode(" " + symbol)]:
|
||||
if len(tokens) == 1 or symbol in miscellaneous:
|
||||
result.add(tokens[0])
|
||||
|
||||
return tuple(sorted(result))
|
||||
|
||||
def _get_single_token_id(self, text) -> int:
|
||||
tokens = self.tokenizer.encode(text)
|
||||
assert len(tokens) == 1, f"{text} is not encoded as a single token"
|
||||
return tokens[0]
|
||||
|
||||
|
||||
@lru_cache(maxsize=None)
|
||||
def build_tokenizer(name: str = "gpt2", resource_path: str = None):
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
if resource_path is not None:
|
||||
path = os.path.join(resource_path, name)
|
||||
else:
|
||||
path = os.path.join(os.path.dirname(__file__), "assets", name)
|
||||
tokenizer = GPT2TokenizerFast.from_pretrained(path)
|
||||
|
||||
specials = [
|
||||
"<|startoftranscript|>",
|
||||
*[f"<|{lang}|>" for lang in LANGUAGES.keys()],
|
||||
"<|translate|>",
|
||||
"<|transcribe|>",
|
||||
"<|startoflm|>",
|
||||
"<|startofprev|>",
|
||||
"<|nospeech|>",
|
||||
"<|notimestamps|>",
|
||||
]
|
||||
|
||||
tokenizer.add_special_tokens(dict(additional_special_tokens=specials))
|
||||
return tokenizer
|
||||
|
||||
|
||||
@lru_cache(maxsize=None)
|
||||
def get_tokenizer(
|
||||
multilingual: bool,
|
||||
*,
|
||||
task: Optional[str] = None, # Literal["transcribe", "translate", None]
|
||||
language: Optional[str] = None,
|
||||
) -> Tokenizer:
|
||||
if language is not None:
|
||||
language = language.lower()
|
||||
if language not in LANGUAGES:
|
||||
if language in TO_LANGUAGE_CODE:
|
||||
language = TO_LANGUAGE_CODE[language]
|
||||
else:
|
||||
raise ValueError(f"Unsupported language: {language}")
|
||||
|
||||
if multilingual:
|
||||
tokenizer_name = "multilingual"
|
||||
task = task or "transcribe"
|
||||
language = language or "en"
|
||||
else:
|
||||
tokenizer_name = "gpt2"
|
||||
task = None
|
||||
language = None
|
||||
|
||||
tokenizer = build_tokenizer(name=tokenizer_name)
|
||||
all_special_ids: List[int] = tokenizer.all_special_ids
|
||||
sot: int = all_special_ids[1]
|
||||
translate: int = all_special_ids[-6]
|
||||
transcribe: int = all_special_ids[-5]
|
||||
|
||||
langs = tuple(LANGUAGES.keys())
|
||||
sot_sequence = [sot]
|
||||
if language is not None:
|
||||
sot_sequence.append(sot + 1 + langs.index(language))
|
||||
if task is not None:
|
||||
sot_sequence.append(transcribe if task == "transcribe" else translate)
|
||||
|
||||
return Tokenizer(tokenizer=tokenizer, language=language, sot_sequence=tuple(sot_sequence))
|
||||
316
funasr/utils/whisper_utils/transcribe.py
Normal file
@ -0,0 +1,316 @@
|
||||
import argparse
|
||||
import os
|
||||
import warnings
|
||||
from typing import Optional, Tuple, Union, TYPE_CHECKING
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import tqdm
|
||||
|
||||
from funasr.utils.whisper_utils.audio import SAMPLE_RATE, N_FRAMES, HOP_LENGTH, pad_or_trim, log_mel_spectrogram
|
||||
from funasr.utils.whisper_utils.decoding import DecodingOptions, DecodingResult
|
||||
from funasr.utils.whisper_utils.tokenizer import LANGUAGES, TO_LANGUAGE_CODE, get_tokenizer
|
||||
from funasr.utils.whisper_utils.utils import exact_div, format_timestamp, make_safe, optional_int, optional_float, str2bool, get_writer
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .model import Whisper
|
||||
|
||||
|
||||
def transcribe(
|
||||
model: "Whisper",
|
||||
audio: Union[str, np.ndarray, torch.Tensor],
|
||||
*,
|
||||
verbose: Optional[bool] = None,
|
||||
temperature: Union[float, Tuple[float, ...]] = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
|
||||
compression_ratio_threshold: Optional[float] = 2.4,
|
||||
logprob_threshold: Optional[float] = -1.0,
|
||||
no_speech_threshold: Optional[float] = 0.6,
|
||||
condition_on_previous_text: bool = True,
|
||||
**decode_options,
|
||||
):
|
||||
"""
|
||||
Transcribe an audio file using Whisper
|
||||
|
||||
Parameters
|
||||
----------
|
||||
model: Whisper
|
||||
The Whisper model instance
|
||||
|
||||
audio: Union[str, np.ndarray, torch.Tensor]
|
||||
The path to the audio file to open, or the audio waveform
|
||||
|
||||
verbose: bool
|
||||
Whether to display the text being decoded to the console. If True, displays all the details,
|
||||
If False, displays minimal details. If None, does not display anything
|
||||
|
||||
temperature: Union[float, Tuple[float, ...]]
|
||||
Temperature for sampling. It can be a tuple of temperatures, which will be successively used
|
||||
upon failures according to either `compression_ratio_threshold` or `logprob_threshold`.
|
||||
|
||||
compression_ratio_threshold: float
|
||||
If the gzip compression ratio is above this value, treat as failed
|
||||
|
||||
logprob_threshold: float
|
||||
If the average log probability over sampled tokens is below this value, treat as failed
|
||||
|
||||
no_speech_threshold: float
|
||||
If the no_speech probability is higher than this value AND the average log probability
|
||||
over sampled tokens is below `logprob_threshold`, consider the segment as silent
|
||||
|
||||
condition_on_previous_text: bool
|
||||
if True, the previous output of the model is provided as a prompt for the next window;
|
||||
disabling may make the text inconsistent across windows, but the model becomes less prone to
|
||||
getting stuck in a failure loop, such as repetition looping or timestamps going out of sync.
|
||||
|
||||
decode_options: dict
|
||||
Keyword arguments to construct `DecodingOptions` instances
|
||||
|
||||
Returns
|
||||
-------
|
||||
A dictionary containing the resulting text ("text") and segment-level details ("segments"), and
|
||||
the spoken language ("language"), which is detected when `decode_options["language"]` is None.
|
||||
"""
|
||||
dtype = torch.float16 if decode_options.get("fp16", True) else torch.float32
|
||||
if model.device == torch.device("cpu"):
|
||||
if torch.cuda.is_available():
|
||||
warnings.warn("Performing inference on CPU when CUDA is available")
|
||||
if dtype == torch.float16:
|
||||
warnings.warn("FP16 is not supported on CPU; using FP32 instead")
|
||||
dtype = torch.float32
|
||||
|
||||
if dtype == torch.float32:
|
||||
decode_options["fp16"] = False
|
||||
|
||||
mel = log_mel_spectrogram(audio)
|
||||
|
||||
if decode_options.get("language", None) is None:
|
||||
if not model.is_multilingual:
|
||||
decode_options["language"] = "en"
|
||||
else:
|
||||
if verbose:
|
||||
print("Detecting language using up to the first 30 seconds. Use `--language` to specify the language")
|
||||
segment = pad_or_trim(mel, N_FRAMES).to(model.device).to(dtype)
|
||||
_, probs = model.detect_language(segment)
|
||||
decode_options["language"] = max(probs, key=probs.get)
|
||||
if verbose is not None:
|
||||
print(f"Detected language: {LANGUAGES[decode_options['language']].title()}")
|
||||
|
||||
language = decode_options["language"]
|
||||
task = decode_options.get("task", "transcribe")
|
||||
tokenizer = get_tokenizer(model.is_multilingual, language=language, task=task)
|
||||
|
||||
def decode_with_fallback(segment: torch.Tensor) -> DecodingResult:
|
||||
temperatures = [temperature] if isinstance(temperature, (int, float)) else temperature
|
||||
decode_result = None
|
||||
|
||||
for t in temperatures:
|
||||
kwargs = {**decode_options}
|
||||
if t > 0:
|
||||
# disable beam_size and patience when t > 0
|
||||
kwargs.pop("beam_size", None)
|
||||
kwargs.pop("patience", None)
|
||||
else:
|
||||
# disable best_of when t == 0
|
||||
kwargs.pop("best_of", None)
|
||||
|
||||
options = DecodingOptions(**kwargs, temperature=t)
|
||||
decode_result = model.decode(segment, options)
|
||||
|
||||
needs_fallback = False
|
||||
if compression_ratio_threshold is not None and decode_result.compression_ratio > compression_ratio_threshold:
|
||||
needs_fallback = True # too repetitive
|
||||
if logprob_threshold is not None and decode_result.avg_logprob < logprob_threshold:
|
||||
needs_fallback = True # average log probability is too low
|
||||
|
||||
if not needs_fallback:
|
||||
break
|
||||
|
||||
return decode_result
|
||||
|
||||
seek = 0
|
||||
input_stride = exact_div(
|
||||
N_FRAMES, model.dims.n_audio_ctx
|
||||
) # mel frames per output token: 2
|
||||
time_precision = (
|
||||
input_stride * HOP_LENGTH / SAMPLE_RATE
|
||||
) # time per output token: 0.02 (seconds)
|
||||
all_tokens = []
|
||||
all_segments = []
|
||||
prompt_reset_since = 0
|
||||
|
||||
initial_prompt = decode_options.pop("initial_prompt", None) or []
|
||||
if initial_prompt:
|
||||
initial_prompt = tokenizer.encode(" " + initial_prompt.strip())
|
||||
all_tokens.extend(initial_prompt)
|
||||
|
||||
def add_segment(
|
||||
*, start: float, end: float, text_tokens: torch.Tensor, result: DecodingResult
|
||||
):
|
||||
text = tokenizer.decode([token for token in text_tokens if token < tokenizer.eot])
|
||||
if len(text.strip()) == 0: # skip empty text output
|
||||
return
|
||||
|
||||
all_segments.append(
|
||||
{
|
||||
"id": len(all_segments),
|
||||
"seek": seek,
|
||||
"start": start,
|
||||
"end": end,
|
||||
"text": text,
|
||||
"tokens": text_tokens.tolist(),
|
||||
"temperature": result.temperature,
|
||||
"avg_logprob": result.avg_logprob,
|
||||
"compression_ratio": result.compression_ratio,
|
||||
"no_speech_prob": result.no_speech_prob,
|
||||
}
|
||||
)
|
||||
if verbose:
|
||||
print(make_safe(f"[{format_timestamp(start)} --> {format_timestamp(end)}] {text}"))
|
||||
|
||||
# show the progress bar when verbose is False (otherwise the transcribed text will be printed)
|
||||
num_frames = mel.shape[-1]
|
||||
previous_seek_value = seek
|
||||
|
||||
with tqdm.tqdm(total=num_frames, unit='frames', disable=verbose is not False) as pbar:
|
||||
while seek < num_frames:
|
||||
timestamp_offset = float(seek * HOP_LENGTH / SAMPLE_RATE)
|
||||
segment = pad_or_trim(mel[:, seek:], N_FRAMES).to(model.device).to(dtype)
|
||||
segment_duration = segment.shape[-1] * HOP_LENGTH / SAMPLE_RATE
|
||||
|
||||
decode_options["prompt"] = all_tokens[prompt_reset_since:]
|
||||
result: DecodingResult = decode_with_fallback(segment)
|
||||
tokens = torch.tensor(result.tokens)
|
||||
|
||||
if no_speech_threshold is not None:
|
||||
# no voice activity check
|
||||
should_skip = result.no_speech_prob > no_speech_threshold
|
||||
if logprob_threshold is not None and result.avg_logprob > logprob_threshold:
|
||||
# don't skip if the logprob is high enough, despite the no_speech_prob
|
||||
should_skip = False
|
||||
|
||||
if should_skip:
|
||||
seek += segment.shape[-1] # fast-forward to the next segment boundary
|
||||
continue
|
||||
|
||||
timestamp_tokens: torch.Tensor = tokens.ge(tokenizer.timestamp_begin)
|
||||
consecutive = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0].add_(1)
|
||||
if len(consecutive) > 0: # if the output contains two consecutive timestamp tokens
|
||||
last_slice = 0
|
||||
for current_slice in consecutive:
|
||||
sliced_tokens = tokens[last_slice:current_slice]
|
||||
start_timestamp_position = (
|
||||
sliced_tokens[0].item() - tokenizer.timestamp_begin
|
||||
)
|
||||
end_timestamp_position = (
|
||||
sliced_tokens[-1].item() - tokenizer.timestamp_begin
|
||||
)
|
||||
add_segment(
|
||||
start=timestamp_offset + start_timestamp_position * time_precision,
|
||||
end=timestamp_offset + end_timestamp_position * time_precision,
|
||||
text_tokens=sliced_tokens[1:-1],
|
||||
result=result,
|
||||
)
|
||||
last_slice = current_slice
|
||||
last_timestamp_position = (
|
||||
tokens[last_slice - 1].item() - tokenizer.timestamp_begin
|
||||
)
|
||||
seek += last_timestamp_position * input_stride
|
||||
all_tokens.extend(tokens[: last_slice + 1].tolist())
|
||||
else:
|
||||
duration = segment_duration
|
||||
timestamps = tokens[timestamp_tokens.nonzero().flatten()]
|
||||
if len(timestamps) > 0 and timestamps[-1].item() != tokenizer.timestamp_begin:
|
||||
# no consecutive timestamps but it has a timestamp; use the last one.
|
||||
# single timestamp at the end means no speech after the last timestamp.
|
||||
last_timestamp_position = timestamps[-1].item() - tokenizer.timestamp_begin
|
||||
duration = last_timestamp_position * time_precision
|
||||
|
||||
add_segment(
|
||||
start=timestamp_offset,
|
||||
end=timestamp_offset + duration,
|
||||
text_tokens=tokens,
|
||||
result=result,
|
||||
)
|
||||
|
||||
seek += segment.shape[-1]
|
||||
all_tokens.extend(tokens.tolist())
|
||||
|
||||
if not condition_on_previous_text or result.temperature > 0.5:
|
||||
# do not feed the prompt tokens if a high temperature was used
|
||||
prompt_reset_since = len(all_tokens)
|
||||
|
||||
# update progress bar
|
||||
pbar.update(min(num_frames, seek) - previous_seek_value)
|
||||
previous_seek_value = seek
|
||||
|
||||
return dict(text=tokenizer.decode(all_tokens[len(initial_prompt):]), segments=all_segments, language=language)
|
||||
|
||||
|
||||
def cli():
|
||||
from . import available_models
|
||||
|
||||
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument("audio", nargs="+", type=str, help="audio file(s) to transcribe")
|
||||
parser.add_argument("--model", default="small", choices=available_models(), help="name of the Whisper model to use")
|
||||
parser.add_argument("--model_dir", type=str, default=None, help="the path to save model files; uses ~/.cache/whisper by default")
|
||||
parser.add_argument("--device", default="cuda" if torch.cuda.is_available() else "cpu", help="device to use for PyTorch inference")
|
||||
parser.add_argument("--output_dir", "-o", type=str, default=".", help="directory to save the outputs")
|
||||
parser.add_argument("--output_format", "-f", type=str, default="all", choices=["txt", "vtt", "srt", "tsv", "json", "all"], help="format of the output file; if not specified, all available formats will be produced")
|
||||
parser.add_argument("--verbose", type=str2bool, default=True, help="whether to print out the progress and debug messages")
|
||||
|
||||
parser.add_argument("--task", type=str, default="transcribe", choices=["transcribe", "translate"], help="whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate')")
|
||||
parser.add_argument("--language", type=str, default=None, choices=sorted(LANGUAGES.keys()) + sorted([k.title() for k in TO_LANGUAGE_CODE.keys()]), help="language spoken in the audio, specify None to perform language detection")
|
||||
|
||||
parser.add_argument("--temperature", type=float, default=0, help="temperature to use for sampling")
|
||||
parser.add_argument("--best_of", type=optional_int, default=5, help="number of candidates when sampling with non-zero temperature")
|
||||
parser.add_argument("--beam_size", type=optional_int, default=5, help="number of beams in beam search, only applicable when temperature is zero")
|
||||
parser.add_argument("--patience", type=float, default=None, help="optional patience value to use in beam decoding, as in https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to conventional beam search")
|
||||
parser.add_argument("--length_penalty", type=float, default=None, help="optional token length penalty coefficient (alpha) as in https://arxiv.org/abs/1609.08144, uses simple length normalization by default")
|
||||
|
||||
parser.add_argument("--suppress_tokens", type=str, default="-1", help="comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations")
|
||||
parser.add_argument("--initial_prompt", type=str, default=None, help="optional text to provide as a prompt for the first window.")
|
||||
parser.add_argument("--condition_on_previous_text", type=str2bool, default=True, help="if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop")
|
||||
parser.add_argument("--fp16", type=str2bool, default=True, help="whether to perform inference in fp16; True by default")
|
||||
|
||||
parser.add_argument("--temperature_increment_on_fallback", type=optional_float, default=0.2, help="temperature to increase when falling back when the decoding fails to meet either of the thresholds below")
|
||||
parser.add_argument("--compression_ratio_threshold", type=optional_float, default=2.4, help="if the gzip compression ratio is higher than this value, treat the decoding as failed")
|
||||
parser.add_argument("--logprob_threshold", type=optional_float, default=-1.0, help="if the average log probability is lower than this value, treat the decoding as failed")
|
||||
parser.add_argument("--no_speech_threshold", type=optional_float, default=0.6, help="if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence")
|
||||
parser.add_argument("--threads", type=optional_int, default=0, help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS")
|
||||
|
||||
args = parser.parse_args().__dict__
|
||||
model_name: str = args.pop("model")
|
||||
model_dir: str = args.pop("model_dir")
|
||||
output_dir: str = args.pop("output_dir")
|
||||
output_format: str = args.pop("output_format")
|
||||
device: str = args.pop("device")
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
if model_name.endswith(".en") and args["language"] not in {"en", "English"}:
|
||||
if args["language"] is not None:
|
||||
warnings.warn(f"{model_name} is an English-only model but receipted '{args['language']}'; using English instead.")
|
||||
args["language"] = "en"
|
||||
|
||||
temperature = args.pop("temperature")
|
||||
temperature_increment_on_fallback = args.pop("temperature_increment_on_fallback")
|
||||
if temperature_increment_on_fallback is not None:
|
||||
temperature = tuple(np.arange(temperature, 1.0 + 1e-6, temperature_increment_on_fallback))
|
||||
else:
|
||||
temperature = [temperature]
|
||||
|
||||
threads = args.pop("threads")
|
||||
if threads > 0:
|
||||
torch.set_num_threads(threads)
|
||||
|
||||
from . import load_model
|
||||
model = load_model(model_name, device=device, download_root=model_dir)
|
||||
|
||||
writer = get_writer(output_format, output_dir)
|
||||
|
||||
for audio_path in args.pop("audio"):
|
||||
result = transcribe(model, audio_path, temperature=temperature, **args)
|
||||
writer(result, audio_path)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
cli()
|
||||
163
funasr/utils/whisper_utils/utils.py
Normal file
@ -0,0 +1,163 @@
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
import zlib
|
||||
from typing import Callable, TextIO
|
||||
|
||||
system_encoding = sys.getdefaultencoding()
|
||||
|
||||
if system_encoding != "utf-8":
|
||||
def make_safe(string):
|
||||
# replaces any character not representable using the system default encoding with an '?',
|
||||
# avoiding UnicodeEncodeError (https://github.com/openai/whisper/discussions/729).
|
||||
return string.encode(system_encoding, errors="replace").decode(system_encoding)
|
||||
else:
|
||||
def make_safe(string):
|
||||
# utf-8 can encode any Unicode code point, so no need to do the round-trip encoding
|
||||
return string
|
||||
|
||||
|
||||
def exact_div(x, y):
|
||||
assert x % y == 0
|
||||
return x // y
|
||||
|
||||
|
||||
def str2bool(string):
|
||||
str2val = {"True": True, "False": False}
|
||||
if string in str2val:
|
||||
return str2val[string]
|
||||
else:
|
||||
raise ValueError(f"Expected one of {set(str2val.keys())}, got {string}")
|
||||
|
||||
|
||||
def optional_int(string):
|
||||
return None if string == "None" else int(string)
|
||||
|
||||
|
||||
def optional_float(string):
|
||||
return None if string == "None" else float(string)
|
||||
|
||||
|
||||
def compression_ratio(text) -> float:
|
||||
text_bytes = text.encode("utf-8")
|
||||
return len(text_bytes) / len(zlib.compress(text_bytes))
|
||||
|
||||
|
||||
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = '.'):
|
||||
assert seconds >= 0, "non-negative timestamp expected"
|
||||
milliseconds = round(seconds * 1000.0)
|
||||
|
||||
hours = milliseconds // 3_600_000
|
||||
milliseconds -= hours * 3_600_000
|
||||
|
||||
minutes = milliseconds // 60_000
|
||||
milliseconds -= minutes * 60_000
|
||||
|
||||
seconds = milliseconds // 1_000
|
||||
milliseconds -= seconds * 1_000
|
||||
|
||||
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
|
||||
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
|
||||
|
||||
|
||||
class ResultWriter:
|
||||
extension: str
|
||||
|
||||
def __init__(self, output_dir: str):
|
||||
self.output_dir = output_dir
|
||||
|
||||
def __call__(self, result: dict, audio_path: str):
|
||||
audio_basename = os.path.basename(audio_path)
|
||||
output_path = os.path.join(self.output_dir, audio_basename + "." + self.extension)
|
||||
|
||||
with open(output_path, "w", encoding="utf-8") as f:
|
||||
self.write_result(result, file=f)
|
||||
|
||||
def write_result(self, result: dict, file: TextIO):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class WriteTXT(ResultWriter):
|
||||
extension: str = "txt"
|
||||
|
||||
def write_result(self, result: dict, file: TextIO):
|
||||
for segment in result["segments"]:
|
||||
print(segment['text'].strip(), file=file, flush=True)
|
||||
|
||||
|
||||
class WriteVTT(ResultWriter):
|
||||
extension: str = "vtt"
|
||||
|
||||
def write_result(self, result: dict, file: TextIO):
|
||||
print("WEBVTT\n", file=file)
|
||||
for segment in result["segments"]:
|
||||
print(
|
||||
f"{format_timestamp(segment['start'])} --> {format_timestamp(segment['end'])}\n"
|
||||
f"{segment['text'].strip().replace('-->', '->')}\n",
|
||||
file=file,
|
||||
flush=True,
|
||||
)
|
||||
|
||||
|
||||
class WriteSRT(ResultWriter):
|
||||
extension: str = "srt"
|
||||
|
||||
def write_result(self, result: dict, file: TextIO):
|
||||
for i, segment in enumerate(result["segments"], start=1):
|
||||
# write srt lines
|
||||
print(
|
||||
f"{i}\n"
|
||||
f"{format_timestamp(segment['start'], always_include_hours=True, decimal_marker=',')} --> "
|
||||
f"{format_timestamp(segment['end'], always_include_hours=True, decimal_marker=',')}\n"
|
||||
f"{segment['text'].strip().replace('-->', '->')}\n",
|
||||
file=file,
|
||||
flush=True,
|
||||
)
|
||||
|
||||
|
||||
class WriteTSV(ResultWriter):
|
||||
"""
|
||||
Write a transcript to a file in TSV (tab-separated values) format containing lines like:
|
||||
<start time in integer milliseconds>\t<end time in integer milliseconds>\t<transcript text>
|
||||
|
||||
Using integer milliseconds as start and end times means there's no chance of interference from
|
||||
an environment setting a language encoding that causes the decimal in a floating point number
|
||||
to appear as a comma; also is faster and more efficient to parse & store, e.g., in C++.
|
||||
"""
|
||||
extension: str = "tsv"
|
||||
|
||||
def write_result(self, result: dict, file: TextIO):
|
||||
print("start", "end", "text", sep="\t", file=file)
|
||||
for segment in result["segments"]:
|
||||
print(round(1000 * segment['start']), file=file, end="\t")
|
||||
print(round(1000 * segment['end']), file=file, end="\t")
|
||||
print(segment['text'].strip().replace("\t", " "), file=file, flush=True)
|
||||
|
||||
|
||||
class WriteJSON(ResultWriter):
|
||||
extension: str = "json"
|
||||
|
||||
def write_result(self, result: dict, file: TextIO):
|
||||
json.dump(result, file)
|
||||
|
||||
|
||||
def get_writer(output_format: str, output_dir: str) -> Callable[[dict, TextIO], None]:
|
||||
writers = {
|
||||
"txt": WriteTXT,
|
||||
"vtt": WriteVTT,
|
||||
"srt": WriteSRT,
|
||||
"tsv": WriteTSV,
|
||||
"json": WriteJSON,
|
||||
}
|
||||
|
||||
if output_format == "all":
|
||||
all_writers = [writer(output_dir) for writer in writers.values()]
|
||||
|
||||
def write_all(result: dict, file: TextIO):
|
||||
for writer in all_writers:
|
||||
writer(result, file)
|
||||
|
||||
return write_all
|
||||
|
||||
return writers[output_format](output_dir)
|
||||
|
||||
2
setup.py
@ -25,6 +25,7 @@ requirements = {
|
||||
"sentencepiece",
|
||||
"jieba",
|
||||
"rotary_embedding_torch",
|
||||
"ffmpeg",
|
||||
# TTS
|
||||
"pypinyin>=0.44.0",
|
||||
"espnet_tts_frontend",
|
||||
@ -41,6 +42,7 @@ requirements = {
|
||||
"protobuf",
|
||||
"tqdm",
|
||||
"hdbscan",
|
||||
"umap",
|
||||
],
|
||||
# train: The modules invoked when training only.
|
||||
"train": [
|
||||
|
||||