funasr1.0

This commit is contained in:
游雁 2023-12-27 23:03:49 +08:00
parent d339765fc2
commit ccb9488954
9 changed files with 141 additions and 14 deletions

View File

@ -1 +0,0 @@
../../funasr/runtime/docs/benchmark_libtorch.md

View File

@ -1 +0,0 @@
../../funasr/runtime/docs/benchmark_onnx.md

View File

@ -1 +0,0 @@
../../funasr/runtime/docs/benchmark_onnx_cpp.md

View File

@ -0,0 +1,42 @@
(简体中文|[English](./README.md))
# 语音识别
> **注意**:
> pipeline 支持 [modelscope模型仓库](https://alibaba-damo-academy.github.io/FunASR/en/model_zoo/modelscope_models.html#pretrained-models-on-modelscope) 中的所有模型进行推理和微调。这里我们以典型模型作为示例来演示使用方法。
## 推理
### 快速使用
#### [Paraformer 模型](https://www.modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary)
```python
from funasr import AutoModel
model = AutoModel(model="/Users/zhifu/Downloads/modelscope_models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch")
res = model(input="/Users/zhifu/Downloads/modelscope_models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav")
print(res)
```
### API接口说明
#### AutoModel 定义
- `model`: [模型仓库](https://alibaba-damo-academy.github.io/FunASR/en/model_zoo/modelscope_models.html#pretrained-models-on-modelscope) 中的模型名称,或本地磁盘中的模型路径
- `device`: `cuda`(默认),使用 GPU 进行推理。如果为`cpu`,则使用 CPU 进行推理
- `ncpu`: `None` (默认),设置用于 CPU 内部操作并行性的线程数
- `output_dir`: `None` (默认),如果设置,输出结果的输出路径
- `batch_size`: `1` (默认),解码时的批处理大小
#### AutoModel 推理
- `input`: 要解码的输入,可以是:
- wav文件路径, 例如: asr_example.wav
- pcm文件路径, 例如: asr_example.pcm此时需要指定音频采样率fs默认为16000
- 音频字节数流,例如:麦克风的字节数数据
- wav.scpkaldi 样式的 wav 列表 (`wav_id \t wav_path`), 例如:
```text
asr_example1 ./audios/asr_example1.wav
asr_example2 ./audios/asr_example2.wav
```
在这种输入 `wav.scp` 的情况下,必须设置 `output_dir` 以保存输出结果
- 音频采样点,例如:`audio, rate = soundfile.read("asr_example_zh.wav")`, 数据类型为 numpy.ndarray。支持batch输入类型为list
```[audio_sample1, audio_sample2, ..., audio_sampleN]```
- fbank输入支持组batch。shape为[batch, frames, dim]类型为torch.Tensor例如
- `output_dir`: None (默认),如果设置,输出结果的输出路径

View File

@ -8,4 +8,15 @@ from funasr import AutoModel
model = AutoModel(model="/Users/zhifu/Downloads/modelscope_models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch")
res = model(input="/Users/zhifu/Downloads/modelscope_models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav")
print(res)
print(res)
from funasr import AutoFrontend
frontend = AutoFrontend(model="/Users/zhifu/Downloads/modelscope_models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch")
fbanks = frontend(input="/Users/zhifu/funasr_github/test_local/wav.scp", batch_size=2)
for batch_idx, fbank_dict in enumerate(fbanks):
res = model(**fbank_dict)
print(res)

View File

@ -30,4 +30,4 @@ def import_submodules(package, recursive=True):
import_submodules(__name__)
from funasr.bin.inference import AutoModel
from funasr.bin.inference import AutoModel, AutoFrontend

View File

@ -16,11 +16,12 @@ import time
import random
import string
from funasr.register import tables
from funasr.datasets.audio_datasets.load_audio_extract_fbank import load_audio
from funasr.datasets.audio_datasets.load_audio_extract_fbank import load_audio, extract_fbank
from funasr.utils.vad_utils import slice_padding_audio_samples
from funasr.utils.timestamp_tools import time_stamp_sentence
def build_iter_for_infer(data_in, input_len=None, data_type="sound"):
def build_iter_for_infer(data_in, input_len=None, data_type="sound", key=None):
"""
:param input:
@ -63,7 +64,8 @@ def build_iter_for_infer(data_in, input_len=None, data_type="sound"):
else: # raw text; audio sample point, fbank; bytes
if isinstance(data_in, bytes): # audio bytes
data_in = load_bytes(data_in)
key = "rand_key_" + ''.join(random.choice(chars) for _ in range(13))
if key is None:
key = "rand_key_" + ''.join(random.choice(chars) for _ in range(13))
data_list = [data_in]
key_list = [key]
@ -121,11 +123,14 @@ class AutoModel:
set_all_random_seed(kwargs.get("seed", 0))
device = kwargs.get("device", "cuda")
if not torch.cuda.is_available() or kwargs.get("ngpu", 1):
if not torch.cuda.is_available() or kwargs.get("ngpu", 0):
device = "cpu"
kwargs["batch_size"] = 1
kwargs["device"] = device
if kwargs.get("ncpu", None):
torch.set_num_threads(kwargs.get("ncpu"))
# build tokenizer
tokenizer = kwargs.get("tokenizer", None)
if tokenizer is not None:
@ -169,17 +174,18 @@ class AutoModel:
else:
return self.generate_with_vad(input, input_len=input_len, **cfg)
def generate(self, input, input_len=None, model=None, kwargs=None, **cfg):
def generate(self, input, input_len=None, model=None, kwargs=None, key=None, **cfg):
# import pdb; pdb.set_trace()
kwargs = self.kwargs if kwargs is None else kwargs
kwargs.update(cfg)
model = self.model if model is None else model
data_type = kwargs.get("data_type", "sound")
batch_size = kwargs.get("batch_size", 1)
# if kwargs.get("device", "cpu") == "cpu":
# batch_size = 1
if kwargs.get("device", "cpu") == "cpu":
batch_size = 1
key_list, data_list = build_iter_for_infer(input, input_len=input_len, data_type=data_type)
key_list, data_list = build_iter_for_infer(input, input_len=input_len, data_type=data_type, key=key)
speed_stats = {}
asr_result_list = []
@ -193,7 +199,7 @@ class AutoModel:
key_batch = key_list[beg_idx:end_idx]
batch = {"data_in": data_batch, "key": key_batch}
if (end_idx - beg_idx) == 1 and isinstance(data_batch[0], torch.Tensor): # fbank
batch["data_batch"] = data_batch[0]
batch["data_in"] = data_batch[0]
batch["data_lengths"] = input_len
time1 = time.perf_counter()
@ -348,6 +354,74 @@ class AutoModel:
f"time_speech_total_all_samples: {time_speech_total_all_samples: 0.3f}, "
f"time_escape_total_all_samples: {time_escape_total_all_samples:0.3f}")
return results_ret_list
class AutoFrontend:
def __init__(self, **kwargs):
assert "model" in kwargs
if "model_conf" not in kwargs:
logging.info("download models from model hub: {}".format(kwargs.get("model_hub", "ms")))
kwargs = download_model(**kwargs)
# build frontend
frontend = kwargs.get("frontend", None)
if frontend is not None:
frontend_class = tables.frontend_classes.get(frontend.lower())
frontend = frontend_class(**kwargs["frontend_conf"])
self.frontend = frontend
self.kwargs = kwargs
def __call__(self, input, input_len=None, kwargs=None, **cfg):
kwargs = self.kwargs if kwargs is None else kwargs
kwargs.update(cfg)
key_list, data_list = build_iter_for_infer(input, input_len=input_len)
batch_size = kwargs.get("batch_size", 1)
device = kwargs.get("device", "cpu")
if device == "cpu":
batch_size = 1
meta_data = {}
result_list = []
num_samples = len(data_list)
pbar = tqdm(colour="blue", total=num_samples + 1, dynamic_ncols=True)
time0 = time.perf_counter()
for beg_idx in range(0, num_samples, batch_size):
end_idx = min(num_samples, beg_idx + batch_size)
data_batch = data_list[beg_idx:end_idx]
key_batch = key_list[beg_idx:end_idx]
# extract fbank feats
time1 = time.perf_counter()
audio_sample_list = load_audio(data_batch, fs=self.frontend.fs, audio_fs=kwargs.get("fs", 16000))
time2 = time.perf_counter()
meta_data["load_data"] = f"{time2 - time1:0.3f}"
speech, speech_lengths = extract_fbank(audio_sample_list, data_type=kwargs.get("data_type", "sound"),
frontend=self.frontend)
time3 = time.perf_counter()
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
meta_data["batch_data_time"] = speech_lengths.sum().item() * self.frontend.frame_shift * self.frontend.lfr_n / 1000
speech.to(device=device), speech_lengths.to(device=device)
batch = {"input": speech, "input_len": speech_lengths, "key": key_batch}
result_list.append(batch)
pbar.update(1)
description = (
f"{meta_data}, "
)
pbar.set_description(description)
time_end = time.perf_counter()
pbar.set_description(f"time escaped total: {time_end - time0:0.3f}")
return result_list
if __name__ == '__main__':
main_hydra()

View File

@ -495,6 +495,8 @@ class Paraformer(nn.Module):
results = []
b, n, d = decoder_out.size()
if isinstance(key[0], (list, tuple)):
key = key[0]
for i in range(b):
x = encoder_out[i, :encoder_out_lens[i], :]
am_scores = decoder_out[i, :pre_token_length[i], :]
@ -535,6 +537,7 @@ class Paraformer(nn.Module):
text = tokenizer.tokens2text(token)
text_postprocessed, _ = postprocess_utils.sentence_postprocess(token)
result_i = {"key": key[i], "text": text_postprocessed}