mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
Dev gzf new (#1555)
* train * train * train * train * train * train * train * train * train * train * train * train * train
This commit is contained in:
parent
31350db825
commit
d1b1fdd520
@ -56,7 +56,7 @@ class EspnetStyleBatchSampler(DistributedSampler):
|
|||||||
self.shuffle = shuffle and is_training
|
self.shuffle = shuffle and is_training
|
||||||
self.drop_last = drop_last
|
self.drop_last = drop_last
|
||||||
|
|
||||||
self.total_size = len(self.dataset)
|
# self.total_size = len(self.dataset)
|
||||||
# self.num_samples = int(math.ceil(self.total_size / self.num_replicas))
|
# self.num_samples = int(math.ceil(self.total_size / self.num_replicas))
|
||||||
self.epoch = 0
|
self.epoch = 0
|
||||||
self.sort_size = sort_size * num_replicas
|
self.sort_size = sort_size * num_replicas
|
||||||
@ -71,9 +71,9 @@ class EspnetStyleBatchSampler(DistributedSampler):
|
|||||||
g = torch.Generator()
|
g = torch.Generator()
|
||||||
g.manual_seed(self.epoch)
|
g.manual_seed(self.epoch)
|
||||||
random.seed(self.epoch)
|
random.seed(self.epoch)
|
||||||
indices = torch.randperm(self.total_size, generator=g).tolist()
|
indices = torch.randperm(len(self.dataset), generator=g).tolist()
|
||||||
else:
|
else:
|
||||||
indices = list(range(self.total_size))
|
indices = list(range(len(self.dataset)))
|
||||||
|
|
||||||
# Sort indices by sample length
|
# Sort indices by sample length
|
||||||
sorted_indices = sorted(indices, key=lambda idx: self.dataset.get_source_len(idx))
|
sorted_indices = sorted(indices, key=lambda idx: self.dataset.get_source_len(idx))
|
||||||
|
|||||||
@ -323,8 +323,8 @@ class CustomDistributedBufferDynamicBatchSampler(DistributedSampler):
|
|||||||
self.shuffle = shuffle and is_training
|
self.shuffle = shuffle and is_training
|
||||||
self.drop_last = drop_last
|
self.drop_last = drop_last
|
||||||
|
|
||||||
self.total_size = len(self.dataset)
|
# self.total_size = len(self.dataset)
|
||||||
# self.num_samples = int(math.ceil(self.total_size / self.num_replicas))
|
self.num_samples = int(math.ceil(self.total_size / self.num_replicas))
|
||||||
self.epoch = 0
|
self.epoch = 0
|
||||||
self.sort_size = sort_size * num_replicas
|
self.sort_size = sort_size * num_replicas
|
||||||
self.max_token_length = kwargs.get("max_token_length", 2048)
|
self.max_token_length = kwargs.get("max_token_length", 2048)
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user