mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
export
This commit is contained in:
parent
317dac5b75
commit
c776f8afc0
@ -161,31 +161,38 @@ class ModelExport:
|
||||
|
||||
def export(self,
|
||||
tag_name: str = 'damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
|
||||
mode: str = 'paraformer',
|
||||
mode: str = None,
|
||||
):
|
||||
|
||||
model_dir = tag_name
|
||||
if model_dir.startswith('damo/'):
|
||||
if model_dir.startswith('damo'):
|
||||
from modelscope.hub.snapshot_download import snapshot_download
|
||||
model_dir = snapshot_download(model_dir, cache_dir=self.cache_dir)
|
||||
asr_train_config = os.path.join(model_dir, 'config.yaml')
|
||||
asr_model_file = os.path.join(model_dir, 'model.pb')
|
||||
cmvn_file = os.path.join(model_dir, 'am.mvn')
|
||||
json_file = os.path.join(model_dir, 'configuration.json')
|
||||
|
||||
if mode is None:
|
||||
import json
|
||||
json_file = os.path.join(model_dir, 'configuration.json')
|
||||
with open(json_file, 'r') as f:
|
||||
config_data = json.load(f)
|
||||
mode = config_data['model']['model_config']['mode']
|
||||
if mode.startswith('paraformer'):
|
||||
from funasr.tasks.asr import ASRTaskParaformer as ASRTask
|
||||
elif mode.startswith('uniasr'):
|
||||
from funasr.tasks.asr import ASRTaskUniASR as ASRTask
|
||||
config = os.path.join(model_dir, 'config.yaml')
|
||||
model_file = os.path.join(model_dir, 'model.pb')
|
||||
cmvn_file = os.path.join(model_dir, 'am.mvn')
|
||||
model, asr_train_args = ASRTask.build_model_from_file(
|
||||
config, model_file, cmvn_file, 'cpu'
|
||||
)
|
||||
self.frontend = model.frontend
|
||||
elif mode.startswith('offline'):
|
||||
from funasr.tasks.vad import VADTask
|
||||
config = os.path.join(model_dir, 'vad.yaml')
|
||||
model_file = os.path.join(model_dir, 'vad.pb')
|
||||
cmvn_file = os.path.join(model_dir, 'vad.mvn')
|
||||
|
||||
model, asr_train_args = ASRTask.build_model_from_file(
|
||||
asr_train_config, asr_model_file, cmvn_file, 'cpu'
|
||||
)
|
||||
self.frontend = model.frontend
|
||||
model, vad_infer_args = VADTask.build_model_from_file(
|
||||
config, model_file, 'cpu'
|
||||
)
|
||||
self._export(model, tag_name)
|
||||
|
||||
|
||||
|
||||
@ -1,13 +1,15 @@
|
||||
from funasr.models.e2e_asr_paraformer import Paraformer, BiCifParaformer
|
||||
from funasr.export.models.e2e_asr_paraformer import Paraformer as Paraformer_export
|
||||
from funasr.export.models.e2e_asr_paraformer import BiCifParaformer as BiCifParaformer_export
|
||||
from funasr.models.e2e_uni_asr import UniASR
|
||||
|
||||
from funasr.models.e2e_vad import E2EVadModel
|
||||
from funasr.export.models.e2e_vad import E2EVadModel as E2EVadModel_export
|
||||
|
||||
def get_model(model, export_config=None):
|
||||
if isinstance(model, BiCifParaformer):
|
||||
return BiCifParaformer_export(model, **export_config)
|
||||
elif isinstance(model, Paraformer):
|
||||
return Paraformer_export(model, **export_config)
|
||||
elif isinstance(model, E2EVadModel):
|
||||
return E2EVadModel_export(model, **export_config)
|
||||
else:
|
||||
raise "Funasr does not support the given model type currently."
|
||||
69
funasr/export/models/e2e_vad.py
Normal file
69
funasr/export/models/e2e_vad.py
Normal file
@ -0,0 +1,69 @@
|
||||
from enum import Enum
|
||||
from typing import List, Tuple, Dict, Any
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import math
|
||||
|
||||
from funasr.models.encoder.fsmn_encoder import FSMN
|
||||
from funasr.export.models.encoder.fsmn_encoder import FSMN as FSMN_export
|
||||
|
||||
class E2EVadModel(nn.Module):
|
||||
def __init__(self, model,
|
||||
max_seq_len=512,
|
||||
feats_dim=560,
|
||||
model_name='model',
|
||||
**kwargs,):
|
||||
super(E2EVadModel, self).__init__()
|
||||
self.feats_dim = feats_dim
|
||||
self.max_seq_len = max_seq_len
|
||||
self.model_name = model_name
|
||||
if isinstance(model.encoder, FSMN):
|
||||
self.encoder = FSMN_export(model.encoder)
|
||||
else:
|
||||
raise "unsupported encoder"
|
||||
|
||||
|
||||
def forward(self, feats: torch.Tensor,
|
||||
in_cache0: torch.Tensor,
|
||||
in_cache1: torch.Tensor,
|
||||
in_cache2: torch.Tensor,
|
||||
in_cache3: torch.Tensor,
|
||||
):
|
||||
|
||||
scores, cache0, cache1, cache2, cache3 = self.encoder(feats,
|
||||
in_cache0,
|
||||
in_cache1,
|
||||
in_cache2,
|
||||
in_cache3) # return B * T * D
|
||||
return scores, cache0, cache1, cache2, cache3
|
||||
|
||||
def get_dummy_inputs(self, frame=30):
|
||||
speech = torch.randn(1, frame, self.feats_dim)
|
||||
in_cache0 = torch.randn(1, 128, 19, 1)
|
||||
in_cache1 = torch.randn(1, 128, 19, 1)
|
||||
in_cache2 = torch.randn(1, 128, 19, 1)
|
||||
in_cache3 = torch.randn(1, 128, 19, 1)
|
||||
|
||||
return (speech, in_cache0, in_cache1, in_cache2, in_cache3)
|
||||
|
||||
# def get_dummy_inputs_txt(self, txt_file: str = "/mnt/workspace/data_fbank/0207/12345.wav.fea.txt"):
|
||||
# import numpy as np
|
||||
# fbank = np.loadtxt(txt_file)
|
||||
# fbank_lengths = np.array([fbank.shape[0], ], dtype=np.int32)
|
||||
# speech = torch.from_numpy(fbank[None, :, :].astype(np.float32))
|
||||
# speech_lengths = torch.from_numpy(fbank_lengths.astype(np.int32))
|
||||
# return (speech, speech_lengths)
|
||||
|
||||
def get_input_names(self):
|
||||
return ['speech', 'in_cache0', 'in_cache1', 'in_cache2', 'in_cache3']
|
||||
|
||||
def get_output_names(self):
|
||||
return ['logits', 'out_cache0', 'out_cache1', 'out_cache2', 'out_cache3']
|
||||
|
||||
def get_dynamic_axes(self):
|
||||
return {
|
||||
'speech': {
|
||||
1: 'feats_length'
|
||||
},
|
||||
}
|
||||
297
funasr/export/models/encoder/fsmn_encoder.py
Executable file
297
funasr/export/models/encoder/fsmn_encoder.py
Executable file
@ -0,0 +1,297 @@
|
||||
from typing import Tuple, Dict
|
||||
import copy
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from funasr.models.encoder.fsmn_encoder import BasicBlock
|
||||
|
||||
class LinearTransform(nn.Module):
|
||||
|
||||
def __init__(self, input_dim, output_dim):
|
||||
super(LinearTransform, self).__init__()
|
||||
self.input_dim = input_dim
|
||||
self.output_dim = output_dim
|
||||
self.linear = nn.Linear(input_dim, output_dim, bias=False)
|
||||
|
||||
def forward(self, input):
|
||||
output = self.linear(input)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class AffineTransform(nn.Module):
|
||||
|
||||
def __init__(self, input_dim, output_dim):
|
||||
super(AffineTransform, self).__init__()
|
||||
self.input_dim = input_dim
|
||||
self.output_dim = output_dim
|
||||
self.linear = nn.Linear(input_dim, output_dim)
|
||||
|
||||
def forward(self, input):
|
||||
output = self.linear(input)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class RectifiedLinear(nn.Module):
|
||||
|
||||
def __init__(self, input_dim, output_dim):
|
||||
super(RectifiedLinear, self).__init__()
|
||||
self.dim = input_dim
|
||||
self.relu = nn.ReLU()
|
||||
self.dropout = nn.Dropout(0.1)
|
||||
|
||||
def forward(self, input):
|
||||
out = self.relu(input)
|
||||
return out
|
||||
|
||||
|
||||
class FSMNBlock(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_dim: int,
|
||||
output_dim: int,
|
||||
lorder=None,
|
||||
rorder=None,
|
||||
lstride=1,
|
||||
rstride=1,
|
||||
):
|
||||
super(FSMNBlock, self).__init__()
|
||||
|
||||
self.dim = input_dim
|
||||
|
||||
if lorder is None:
|
||||
return
|
||||
|
||||
self.lorder = lorder
|
||||
self.rorder = rorder
|
||||
self.lstride = lstride
|
||||
self.rstride = rstride
|
||||
|
||||
self.conv_left = nn.Conv2d(
|
||||
self.dim, self.dim, [lorder, 1], dilation=[lstride, 1], groups=self.dim, bias=False)
|
||||
|
||||
if self.rorder > 0:
|
||||
self.conv_right = nn.Conv2d(
|
||||
self.dim, self.dim, [rorder, 1], dilation=[rstride, 1], groups=self.dim, bias=False)
|
||||
else:
|
||||
self.conv_right = None
|
||||
|
||||
def forward(self, input: torch.Tensor, cache: torch.Tensor):
|
||||
x = torch.unsqueeze(input, 1)
|
||||
x_per = x.permute(0, 3, 2, 1) # B D T C
|
||||
|
||||
cache = cache.to(x_per.device)
|
||||
y_left = torch.cat((cache, x_per), dim=2)
|
||||
cache = y_left[:, :, -(self.lorder - 1) * self.lstride:, :]
|
||||
y_left = self.conv_left(y_left)
|
||||
out = x_per + y_left
|
||||
|
||||
if self.conv_right is not None:
|
||||
# maybe need to check
|
||||
y_right = F.pad(x_per, [0, 0, 0, self.rorder * self.rstride])
|
||||
y_right = y_right[:, :, self.rstride:, :]
|
||||
y_right = self.conv_right(y_right)
|
||||
out += y_right
|
||||
|
||||
out_per = out.permute(0, 3, 2, 1)
|
||||
output = out_per.squeeze(1)
|
||||
|
||||
return output, cache
|
||||
|
||||
|
||||
class BasicBlock_export(nn.Module):
|
||||
def __init__(self,
|
||||
model,
|
||||
):
|
||||
super(BasicBlock_export, self).__init__()
|
||||
self.linear = model.linear
|
||||
self.fsmn_block = model.fsmn_block
|
||||
self.affine = model.affine
|
||||
self.relu = model.relu
|
||||
|
||||
def forward(self, input: torch.Tensor, in_cache: torch.Tensor):
|
||||
x = self.linear(input) # B T D
|
||||
# cache_layer_name = 'cache_layer_{}'.format(self.stack_layer)
|
||||
# if cache_layer_name not in in_cache:
|
||||
# in_cache[cache_layer_name] = torch.zeros(x1.shape[0], x1.shape[-1], (self.lorder - 1) * self.lstride, 1)
|
||||
x, out_cache = self.fsmn_block(x, in_cache)
|
||||
x = self.affine(x)
|
||||
x = self.relu(x)
|
||||
return x, out_cache
|
||||
|
||||
|
||||
# class FsmnStack(nn.Sequential):
|
||||
# def __init__(self, *args):
|
||||
# super(FsmnStack, self).__init__(*args)
|
||||
#
|
||||
# def forward(self, input: torch.Tensor, in_cache: Dict[str, torch.Tensor]):
|
||||
# x = input
|
||||
# for module in self._modules.values():
|
||||
# x = module(x, in_cache)
|
||||
# return x
|
||||
|
||||
|
||||
'''
|
||||
FSMN net for keyword spotting
|
||||
input_dim: input dimension
|
||||
linear_dim: fsmn input dimensionll
|
||||
proj_dim: fsmn projection dimension
|
||||
lorder: fsmn left order
|
||||
rorder: fsmn right order
|
||||
num_syn: output dimension
|
||||
fsmn_layers: no. of sequential fsmn layers
|
||||
'''
|
||||
|
||||
|
||||
class FSMN(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
model,
|
||||
):
|
||||
super(FSMN, self).__init__()
|
||||
|
||||
# self.input_dim = input_dim
|
||||
# self.input_affine_dim = input_affine_dim
|
||||
# self.fsmn_layers = fsmn_layers
|
||||
# self.linear_dim = linear_dim
|
||||
# self.proj_dim = proj_dim
|
||||
# self.output_affine_dim = output_affine_dim
|
||||
# self.output_dim = output_dim
|
||||
#
|
||||
# self.in_linear1 = AffineTransform(input_dim, input_affine_dim)
|
||||
# self.in_linear2 = AffineTransform(input_affine_dim, linear_dim)
|
||||
# self.relu = RectifiedLinear(linear_dim, linear_dim)
|
||||
# self.fsmn = FsmnStack(*[BasicBlock(linear_dim, proj_dim, lorder, rorder, lstride, rstride, i) for i in
|
||||
# range(fsmn_layers)])
|
||||
# self.out_linear1 = AffineTransform(linear_dim, output_affine_dim)
|
||||
# self.out_linear2 = AffineTransform(output_affine_dim, output_dim)
|
||||
# self.softmax = nn.Softmax(dim=-1)
|
||||
self.in_linear1 = model.in_linear1
|
||||
self.in_linear2 = model.in_linear2
|
||||
self.relu = model.relu
|
||||
# self.fsmn = model.fsmn
|
||||
self.out_linear1 = model.out_linear1
|
||||
self.out_linear2 = model.out_linear2
|
||||
self.softmax = model.softmax
|
||||
|
||||
for i, d in enumerate(self.model.fsmn):
|
||||
if isinstance(d, BasicBlock):
|
||||
self.model.fsmn[i] = BasicBlock_export(d)
|
||||
|
||||
def fuse_modules(self):
|
||||
pass
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input: torch.Tensor,
|
||||
*args,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
input (torch.Tensor): Input tensor (B, T, D)
|
||||
in_cache: when in_cache is not None, the forward is in streaming. The type of in_cache is a dict, egs,
|
||||
{'cache_layer_1': torch.Tensor(B, T1, D)}, T1 is equal to self.lorder. It is {} for the 1st frame
|
||||
"""
|
||||
|
||||
x = self.in_linear1(input)
|
||||
x = self.in_linear2(x)
|
||||
x = self.relu(x)
|
||||
# x4 = self.fsmn(x3, in_cache) # self.in_cache will update automatically in self.fsmn
|
||||
out_caches = list()
|
||||
for i, d in enumerate(self.model.fsmn):
|
||||
in_cache = args[i]
|
||||
x, out_cache = d(x, in_cache)
|
||||
out_caches.append(out_cache)
|
||||
x = self.out_linear1(x)
|
||||
x = self.out_linear2(x)
|
||||
x = self.softmax(x)
|
||||
|
||||
return x, *out_caches
|
||||
|
||||
|
||||
'''
|
||||
one deep fsmn layer
|
||||
dimproj: projection dimension, input and output dimension of memory blocks
|
||||
dimlinear: dimension of mapping layer
|
||||
lorder: left order
|
||||
rorder: right order
|
||||
lstride: left stride
|
||||
rstride: right stride
|
||||
'''
|
||||
|
||||
|
||||
class DFSMN(nn.Module):
|
||||
|
||||
def __init__(self, dimproj=64, dimlinear=128, lorder=20, rorder=1, lstride=1, rstride=1):
|
||||
super(DFSMN, self).__init__()
|
||||
|
||||
self.lorder = lorder
|
||||
self.rorder = rorder
|
||||
self.lstride = lstride
|
||||
self.rstride = rstride
|
||||
|
||||
self.expand = AffineTransform(dimproj, dimlinear)
|
||||
self.shrink = LinearTransform(dimlinear, dimproj)
|
||||
|
||||
self.conv_left = nn.Conv2d(
|
||||
dimproj, dimproj, [lorder, 1], dilation=[lstride, 1], groups=dimproj, bias=False)
|
||||
|
||||
if rorder > 0:
|
||||
self.conv_right = nn.Conv2d(
|
||||
dimproj, dimproj, [rorder, 1], dilation=[rstride, 1], groups=dimproj, bias=False)
|
||||
else:
|
||||
self.conv_right = None
|
||||
|
||||
def forward(self, input):
|
||||
f1 = F.relu(self.expand(input))
|
||||
p1 = self.shrink(f1)
|
||||
|
||||
x = torch.unsqueeze(p1, 1)
|
||||
x_per = x.permute(0, 3, 2, 1)
|
||||
|
||||
y_left = F.pad(x_per, [0, 0, (self.lorder - 1) * self.lstride, 0])
|
||||
|
||||
if self.conv_right is not None:
|
||||
y_right = F.pad(x_per, [0, 0, 0, (self.rorder) * self.rstride])
|
||||
y_right = y_right[:, :, self.rstride:, :]
|
||||
out = x_per + self.conv_left(y_left) + self.conv_right(y_right)
|
||||
else:
|
||||
out = x_per + self.conv_left(y_left)
|
||||
|
||||
out1 = out.permute(0, 3, 2, 1)
|
||||
output = input + out1.squeeze(1)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
'''
|
||||
build stacked dfsmn layers
|
||||
'''
|
||||
|
||||
|
||||
def buildDFSMNRepeats(linear_dim=128, proj_dim=64, lorder=20, rorder=1, fsmn_layers=6):
|
||||
repeats = [
|
||||
nn.Sequential(
|
||||
DFSMN(proj_dim, linear_dim, lorder, rorder, 1, 1))
|
||||
for i in range(fsmn_layers)
|
||||
]
|
||||
|
||||
return nn.Sequential(*repeats)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
fsmn = FSMN(400, 140, 4, 250, 128, 10, 2, 1, 1, 140, 2599)
|
||||
print(fsmn)
|
||||
|
||||
num_params = sum(p.numel() for p in fsmn.parameters())
|
||||
print('the number of model params: {}'.format(num_params))
|
||||
x = torch.zeros(128, 200, 400) # batch-size * time * dim
|
||||
y, _ = fsmn(x) # batch-size * time * dim
|
||||
print('input shape: {}'.format(x.shape))
|
||||
print('output shape: {}'.format(y.shape))
|
||||
|
||||
print(fsmn.to_kaldi_net())
|
||||
Loading…
Reference in New Issue
Block a user