This commit is contained in:
shixian.shi 2023-05-04 16:15:26 +08:00
parent 3c0a9fb7c1
commit c91430542e
4 changed files with 45 additions and 5 deletions

View File

@ -0,0 +1,36 @@
import os
from modelscope.metainfo import Trainers
from modelscope.trainers import build_trainer
from funasr.datasets.ms_dataset import MsDataset
from funasr.utils.modelscope_param import modelscope_args
def modelscope_finetune(params):
if not os.path.exists(params.output_dir):
os.makedirs(params.output_dir, exist_ok=True)
# dataset split ["train", "validation"]
ds_dict = MsDataset.load(params.data_path)
kwargs = dict(
model=params.model,
data_dir=ds_dict,
dataset_type=params.dataset_type,
work_dir=params.output_dir,
batch_bins=params.batch_bins,
max_epoch=params.max_epoch,
lr=params.lr)
trainer = build_trainer(Trainers.speech_asr_trainer, default_args=kwargs)
trainer.train()
if __name__ == '__main__':
params = modelscope_args(model="damo/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404", data_path="./data")
params.output_dir = "./checkpoint" # m模型保存路径
params.data_path = "./example_data/" # 数据路径
params.dataset_type = "small" # 小数据量设置small若数据量大于1000小时请使用large
params.batch_bins = 2000 # batch size如果dataset_type="small"batch_bins单位为fbank特征帧数如果dataset_type="large"batch_bins单位为毫秒
params.max_epoch = 50 # 最大训练轮数
params.lr = 0.00005 # 设置学习率
modelscope_finetune(params)

View File

@ -1,3 +1,4 @@
from itertools import count
import os
import tempfile
import codecs
@ -19,11 +20,15 @@ if __name__ == '__main__':
os.makedirs(work_dir)
wav_file_path = os.path.join(work_dir, "wav.scp")
counter = 0
with codecs.open(wav_file_path, 'w') as fin:
for line in ds_dict:
counter += 1
wav = line["Audio:FILE"]
idx = wav.split("/")[-1].split(".")[0]
fin.writelines(idx + " " + wav + "\n")
if counter == 50:
break
audio_in = wav_file_path
inference_pipeline = pipeline(

View File

@ -41,6 +41,7 @@ from funasr.utils.types import str_or_none
from funasr.utils import asr_utils, wav_utils, postprocess_utils
from funasr.models.frontend.wav_frontend import WavFrontend
from funasr.models.e2e_asr_paraformer import BiCifParaformer, ContextualParaformer
from funasr.models.e2e_asr_contextual_paraformer import NeatContextualParaformer
from funasr.export.models.e2e_asr_paraformer import Paraformer as Paraformer_export
from funasr.utils.timestamp_tools import ts_prediction_lfr6_standard
from funasr.bin.tp_inference import SpeechText2Timestamp
@ -236,7 +237,7 @@ class Speech2Text:
pre_token_length = pre_token_length.round().long()
if torch.max(pre_token_length) < 1:
return []
if not isinstance(self.asr_model, ContextualParaformer):
if not isinstance(self.asr_model, ContextualParaformer) and not isinstance(self.asr_model, NeatContextualParaformer):
if self.hotword_list:
logging.warning("Hotword is given but asr model is not a ContextualParaformer.")
decoder_outs = self.asr_model.cal_decoder_with_predictor(enc, enc_len, pre_acoustic_embeds, pre_token_length)

View File

@ -68,7 +68,7 @@ class NeatContextualParaformer(Paraformer):
target_buffer_length: int = -1,
inner_dim: int = 256,
bias_encoder_type: str = 'lstm',
use_decoder_embedding: bool = True,
use_decoder_embedding: bool = False,
crit_attn_weight: float = 0.0,
crit_attn_smooth: float = 0.0,
bias_encoder_dropout_rate: float = 0.0,
@ -340,7 +340,7 @@ class NeatContextualParaformer(Paraformer):
input_mask_expand_dim, 0)
return sematic_embeds * tgt_mask, decoder_out * tgt_mask
def cal_decoder_with_predictor_with_hwlist_advanced(self, encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, hw_list=None):
def cal_decoder_with_predictor(self, encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, hw_list=None):
if hw_list is None:
hw_list = [torch.Tensor([1]).long().to(encoder_out.device)] # empty hotword list
hw_list_pad = pad_list(hw_list, 0)
@ -350,7 +350,6 @@ class NeatContextualParaformer(Paraformer):
hw_embed = self.bias_embed(hw_list_pad)
hw_embed, (h_n, _) = self.bias_encoder(hw_embed)
else:
# hw_list = hw_list[1:] + [hw_list[0]] # reorder
hw_lengths = [len(i) for i in hw_list]
hw_list_pad = pad_list([torch.Tensor(i).long() for i in hw_list], 0).to(encoder_out.device)
if self.use_decoder_embedding:
@ -366,7 +365,6 @@ class NeatContextualParaformer(Paraformer):
if _h_n is not None:
h_n = _h_n
hw_embed = h_n.repeat(encoder_out.shape[0], 1, 1)
# import pdb; pdb.set_trace()
decoder_outs = self.decoder(
encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, contextual_info=hw_embed