mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
docs
This commit is contained in:
parent
d188604b96
commit
c1d4bd297a
@ -4,11 +4,11 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == '__main__':
|
||||
audio_in = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav'
|
||||
output_dir = None
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_conformer_asr_nat-zh-cn-16k-aishell1-vocab4234-pytorch",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in)
|
||||
rec_result = inference_pipeline(audio_in=audio_in)
|
||||
print(rec_result)
|
||||
|
||||
|
||||
@ -4,10 +4,10 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == "__main__":
|
||||
audio_in = "https://modelscope.oss-cn-beijing.aliyuncs.com/test/audios/asr_example.wav"
|
||||
output_dir = "./results"
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_conformer_asr_nat-zh-cn-16k-aishell2-vocab5212-pytorch",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in)
|
||||
rec_result = inference_pipeline(audio_in=audio_in)
|
||||
print(rec_result)
|
||||
|
||||
@ -16,13 +16,13 @@ def modelscope_infer_core(output_dir, split_dir, njob, idx):
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_list[gpu_id])
|
||||
else:
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id)
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_data2vec_pretrain-paraformer-zh-cn-aishell2-16k",
|
||||
output_dir=output_dir_job,
|
||||
)
|
||||
audio_in = os.path.join(split_dir, "wav.{}.scp".format(idx))
|
||||
inference_pipline(audio_in=audio_in)
|
||||
inference_pipeline(audio_in=audio_in)
|
||||
|
||||
|
||||
def modelscope_infer(params):
|
||||
|
||||
@ -16,13 +16,13 @@ def modelscope_infer_core(output_dir, split_dir, njob, idx):
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_list[gpu_id])
|
||||
else:
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id)
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_data2vec_pretrain-zh-cn-aishell2-16k-pytorch",
|
||||
output_dir=output_dir_job,
|
||||
)
|
||||
audio_in = os.path.join(split_dir, "wav.{}.scp".format(idx))
|
||||
inference_pipline(audio_in=audio_in)
|
||||
inference_pipeline(audio_in=audio_in)
|
||||
|
||||
|
||||
def modelscope_infer(params):
|
||||
|
||||
@ -16,14 +16,14 @@ def modelscope_infer_core(output_dir, split_dir, njob, idx):
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_list[gpu_id])
|
||||
else:
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id)
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_paraformer-tiny-commandword_asr_nat-zh-cn-16k-vocab544-pytorch",
|
||||
output_dir=output_dir_job,
|
||||
batch_size=64
|
||||
)
|
||||
audio_in = os.path.join(split_dir, "wav.{}.scp".format(idx))
|
||||
inference_pipline(audio_in=audio_in)
|
||||
inference_pipeline(audio_in=audio_in)
|
||||
|
||||
|
||||
def modelscope_infer(params):
|
||||
|
||||
@ -4,12 +4,12 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == '__main__':
|
||||
audio_in = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav'
|
||||
output_dir = None
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_paraformer_asr_nat-zh-cn-16k-aishell1-vocab4234-pytorch",
|
||||
output_dir=output_dir,
|
||||
batch_size=1,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in)
|
||||
rec_result = inference_pipeline(audio_in=audio_in)
|
||||
print(rec_result)
|
||||
|
||||
|
||||
@ -4,10 +4,10 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == "__main__":
|
||||
audio_in = "https://modelscope.oss-cn-beijing.aliyuncs.com/test/audios/asr_example.wav"
|
||||
output_dir = "./results"
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_paraformer_asr_nat-zh-cn-16k-aishell2-vocab5212-pytorch",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in)
|
||||
rec_result = inference_pipeline(audio_in=audio_in)
|
||||
print(rec_result)
|
||||
|
||||
@ -4,11 +4,11 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == '__main__':
|
||||
audio_in = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav'
|
||||
output_dir = None
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_paraformerbert_asr_nat-zh-cn-16k-aishell1-vocab4234-pytorch",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in)
|
||||
rec_result = inference_pipeline(audio_in=audio_in)
|
||||
print(rec_result)
|
||||
|
||||
|
||||
@ -4,10 +4,10 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == "__main__":
|
||||
audio_in = "https://modelscope.oss-cn-beijing.aliyuncs.com/test/audios/asr_example.wav"
|
||||
output_dir = "./results"
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_paraformerbert_asr_nat-zh-cn-16k-aishell2-vocab5212-pytorch",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in)
|
||||
rec_result = inference_pipeline(audio_in=audio_in)
|
||||
print(rec_result)
|
||||
|
||||
@ -4,10 +4,10 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == "__main__":
|
||||
audio_in = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_cantonese-CHS.wav"
|
||||
output_dir = "./results"
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-cantonese-CHS-16k-common-vocab1468-tensorflow1-online",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
rec_result = inference_pipeline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
print(rec_result)
|
||||
|
||||
@ -4,10 +4,10 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == "__main__":
|
||||
audio_in = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_cantonese-CHS.wav"
|
||||
output_dir = "./results"
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-cantonese-CHS-16k-common-vocab1468-tensorflow1-online",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in, param_dict={"decoding_model":"normal"})
|
||||
rec_result = inference_pipeline(audio_in=audio_in, param_dict={"decoding_model":"normal"})
|
||||
print(rec_result)
|
||||
|
||||
@ -4,11 +4,11 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == '__main__':
|
||||
audio_in = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav'
|
||||
output_dir = None
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-cn-dialect-16k-vocab8358-tensorflow1-offline",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in)
|
||||
rec_result = inference_pipeline(audio_in=audio_in)
|
||||
print(rec_result)
|
||||
|
||||
|
||||
@ -4,11 +4,11 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == '__main__':
|
||||
audio_in = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav'
|
||||
output_dir = None
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-cn-dialect-16k-vocab8358-tensorflow1-online",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in)
|
||||
rec_result = inference_pipeline(audio_in=audio_in)
|
||||
print(rec_result)
|
||||
|
||||
|
||||
@ -4,10 +4,10 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == "__main__":
|
||||
audio_in = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_de.wav"
|
||||
output_dir = "./results"
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-de-16k-common-vocab3690-tensorflow1-offline",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
rec_result = inference_pipeline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
print(rec_result)
|
||||
|
||||
@ -4,10 +4,10 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == "__main__":
|
||||
audio_in = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_de.wav"
|
||||
output_dir = "./results"
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-de-16k-common-vocab3690-tensorflow1-online",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in, param_dict={"decoding_model":"normal"})
|
||||
rec_result = inference_pipeline(audio_in=audio_in, param_dict={"decoding_model":"normal"})
|
||||
print(rec_result)
|
||||
|
||||
@ -4,10 +4,10 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == "__main__":
|
||||
audio_in = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_en.wav"
|
||||
output_dir = "./results"
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-en-16k-common-vocab1080-tensorflow1-offline",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
rec_result = inference_pipeline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
print(rec_result)
|
||||
|
||||
@ -4,10 +4,10 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == "__main__":
|
||||
audio_in = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_en.wav"
|
||||
output_dir = "./results"
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-en-16k-common-vocab1080-tensorflow1-online",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in, param_dict={"decoding_model":"normal"})
|
||||
rec_result = inference_pipeline(audio_in=audio_in, param_dict={"decoding_model":"normal"})
|
||||
print(rec_result)
|
||||
|
||||
@ -4,10 +4,10 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == "__main__":
|
||||
audio_in = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_es.wav"
|
||||
output_dir = "./results"
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-es-16k-common-vocab3445-tensorflow1-offline",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
rec_result = inference_pipeline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
print(rec_result)
|
||||
|
||||
@ -4,10 +4,10 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == "__main__":
|
||||
audio_in = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_es.wav"
|
||||
output_dir = "./results"
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-es-16k-common-vocab3445-tensorflow1-online",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in, param_dict={"decoding_model":"normal"})
|
||||
rec_result = inference_pipeline(audio_in=audio_in, param_dict={"decoding_model":"normal"})
|
||||
print(rec_result)
|
||||
|
||||
@ -16,14 +16,14 @@ def modelscope_infer_core(output_dir, split_dir, njob, idx):
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_list[gpu_id])
|
||||
else:
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id)
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-fa-16k-common-vocab1257-pytorch-offline",
|
||||
output_dir=output_dir_job,
|
||||
batch_size=1
|
||||
)
|
||||
audio_in = os.path.join(split_dir, "wav.{}.scp".format(idx))
|
||||
inference_pipline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
inference_pipeline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
|
||||
|
||||
def modelscope_infer(params):
|
||||
|
||||
@ -16,14 +16,14 @@ def modelscope_infer_core(output_dir, split_dir, njob, idx):
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_list[gpu_id])
|
||||
else:
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id)
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-fa-16k-common-vocab1257-pytorch-online",
|
||||
output_dir=output_dir_job,
|
||||
batch_size=1
|
||||
)
|
||||
audio_in = os.path.join(split_dir, "wav.{}.scp".format(idx))
|
||||
inference_pipline(audio_in=audio_in, param_dict={"decoding_model":"normal"})
|
||||
inference_pipeline(audio_in=audio_in, param_dict={"decoding_model":"normal"})
|
||||
|
||||
|
||||
def modelscope_infer(params):
|
||||
|
||||
@ -4,10 +4,10 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == "__main__":
|
||||
audio_in = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_fr.wav"
|
||||
output_dir = "./results"
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-fr-16k-common-vocab3472-tensorflow1-offline",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
rec_result = inference_pipeline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
print(rec_result)
|
||||
|
||||
@ -4,10 +4,10 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == "__main__":
|
||||
audio_in = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_fr.wav"
|
||||
output_dir = "./results"
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-fr-16k-common-vocab3472-tensorflow1-online",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in, param_dict={"decoding_model":"normal"})
|
||||
rec_result = inference_pipeline(audio_in=audio_in, param_dict={"decoding_model":"normal"})
|
||||
print(rec_result)
|
||||
|
||||
@ -4,10 +4,10 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == "__main__":
|
||||
audio_in = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_he.wav"
|
||||
output_dir = "./results"
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-he-16k-common-vocab1085-pytorch",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
rec_result = inference_pipeline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
print(rec_result)
|
||||
|
||||
@ -4,10 +4,10 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == "__main__":
|
||||
audio_in = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_id.wav"
|
||||
output_dir = "./results"
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-id-16k-common-vocab1067-tensorflow1-online",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
rec_result = inference_pipeline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
print(rec_result)
|
||||
|
||||
@ -4,10 +4,10 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == "__main__":
|
||||
audio_in = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_id.wav"
|
||||
output_dir = "./results"
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-id-16k-common-vocab1067-tensorflow1-online",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in, param_dict={"decoding_model":"normal"})
|
||||
rec_result = inference_pipeline(audio_in=audio_in, param_dict={"decoding_model":"normal"})
|
||||
print(rec_result)
|
||||
|
||||
@ -4,10 +4,10 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == "__main__":
|
||||
audio_in = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_ja.wav"
|
||||
output_dir = "./results"
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-ja-16k-common-vocab93-tensorflow1-offline",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
rec_result = inference_pipeline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
print(rec_result)
|
||||
|
||||
@ -4,10 +4,10 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == "__main__":
|
||||
audio_in = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_ja.wav"
|
||||
output_dir = "./results"
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-ja-16k-common-vocab93-tensorflow1-online",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in, param_dict={"decoding_model":"normal"})
|
||||
rec_result = inference_pipeline(audio_in=audio_in, param_dict={"decoding_model":"normal"})
|
||||
print(rec_result)
|
||||
|
||||
@ -4,10 +4,10 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == "__main__":
|
||||
audio_in = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_ko.wav"
|
||||
output_dir = "./results"
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-ko-16k-common-vocab6400-tensorflow1-offline",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
rec_result = inference_pipeline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
print(rec_result)
|
||||
|
||||
@ -4,10 +4,10 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == "__main__":
|
||||
audio_in = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_ko.wav"
|
||||
output_dir = "./results"
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-ko-16k-common-vocab6400-tensorflow1-online",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in, param_dict={"decoding_model":"normal"})
|
||||
rec_result = inference_pipeline(audio_in=audio_in, param_dict={"decoding_model":"normal"})
|
||||
print(rec_result)
|
||||
|
||||
@ -4,10 +4,10 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == "__main__":
|
||||
audio_in = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_my.wav"
|
||||
output_dir = "./results"
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-my-16k-common-vocab696-pytorch",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
rec_result = inference_pipeline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
print(rec_result)
|
||||
|
||||
@ -4,10 +4,10 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == "__main__":
|
||||
audio_in = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_pt.wav"
|
||||
output_dir = "./results"
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-pt-16k-common-vocab1617-tensorflow1-offline",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
rec_result = inference_pipeline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
print(rec_result)
|
||||
|
||||
@ -4,10 +4,10 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == "__main__":
|
||||
audio_in = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_pt.wav"
|
||||
output_dir = "./results"
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-pt-16k-common-vocab1617-tensorflow1-online",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in, param_dict={"decoding_model":"normal"})
|
||||
rec_result = inference_pipeline(audio_in=audio_in, param_dict={"decoding_model":"normal"})
|
||||
print(rec_result)
|
||||
|
||||
@ -4,10 +4,10 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == "__main__":
|
||||
audio_in = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_ru.wav"
|
||||
output_dir = "./results"
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-ru-16k-common-vocab1664-tensorflow1-offline",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
rec_result = inference_pipeline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
print(rec_result)
|
||||
|
||||
@ -4,10 +4,10 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == "__main__":
|
||||
audio_in = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_ru.wav"
|
||||
output_dir = "./results"
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-ru-16k-common-vocab1664-tensorflow1-online",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in, param_dict={"decoding_model":"normal"})
|
||||
rec_result = inference_pipeline(audio_in=audio_in, param_dict={"decoding_model":"normal"})
|
||||
print(rec_result)
|
||||
|
||||
@ -4,10 +4,10 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == "__main__":
|
||||
audio_in = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_ur.wav"
|
||||
output_dir = "./results"
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-ur-16k-common-vocab877-pytorch",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
rec_result = inference_pipeline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
print(rec_result)
|
||||
|
||||
@ -4,10 +4,10 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == "__main__":
|
||||
audio_in = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_vi.wav"
|
||||
output_dir = "./results"
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-vi-16k-common-vocab1001-pytorch-offline",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
rec_result = inference_pipeline(audio_in=audio_in, param_dict={"decoding_model":"offline"})
|
||||
print(rec_result)
|
||||
|
||||
@ -4,10 +4,10 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == "__main__":
|
||||
audio_in = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_vi.wav"
|
||||
output_dir = "./results"
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-vi-16k-common-vocab1001-pytorch-online",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in, param_dict={"decoding_model":"normal"})
|
||||
rec_result = inference_pipeline(audio_in=audio_in, param_dict={"decoding_model":"normal"})
|
||||
print(rec_result)
|
||||
|
||||
@ -4,11 +4,11 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == '__main__':
|
||||
audio_in = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav'
|
||||
output_dir = None
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-zh-cn-16k-common-vocab8358-tensorflow1-offline",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in)
|
||||
rec_result = inference_pipeline(audio_in=audio_in)
|
||||
print(rec_result)
|
||||
|
||||
|
||||
@ -4,11 +4,11 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == '__main__':
|
||||
audio_in = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav'
|
||||
output_dir = None
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-zh-cn-16k-common-vocab8358-tensorflow1-online",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in)
|
||||
rec_result = inference_pipeline(audio_in=audio_in)
|
||||
print(rec_result)
|
||||
|
||||
|
||||
@ -16,14 +16,14 @@ def modelscope_infer_core(output_dir, split_dir, njob, idx):
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_list[gpu_id])
|
||||
else:
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id)
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-offline",
|
||||
output_dir=output_dir_job,
|
||||
batch_size=1
|
||||
)
|
||||
audio_in = os.path.join(split_dir, "wav.{}.scp".format(idx))
|
||||
inference_pipline(audio_in=audio_in)
|
||||
inference_pipeline(audio_in=audio_in)
|
||||
|
||||
def modelscope_infer(params):
|
||||
# prepare for multi-GPU decoding
|
||||
|
||||
@ -16,14 +16,14 @@ def modelscope_infer_core(output_dir, split_dir, njob, idx):
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_list[gpu_id])
|
||||
else:
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id)
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online",
|
||||
output_dir=output_dir_job,
|
||||
batch_size=1
|
||||
)
|
||||
audio_in = os.path.join(split_dir, "wav.{}.scp".format(idx))
|
||||
inference_pipline(audio_in=audio_in, param_dict={"decoding_model": "normal"})
|
||||
inference_pipeline(audio_in=audio_in, param_dict={"decoding_model": "normal"})
|
||||
|
||||
|
||||
def modelscope_infer(params):
|
||||
|
||||
@ -4,11 +4,11 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == '__main__':
|
||||
audio_in = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav'
|
||||
output_dir = None
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab8358-tensorflow1-offline",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in)
|
||||
rec_result = inference_pipeline(audio_in=audio_in)
|
||||
print(rec_result)
|
||||
|
||||
|
||||
@ -4,11 +4,11 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == '__main__':
|
||||
audio_in = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav'
|
||||
output_dir = None
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab8358-tensorflow1-online",
|
||||
output_dir=output_dir,
|
||||
)
|
||||
rec_result = inference_pipline(audio_in=audio_in)
|
||||
rec_result = inference_pipeline(audio_in=audio_in)
|
||||
print(rec_result)
|
||||
|
||||
|
||||
@ -6,12 +6,12 @@ inputs = "hello 大 家 好 呀"
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.language_score_prediction,
|
||||
model='damo/speech_transformer_lm_zh-cn-common-vocab8404-pytorch',
|
||||
output_dir="./tmp/"
|
||||
)
|
||||
|
||||
rec_result = inference_pipline(text_in=inputs)
|
||||
rec_result = inference_pipeline(text_in=inputs)
|
||||
print(rec_result)
|
||||
|
||||
|
||||
@ -11,21 +11,21 @@
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.punctuation,
|
||||
model='damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch',
|
||||
model_revision=None)
|
||||
|
||||
rec_result = inference_pipline(text_in='example/punc_example.txt')
|
||||
rec_result = inference_pipeline(text_in='example/punc_example.txt')
|
||||
print(rec_result)
|
||||
```
|
||||
- text二进制数据,例如:用户直接从文件里读出bytes数据
|
||||
```python
|
||||
rec_result = inference_pipline(text_in='我们都是木头人不会讲话不会动')
|
||||
rec_result = inference_pipeline(text_in='我们都是木头人不会讲话不会动')
|
||||
```
|
||||
- text文件url,例如:https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/punc_example.txt
|
||||
```python
|
||||
rec_result = inference_pipline(text_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/punc_example.txt')
|
||||
rec_result = inference_pipeline(text_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/punc_example.txt')
|
||||
```
|
||||
|
||||
#### [CT-Transformer Realtime model](https://www.modelscope.cn/models/damo/punc_ct-transformer_zh-cn-common-vad_realtime-vocab272727/summary)
|
||||
|
||||
@ -12,12 +12,12 @@ inputs = "./egs_modelscope/punctuation/punc_ct-transformer_zh-cn-common-vocab272
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.punctuation,
|
||||
model='damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch',
|
||||
model_revision="v1.1.7",
|
||||
output_dir="./tmp/"
|
||||
)
|
||||
|
||||
rec_result = inference_pipline(text_in=inputs)
|
||||
rec_result = inference_pipeline(text_in=inputs)
|
||||
print(rec_result)
|
||||
|
||||
@ -8,12 +8,12 @@
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.speech_timestamp,
|
||||
model='damo/speech_timestamp_prediction-v1-16k-offline',
|
||||
output_dir=None)
|
||||
|
||||
rec_result = inference_pipline(
|
||||
rec_result = inference_pipeline(
|
||||
audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_timestamps.wav',
|
||||
text_in='一 个 东 太 平 洋 国 家 为 什 么 跑 到 西 太 平 洋 来 了 呢',)
|
||||
print(rec_result)
|
||||
|
||||
@ -1,12 +1,12 @@
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.speech_timestamp,
|
||||
model='damo/speech_timestamp_prediction-v1-16k-offline',
|
||||
output_dir=None)
|
||||
|
||||
rec_result = inference_pipline(
|
||||
rec_result = inference_pipeline(
|
||||
audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_timestamps.wav',
|
||||
text_in='一 个 东 太 平 洋 国 家 为 什 么 跑 到 西 太 平 洋 来 了 呢',)
|
||||
print(rec_result)
|
||||
@ -4,12 +4,12 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == '__main__':
|
||||
audio_in = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav'
|
||||
output_dir = None
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.voice_activity_detection,
|
||||
model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch",
|
||||
model_revision='v1.2.0',
|
||||
output_dir=output_dir,
|
||||
batch_size=1,
|
||||
)
|
||||
segments_result = inference_pipline(audio_in=audio_in)
|
||||
segments_result = inference_pipeline(audio_in=audio_in)
|
||||
print(segments_result)
|
||||
|
||||
@ -8,7 +8,7 @@ import soundfile
|
||||
|
||||
if __name__ == '__main__':
|
||||
output_dir = None
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.voice_activity_detection,
|
||||
model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch",
|
||||
model_revision='v1.2.0',
|
||||
@ -30,7 +30,7 @@ if __name__ == '__main__':
|
||||
else:
|
||||
is_final = False
|
||||
param_dict['is_final'] = is_final
|
||||
segments_result = inference_pipline(audio_in=speech[sample_offset: sample_offset + step],
|
||||
segments_result = inference_pipeline(audio_in=speech[sample_offset: sample_offset + step],
|
||||
param_dict=param_dict)
|
||||
print(segments_result)
|
||||
|
||||
|
||||
@ -4,12 +4,12 @@ from modelscope.utils.constant import Tasks
|
||||
if __name__ == '__main__':
|
||||
audio_in = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example_8k.wav'
|
||||
output_dir = None
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.voice_activity_detection,
|
||||
model="damo/speech_fsmn_vad_zh-cn-8k-common",
|
||||
model_revision='v1.2.0',
|
||||
output_dir=output_dir,
|
||||
batch_size=1,
|
||||
)
|
||||
segments_result = inference_pipline(audio_in=audio_in)
|
||||
segments_result = inference_pipeline(audio_in=audio_in)
|
||||
print(segments_result)
|
||||
|
||||
@ -8,7 +8,7 @@ import soundfile
|
||||
|
||||
if __name__ == '__main__':
|
||||
output_dir = None
|
||||
inference_pipline = pipeline(
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.voice_activity_detection,
|
||||
model="damo/speech_fsmn_vad_zh-cn-8k-common",
|
||||
model_revision='v1.2.0',
|
||||
@ -30,7 +30,7 @@ if __name__ == '__main__':
|
||||
else:
|
||||
is_final = False
|
||||
param_dict['is_final'] = is_final
|
||||
segments_result = inference_pipline(audio_in=speech[sample_offset: sample_offset + step],
|
||||
segments_result = inference_pipeline(audio_in=speech[sample_offset: sample_offset + step],
|
||||
param_dict=param_dict)
|
||||
print(segments_result)
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user