mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
more audio formats support
This commit is contained in:
parent
5336d72a31
commit
cdac560080
@ -13,6 +13,7 @@ import kaldiio
|
||||
import numpy as np
|
||||
import soundfile
|
||||
import torch
|
||||
import torchaudio
|
||||
from torch.utils.data.dataset import IterableDataset
|
||||
from typeguard import check_argument_types
|
||||
import os.path
|
||||
@ -20,6 +21,8 @@ import os.path
|
||||
from funasr.datasets.dataset import ESPnetDataset
|
||||
|
||||
|
||||
SUPPORT_AUDIO_TYPE_SETS = ['flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma']
|
||||
|
||||
def load_kaldi(input):
|
||||
retval = kaldiio.load_mat(input)
|
||||
if isinstance(retval, tuple):
|
||||
@ -60,7 +63,7 @@ def load_bytes(input):
|
||||
|
||||
|
||||
DATA_TYPES = {
|
||||
"sound": lambda x: soundfile.read(x)[0],
|
||||
"sound": lambda x: torchaudio.load(x)[0][0].numpy(),
|
||||
"kaldi_ark": load_kaldi,
|
||||
"bytes": load_bytes,
|
||||
"waveform": lambda x: x,
|
||||
@ -201,6 +204,11 @@ class IterableESPnetDataset(IterableDataset):
|
||||
uid = os.path.basename(self.path_name_type_list[0][0]).split(".")[0]
|
||||
name = self.path_name_type_list[0][1]
|
||||
_type = self.path_name_type_list[0][2]
|
||||
if _type == "sound":
|
||||
audio_type = os.path.basename(value).split(".")[1].lower()
|
||||
if audio_type not in SUPPORT_AUDIO_TYPE_SETS:
|
||||
raise NotImplementedError(
|
||||
f'Not supported audio type: {audio_type}')
|
||||
func = DATA_TYPES[_type]
|
||||
array = func(value)
|
||||
data[name] = array
|
||||
@ -286,6 +294,11 @@ class IterableESPnetDataset(IterableDataset):
|
||||
data = {}
|
||||
# 2.a. Load data streamingly
|
||||
for value, (path, name, _type) in zip(values, self.path_name_type_list):
|
||||
if _type == "sound":
|
||||
audio_type = os.path.basename(value).split(".")[1].lower()
|
||||
if audio_type not in SUPPORT_AUDIO_TYPE_SETS:
|
||||
raise NotImplementedError(
|
||||
f'Not supported audio type: {audio_type}')
|
||||
func = DATA_TYPES[_type]
|
||||
# Load entry
|
||||
array = func(value)
|
||||
@ -322,3 +335,4 @@ class IterableESPnetDataset(IterableDataset):
|
||||
|
||||
if count == 0:
|
||||
raise RuntimeError("No iteration")
|
||||
|
||||
|
||||
@ -4,7 +4,7 @@ import os
|
||||
import struct
|
||||
from typing import Any, Dict, List, Union
|
||||
|
||||
import librosa
|
||||
import torchaudio
|
||||
import numpy as np
|
||||
import pkg_resources
|
||||
from modelscope.utils.logger import get_logger
|
||||
@ -18,6 +18,7 @@ end_color = '\033[0m'
|
||||
|
||||
global_asr_language = 'zh-cn'
|
||||
|
||||
SUPPORT_AUDIO_TYPE_SETS = ['flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma']
|
||||
|
||||
def get_version():
|
||||
return float(pkg_resources.get_distribution('easyasr').version)
|
||||
@ -57,12 +58,16 @@ def type_checking(audio_in: Union[str, bytes],
|
||||
if r_recog_type is None and audio_in is not None:
|
||||
# audio_in is wav, recog_type is wav_file
|
||||
if os.path.isfile(audio_in):
|
||||
if audio_in.endswith('.wav') or audio_in.endswith('.WAV'):
|
||||
audio_type = os.path.basename(audio_in).split(".")[1].lower()
|
||||
if audio_type in SUPPORT_AUDIO_TYPE_SETS:
|
||||
r_recog_type = 'wav'
|
||||
r_audio_format = 'wav'
|
||||
elif audio_in.endswith('.scp') or audio_in.endswith('.SCP'):
|
||||
elif audio_type == "scp":
|
||||
r_recog_type = 'wav'
|
||||
r_audio_format = 'scp'
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f'Not supported audio type: {audio_type}')
|
||||
|
||||
# recog_type is datasets_file
|
||||
elif os.path.isdir(audio_in):
|
||||
@ -123,14 +128,15 @@ def get_sr_from_bytes(wav: bytes):
|
||||
def get_sr_from_wav(fname: str):
|
||||
fs = None
|
||||
if os.path.isfile(fname):
|
||||
audio, fs = librosa.load(fname, sr=None)
|
||||
audio, fs = torchaudio.load(fname)
|
||||
return fs
|
||||
elif os.path.isdir(fname):
|
||||
dir_files = os.listdir(fname)
|
||||
for file in dir_files:
|
||||
file_path = os.path.join(fname, file)
|
||||
if os.path.isfile(file_path):
|
||||
if file_path.endswith('.wav') or file_path.endswith('.WAV'):
|
||||
audio_type = os.path.basename(file_path).split(".")[1].lower()
|
||||
if audio_type in SUPPORT_AUDIO_TYPE_SETS:
|
||||
fs = get_sr_from_wav(file_path)
|
||||
elif os.path.isdir(file_path):
|
||||
fs = get_sr_from_wav(file_path)
|
||||
@ -146,7 +152,14 @@ def find_file_by_ends(dir_path: str, ends: str):
|
||||
for file in dir_files:
|
||||
file_path = os.path.join(dir_path, file)
|
||||
if os.path.isfile(file_path):
|
||||
if file_path.endswith(ends):
|
||||
if ends == ".wav" or ends == ".WAV":
|
||||
audio_type = os.path.basename(file_path).split(".")[1].lower()
|
||||
if audio_type in SUPPORT_AUDIO_TYPE_SETS:
|
||||
return True
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f'Not supported audio type: {audio_type}')
|
||||
elif file_path.endswith(ends):
|
||||
return True
|
||||
elif os.path.isdir(file_path):
|
||||
if find_file_by_ends(file_path, ends):
|
||||
@ -160,7 +173,8 @@ def recursion_dir_all_wav(wav_list, dir_path: str) -> List[str]:
|
||||
for file in dir_files:
|
||||
file_path = os.path.join(dir_path, file)
|
||||
if os.path.isfile(file_path):
|
||||
if file_path.endswith('.wav') or file_path.endswith('.WAV'):
|
||||
audio_type = os.path.basename(file_path).split(".")[1].lower()
|
||||
if audio_type in SUPPORT_AUDIO_TYPE_SETS:
|
||||
wav_list.append(file_path)
|
||||
elif os.path.isdir(file_path):
|
||||
recursion_dir_all_wav(wav_list, file_path)
|
||||
@ -333,3 +347,4 @@ def print_progress(percent):
|
||||
percent = 1
|
||||
res = int(50 * percent) * '#'
|
||||
print('\r[%-50s] %d%%' % (res, int(100 * percent)), end='')
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user