mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
test
This commit is contained in:
parent
b13b4c1bf5
commit
cdc7065008
@ -161,18 +161,15 @@ class AutoModel:
|
||||
vocab_size = len(tokenizer.token_list)
|
||||
else:
|
||||
vocab_size = -1
|
||||
pdb.set_trace()
|
||||
# build frontend
|
||||
frontend = kwargs.get("frontend", None)
|
||||
pdb.set_trace()
|
||||
|
||||
if frontend is not None:
|
||||
pdb.set_trace()
|
||||
frontend_class = tables.frontend_classes.get(frontend)
|
||||
frontend = frontend_class(**kwargs["frontend_conf"])
|
||||
pdb.set_trace()
|
||||
kwargs["frontend"] = frontend
|
||||
kwargs["input_size"] = frontend.output_size()
|
||||
pdb.set_trace()
|
||||
|
||||
# build model
|
||||
model_class = tables.model_classes.get(kwargs["model"])
|
||||
model = model_class(**kwargs, **kwargs["model_conf"], vocab_size=vocab_size)
|
||||
|
||||
112
funasr/models/lcbnet/attention.py
Normal file
112
funasr/models/lcbnet/attention.py
Normal file
@ -0,0 +1,112 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# Copyright 2024 yufan
|
||||
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
||||
|
||||
"""Multi-Head Attention Return Weight layer definition."""
|
||||
|
||||
import math
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
class MultiHeadedAttentionReturnWeight(nn.Module):
|
||||
"""Multi-Head Attention layer.
|
||||
|
||||
Args:
|
||||
n_head (int): The number of heads.
|
||||
n_feat (int): The number of features.
|
||||
dropout_rate (float): Dropout rate.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, n_head, n_feat, dropout_rate):
|
||||
"""Construct an MultiHeadedAttentionReturnWeight object."""
|
||||
super(MultiHeadedAttentionReturnWeight, self).__init__()
|
||||
assert n_feat % n_head == 0
|
||||
# We assume d_v always equals d_k
|
||||
self.d_k = n_feat // n_head
|
||||
self.h = n_head
|
||||
self.linear_q = nn.Linear(n_feat, n_feat)
|
||||
self.linear_k = nn.Linear(n_feat, n_feat)
|
||||
self.linear_v = nn.Linear(n_feat, n_feat)
|
||||
self.linear_out = nn.Linear(n_feat, n_feat)
|
||||
self.attn = None
|
||||
self.dropout = nn.Dropout(p=dropout_rate)
|
||||
|
||||
def forward_qkv(self, query, key, value):
|
||||
"""Transform query, key and value.
|
||||
|
||||
Args:
|
||||
query (torch.Tensor): Query tensor (#batch, time1, size).
|
||||
key (torch.Tensor): Key tensor (#batch, time2, size).
|
||||
value (torch.Tensor): Value tensor (#batch, time2, size).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Transformed query tensor (#batch, n_head, time1, d_k).
|
||||
torch.Tensor: Transformed key tensor (#batch, n_head, time2, d_k).
|
||||
torch.Tensor: Transformed value tensor (#batch, n_head, time2, d_k).
|
||||
|
||||
"""
|
||||
n_batch = query.size(0)
|
||||
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
|
||||
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
|
||||
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
|
||||
q = q.transpose(1, 2) # (batch, head, time1, d_k)
|
||||
k = k.transpose(1, 2) # (batch, head, time2, d_k)
|
||||
v = v.transpose(1, 2) # (batch, head, time2, d_k)
|
||||
|
||||
return q, k, v
|
||||
|
||||
def forward_attention(self, value, scores, mask):
|
||||
"""Compute attention context vector.
|
||||
|
||||
Args:
|
||||
value (torch.Tensor): Transformed value (#batch, n_head, time2, d_k).
|
||||
scores (torch.Tensor): Attention score (#batch, n_head, time1, time2).
|
||||
mask (torch.Tensor): Mask (#batch, 1, time2) or (#batch, time1, time2).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Transformed value (#batch, time1, d_model)
|
||||
weighted by the attention score (#batch, time1, time2).
|
||||
|
||||
"""
|
||||
n_batch = value.size(0)
|
||||
if mask is not None:
|
||||
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
|
||||
min_value = torch.finfo(scores.dtype).min
|
||||
scores = scores.masked_fill(mask, min_value)
|
||||
self.attn = torch.softmax(scores, dim=-1).masked_fill(
|
||||
mask, 0.0
|
||||
) # (batch, head, time1, time2)
|
||||
else:
|
||||
self.attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
|
||||
|
||||
p_attn = self.dropout(self.attn)
|
||||
x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
|
||||
x = (
|
||||
x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k)
|
||||
) # (batch, time1, d_model)
|
||||
|
||||
return self.linear_out(x), self.attn # (batch, time1, d_model)
|
||||
|
||||
def forward(self, query, key, value, mask):
|
||||
"""Compute scaled dot product attention.
|
||||
|
||||
Args:
|
||||
query (torch.Tensor): Query tensor (#batch, time1, size).
|
||||
key (torch.Tensor): Key tensor (#batch, time2, size).
|
||||
value (torch.Tensor): Value tensor (#batch, time2, size).
|
||||
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
|
||||
(#batch, time1, time2).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Output tensor (#batch, time1, d_model).
|
||||
|
||||
"""
|
||||
q, k, v = self.forward_qkv(query, key, value)
|
||||
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
|
||||
return self.forward_attention(v, scores, mask)
|
||||
|
||||
|
||||
392
funasr/models/lcbnet/encoder.py
Normal file
392
funasr/models/lcbnet/encoder.py
Normal file
@ -0,0 +1,392 @@
|
||||
# Copyright 2019 Shigeki Karita
|
||||
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
||||
|
||||
"""Transformer encoder definition."""
|
||||
|
||||
from typing import List
|
||||
from typing import Optional
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import logging
|
||||
|
||||
from funasr.models.transformer.attention import MultiHeadedAttention
|
||||
from funasr.models.lcbnet.attention import MultiHeadedAttentionReturnWeight
|
||||
from funasr.models.transformer.embedding import PositionalEncoding
|
||||
from funasr.models.transformer.layer_norm import LayerNorm
|
||||
|
||||
from funasr.models.transformer.utils.nets_utils import make_pad_mask
|
||||
from funasr.models.transformer.positionwise_feed_forward import PositionwiseFeedForward
|
||||
from funasr.models.transformer.utils.repeat import repeat
|
||||
from funasr.register import tables
|
||||
|
||||
class EncoderLayer(nn.Module):
|
||||
"""Encoder layer module.
|
||||
|
||||
Args:
|
||||
size (int): Input dimension.
|
||||
self_attn (torch.nn.Module): Self-attention module instance.
|
||||
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance
|
||||
can be used as the argument.
|
||||
feed_forward (torch.nn.Module): Feed-forward module instance.
|
||||
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
|
||||
can be used as the argument.
|
||||
dropout_rate (float): Dropout rate.
|
||||
normalize_before (bool): Whether to use layer_norm before the first block.
|
||||
concat_after (bool): Whether to concat attention layer's input and output.
|
||||
if True, additional linear will be applied.
|
||||
i.e. x -> x + linear(concat(x, att(x)))
|
||||
if False, no additional linear will be applied. i.e. x -> x + att(x)
|
||||
stochastic_depth_rate (float): Proability to skip this layer.
|
||||
During training, the layer may skip residual computation and return input
|
||||
as-is with given probability.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
size,
|
||||
self_attn,
|
||||
feed_forward,
|
||||
dropout_rate,
|
||||
normalize_before=True,
|
||||
concat_after=False,
|
||||
stochastic_depth_rate=0.0,
|
||||
):
|
||||
"""Construct an EncoderLayer object."""
|
||||
super(EncoderLayer, self).__init__()
|
||||
self.self_attn = self_attn
|
||||
self.feed_forward = feed_forward
|
||||
self.norm1 = LayerNorm(size)
|
||||
self.norm2 = LayerNorm(size)
|
||||
self.dropout = nn.Dropout(dropout_rate)
|
||||
self.size = size
|
||||
self.normalize_before = normalize_before
|
||||
self.concat_after = concat_after
|
||||
if self.concat_after:
|
||||
self.concat_linear = nn.Linear(size + size, size)
|
||||
self.stochastic_depth_rate = stochastic_depth_rate
|
||||
|
||||
def forward(self, x, mask, cache=None):
|
||||
"""Compute encoded features.
|
||||
|
||||
Args:
|
||||
x_input (torch.Tensor): Input tensor (#batch, time, size).
|
||||
mask (torch.Tensor): Mask tensor for the input (#batch, time).
|
||||
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Output tensor (#batch, time, size).
|
||||
torch.Tensor: Mask tensor (#batch, time).
|
||||
|
||||
"""
|
||||
skip_layer = False
|
||||
# with stochastic depth, residual connection `x + f(x)` becomes
|
||||
# `x <- x + 1 / (1 - p) * f(x)` at training time.
|
||||
stoch_layer_coeff = 1.0
|
||||
if self.training and self.stochastic_depth_rate > 0:
|
||||
skip_layer = torch.rand(1).item() < self.stochastic_depth_rate
|
||||
stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate)
|
||||
|
||||
if skip_layer:
|
||||
if cache is not None:
|
||||
x = torch.cat([cache, x], dim=1)
|
||||
return x, mask
|
||||
|
||||
residual = x
|
||||
if self.normalize_before:
|
||||
x = self.norm1(x)
|
||||
|
||||
if cache is None:
|
||||
x_q = x
|
||||
else:
|
||||
assert cache.shape == (x.shape[0], x.shape[1] - 1, self.size)
|
||||
x_q = x[:, -1:, :]
|
||||
residual = residual[:, -1:, :]
|
||||
mask = None if mask is None else mask[:, -1:, :]
|
||||
|
||||
if self.concat_after:
|
||||
x_concat = torch.cat((x, self.self_attn(x_q, x, x, mask)), dim=-1)
|
||||
x = residual + stoch_layer_coeff * self.concat_linear(x_concat)
|
||||
else:
|
||||
x = residual + stoch_layer_coeff * self.dropout(
|
||||
self.self_attn(x_q, x, x, mask)
|
||||
)
|
||||
if not self.normalize_before:
|
||||
x = self.norm1(x)
|
||||
|
||||
residual = x
|
||||
if self.normalize_before:
|
||||
x = self.norm2(x)
|
||||
x = residual + stoch_layer_coeff * self.dropout(self.feed_forward(x))
|
||||
if not self.normalize_before:
|
||||
x = self.norm2(x)
|
||||
|
||||
if cache is not None:
|
||||
x = torch.cat([cache, x], dim=1)
|
||||
|
||||
return x, mask
|
||||
|
||||
@tables.register("encoder_classes", "TransformerTextEncoder")
|
||||
class TransformerTextEncoder(nn.Module):
|
||||
"""Transformer text encoder module.
|
||||
|
||||
Args:
|
||||
input_size: input dim
|
||||
output_size: dimension of attention
|
||||
attention_heads: the number of heads of multi head attention
|
||||
linear_units: the number of units of position-wise feed forward
|
||||
num_blocks: the number of decoder blocks
|
||||
dropout_rate: dropout rate
|
||||
attention_dropout_rate: dropout rate in attention
|
||||
positional_dropout_rate: dropout rate after adding positional encoding
|
||||
input_layer: input layer type
|
||||
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
|
||||
normalize_before: whether to use layer_norm before the first block
|
||||
concat_after: whether to concat attention layer's input and output
|
||||
if True, additional linear will be applied.
|
||||
i.e. x -> x + linear(concat(x, att(x)))
|
||||
if False, no additional linear will be applied.
|
||||
i.e. x -> x + att(x)
|
||||
positionwise_layer_type: linear of conv1d
|
||||
positionwise_conv_kernel_size: kernel size of positionwise conv1d layer
|
||||
padding_idx: padding_idx for input_layer=embed
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_size: int,
|
||||
output_size: int = 256,
|
||||
attention_heads: int = 4,
|
||||
linear_units: int = 2048,
|
||||
num_blocks: int = 6,
|
||||
dropout_rate: float = 0.1,
|
||||
positional_dropout_rate: float = 0.1,
|
||||
attention_dropout_rate: float = 0.0,
|
||||
pos_enc_class=PositionalEncoding,
|
||||
normalize_before: bool = True,
|
||||
concat_after: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
self._output_size = output_size
|
||||
|
||||
self.embed = torch.nn.Sequential(
|
||||
torch.nn.Embedding(input_size, output_size),
|
||||
pos_enc_class(output_size, positional_dropout_rate),
|
||||
)
|
||||
|
||||
self.normalize_before = normalize_before
|
||||
|
||||
positionwise_layer = PositionwiseFeedForward
|
||||
positionwise_layer_args = (
|
||||
output_size,
|
||||
linear_units,
|
||||
dropout_rate,
|
||||
)
|
||||
self.encoders = repeat(
|
||||
num_blocks,
|
||||
lambda lnum: EncoderLayer(
|
||||
output_size,
|
||||
MultiHeadedAttention(
|
||||
attention_heads, output_size, attention_dropout_rate
|
||||
),
|
||||
positionwise_layer(*positionwise_layer_args),
|
||||
dropout_rate,
|
||||
normalize_before,
|
||||
concat_after,
|
||||
),
|
||||
)
|
||||
if self.normalize_before:
|
||||
self.after_norm = LayerNorm(output_size)
|
||||
|
||||
def output_size(self) -> int:
|
||||
return self._output_size
|
||||
|
||||
def forward(
|
||||
self,
|
||||
xs_pad: torch.Tensor,
|
||||
ilens: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
|
||||
"""Embed positions in tensor.
|
||||
|
||||
Args:
|
||||
xs_pad: input tensor (B, L, D)
|
||||
ilens: input length (B)
|
||||
Returns:
|
||||
position embedded tensor and mask
|
||||
"""
|
||||
masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device)
|
||||
xs_pad = self.embed(xs_pad)
|
||||
|
||||
xs_pad, masks = self.encoders(xs_pad, masks)
|
||||
|
||||
if self.normalize_before:
|
||||
xs_pad = self.after_norm(xs_pad)
|
||||
|
||||
olens = masks.squeeze(1).sum(1)
|
||||
return xs_pad, olens, None
|
||||
|
||||
|
||||
|
||||
|
||||
@tables.register("encoder_classes", "FusionSANEncoder")
|
||||
class SelfSrcAttention(nn.Module):
|
||||
"""Single decoder layer module.
|
||||
|
||||
Args:
|
||||
size (int): Input dimension.
|
||||
self_attn (torch.nn.Module): Self-attention module instance.
|
||||
`MultiHeadedAttention` instance can be used as the argument.
|
||||
src_attn (torch.nn.Module): Self-attention module instance.
|
||||
`MultiHeadedAttention` instance can be used as the argument.
|
||||
feed_forward (torch.nn.Module): Feed-forward module instance.
|
||||
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
|
||||
can be used as the argument.
|
||||
dropout_rate (float): Dropout rate.
|
||||
normalize_before (bool): Whether to use layer_norm before the first block.
|
||||
concat_after (bool): Whether to concat attention layer's input and output.
|
||||
if True, additional linear will be applied.
|
||||
i.e. x -> x + linear(concat(x, att(x)))
|
||||
if False, no additional linear will be applied. i.e. x -> x + att(x)
|
||||
|
||||
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
size,
|
||||
attention_heads,
|
||||
attention_dim,
|
||||
linear_units,
|
||||
self_attention_dropout_rate,
|
||||
src_attention_dropout_rate,
|
||||
positional_dropout_rate,
|
||||
dropout_rate,
|
||||
normalize_before=True,
|
||||
concat_after=False,
|
||||
):
|
||||
"""Construct an SelfSrcAttention object."""
|
||||
super(SelfSrcAttention, self).__init__()
|
||||
self.size = size
|
||||
self.self_attn = MultiHeadedAttention(attention_heads, attention_dim, self_attention_dropout_rate)
|
||||
self.src_attn = MultiHeadedAttentionReturnWeight(attention_heads, attention_dim, src_attention_dropout_rate)
|
||||
self.feed_forward = PositionwiseFeedForward(attention_dim, linear_units, positional_dropout_rate)
|
||||
self.norm1 = LayerNorm(size)
|
||||
self.norm2 = LayerNorm(size)
|
||||
self.norm3 = LayerNorm(size)
|
||||
self.dropout = nn.Dropout(dropout_rate)
|
||||
self.normalize_before = normalize_before
|
||||
self.concat_after = concat_after
|
||||
if self.concat_after:
|
||||
self.concat_linear1 = nn.Linear(size + size, size)
|
||||
self.concat_linear2 = nn.Linear(size + size, size)
|
||||
|
||||
def forward(self, tgt, tgt_mask, memory, memory_mask, cache=None):
|
||||
"""Compute decoded features.
|
||||
|
||||
Args:
|
||||
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
|
||||
tgt_mask (torch.Tensor): Mask for input tensor (#batch, maxlen_out).
|
||||
memory (torch.Tensor): Encoded memory, float32 (#batch, maxlen_in, size).
|
||||
memory_mask (torch.Tensor): Encoded memory mask (#batch, maxlen_in).
|
||||
cache (List[torch.Tensor]): List of cached tensors.
|
||||
Each tensor shape should be (#batch, maxlen_out - 1, size).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Output tensor(#batch, maxlen_out, size).
|
||||
torch.Tensor: Mask for output tensor (#batch, maxlen_out).
|
||||
torch.Tensor: Encoded memory (#batch, maxlen_in, size).
|
||||
torch.Tensor: Encoded memory mask (#batch, maxlen_in).
|
||||
|
||||
"""
|
||||
residual = tgt
|
||||
if self.normalize_before:
|
||||
tgt = self.norm1(tgt)
|
||||
|
||||
if cache is None:
|
||||
tgt_q = tgt
|
||||
tgt_q_mask = tgt_mask
|
||||
else:
|
||||
# compute only the last frame query keeping dim: max_time_out -> 1
|
||||
assert cache.shape == (
|
||||
tgt.shape[0],
|
||||
tgt.shape[1] - 1,
|
||||
self.size,
|
||||
), f"{cache.shape} == {(tgt.shape[0], tgt.shape[1] - 1, self.size)}"
|
||||
tgt_q = tgt[:, -1:, :]
|
||||
residual = residual[:, -1:, :]
|
||||
tgt_q_mask = None
|
||||
if tgt_mask is not None:
|
||||
tgt_q_mask = tgt_mask[:, -1:, :]
|
||||
|
||||
if self.concat_after:
|
||||
tgt_concat = torch.cat(
|
||||
(tgt_q, self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)), dim=-1
|
||||
)
|
||||
x = residual + self.concat_linear1(tgt_concat)
|
||||
else:
|
||||
x = residual + self.dropout(self.self_attn(tgt_q, tgt, tgt, tgt_q_mask))
|
||||
if not self.normalize_before:
|
||||
x = self.norm1(x)
|
||||
|
||||
residual = x
|
||||
if self.normalize_before:
|
||||
x = self.norm2(x)
|
||||
if self.concat_after:
|
||||
x_concat = torch.cat(
|
||||
(x, self.src_attn(x, memory, memory, memory_mask)), dim=-1
|
||||
)
|
||||
x = residual + self.concat_linear2(x_concat)
|
||||
else:
|
||||
x, score = self.src_attn(x, memory, memory, memory_mask)
|
||||
x = residual + self.dropout(x)
|
||||
if not self.normalize_before:
|
||||
x = self.norm2(x)
|
||||
|
||||
residual = x
|
||||
if self.normalize_before:
|
||||
x = self.norm3(x)
|
||||
x = residual + self.dropout(self.feed_forward(x))
|
||||
if not self.normalize_before:
|
||||
x = self.norm3(x)
|
||||
|
||||
if cache is not None:
|
||||
x = torch.cat([cache, x], dim=1)
|
||||
|
||||
return x, tgt_mask, memory, memory_mask
|
||||
|
||||
|
||||
|
||||
class ConvPredictor(nn.Module):
|
||||
def __init__(self, size=256, l_order=3, r_order=3, attention_heads=4, attention_dropout_rate=0.1, linear_units=2048):
|
||||
super().__init__()
|
||||
self.atten = MultiHeadedAttention(attention_heads, size, attention_dropout_rate)
|
||||
self.norm1 = LayerNorm(size)
|
||||
self.feed_forward = PositionwiseFeedForward(size, linear_units, attention_dropout_rate)
|
||||
self.norm2 = LayerNorm(size)
|
||||
self.pad = nn.ConstantPad1d((l_order, r_order), 0)
|
||||
self.conv1d = nn.Conv1d(size, size, l_order + r_order + 1, groups=size)
|
||||
self.output_linear = nn.Linear(size, 1)
|
||||
|
||||
|
||||
def forward(self, text_enc, asr_enc):
|
||||
# stage1 cross-attention
|
||||
residual = text_enc
|
||||
text_enc = residual + self.atten(text_enc, asr_enc, asr_enc, None)
|
||||
|
||||
# stage2 FFN
|
||||
residual = text_enc
|
||||
text_enc = self.norm1(text_enc)
|
||||
text_enc = residual + self.feed_forward(text_enc)
|
||||
|
||||
# stage Conv predictor
|
||||
text_enc = self.norm2(text_enc)
|
||||
context = text_enc.transpose(1, 2)
|
||||
queries = self.pad(context)
|
||||
memory = self.conv1d(queries)
|
||||
output = memory + context
|
||||
output = output.transpose(1, 2)
|
||||
output = torch.relu(output)
|
||||
output = self.output_linear(output)
|
||||
if output.dim()==3:
|
||||
output = output.squeeze(2)
|
||||
return output
|
||||
Loading…
Reference in New Issue
Block a user