mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
support audio uppersampling and downsampling
This commit is contained in:
parent
aa456c5e44
commit
c14169f374
@ -11,7 +11,6 @@ from typing import Union
|
||||
|
||||
import kaldiio
|
||||
import numpy as np
|
||||
import soundfile
|
||||
import torch
|
||||
import torchaudio
|
||||
from torch.utils.data.dataset import IterableDataset
|
||||
@ -101,6 +100,7 @@ class IterableESPnetDataset(IterableDataset):
|
||||
[str, Dict[str, np.ndarray]], Dict[str, np.ndarray]
|
||||
] = None,
|
||||
float_dtype: str = "float32",
|
||||
fs: dict = None,
|
||||
int_dtype: str = "long",
|
||||
key_file: str = None,
|
||||
):
|
||||
@ -116,6 +116,7 @@ class IterableESPnetDataset(IterableDataset):
|
||||
self.float_dtype = float_dtype
|
||||
self.int_dtype = int_dtype
|
||||
self.key_file = key_file
|
||||
self.fs = fs
|
||||
|
||||
self.debug_info = {}
|
||||
non_iterable_list = []
|
||||
@ -175,6 +176,15 @@ class IterableESPnetDataset(IterableDataset):
|
||||
_type = self.path_name_type_list[0][2]
|
||||
func = DATA_TYPES[_type]
|
||||
array = func(value)
|
||||
if self.fs is not None and name == "speech":
|
||||
audio_fs = self.fs["audio_fs"]
|
||||
model_fs = self.fs["model_fs"]
|
||||
if audio_fs is not None and model_fs is not None:
|
||||
array = torch.from_numpy(array)
|
||||
array = array.unsqueeze(0)
|
||||
array = torchaudio.transforms.Resample(orig_freq=audio_fs,
|
||||
new_freq=model_fs)(array)
|
||||
array = array.squeeze(0).numpy()
|
||||
data[name] = array
|
||||
|
||||
if self.preprocess is not None:
|
||||
@ -211,6 +221,15 @@ class IterableESPnetDataset(IterableDataset):
|
||||
f'Not supported audio type: {audio_type}')
|
||||
func = DATA_TYPES[_type]
|
||||
array = func(value)
|
||||
if self.fs is not None and name == "speech":
|
||||
audio_fs = self.fs["audio_fs"]
|
||||
model_fs = self.fs["model_fs"]
|
||||
if audio_fs is not None and model_fs is not None:
|
||||
array = torch.from_numpy(array)
|
||||
array = array.unsqueeze(0)
|
||||
array = torchaudio.transforms.Resample(orig_freq=audio_fs,
|
||||
new_freq=model_fs)(array)
|
||||
array = array.squeeze(0).numpy()
|
||||
data[name] = array
|
||||
|
||||
if self.preprocess is not None:
|
||||
@ -302,6 +321,15 @@ class IterableESPnetDataset(IterableDataset):
|
||||
func = DATA_TYPES[_type]
|
||||
# Load entry
|
||||
array = func(value)
|
||||
if self.fs is not None and name == "speech":
|
||||
audio_fs = self.fs["audio_fs"]
|
||||
model_fs = self.fs["model_fs"]
|
||||
if audio_fs is not None and model_fs is not None:
|
||||
array = torch.from_numpy(array)
|
||||
array = array.unsqueeze(0)
|
||||
array = torchaudio.transforms.Resample(orig_freq=audio_fs,
|
||||
new_freq=model_fs)(array)
|
||||
array = array.squeeze(0).numpy()
|
||||
data[name] = array
|
||||
if self.non_iterable_dataset is not None:
|
||||
# 2.b. Load data from non-iterable dataset
|
||||
@ -335,4 +363,3 @@ class IterableESPnetDataset(IterableDataset):
|
||||
|
||||
if count == 0:
|
||||
raise RuntimeError("No iteration")
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user