mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
funasr1.0 streaming
This commit is contained in:
parent
c3c78fc5e7
commit
c0b186b5b6
@ -8,7 +8,7 @@ from funasr import AutoModel
|
||||
model = AutoModel(model="damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
|
||||
model_revision="v2.0.0",
|
||||
vad_model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch",
|
||||
vad_model_revision="v2.0.0",
|
||||
vad_model_revision="v2.0.1",
|
||||
punc_model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch",
|
||||
punc_model_revision="v2.0.0",
|
||||
spk_model="/Users/shixian/code/modelscope_models/speech_campplus_sv_zh-cn_16k-common",
|
||||
@ -21,7 +21,7 @@ print(res)
|
||||
model = AutoModel(model="damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
|
||||
model_revision="v2.0.0",
|
||||
vad_model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch",
|
||||
vad_model_revision="v2.0.0",
|
||||
vad_model_revision="v2.0.1",
|
||||
punc_model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch",
|
||||
punc_model_revision="v2.0.0",
|
||||
spk_model="/Users/shixian/code/modelscope_models/speech_campplus_sv_zh-cn_16k-common",
|
||||
|
||||
@ -1,11 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- encoding: utf-8 -*-
|
||||
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
|
||||
# MIT License (https://opensource.org/licenses/MIT)
|
||||
|
||||
from funasr import AutoModel
|
||||
|
||||
model = AutoModel(model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch", model_revision="v2.0.0")
|
||||
|
||||
res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav")
|
||||
print(res)
|
||||
@ -1,11 +0,0 @@
|
||||
|
||||
|
||||
model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch"
|
||||
model_revision="v2.0.0"
|
||||
|
||||
python funasr/bin/inference.py \
|
||||
+model=${model} \
|
||||
+model_revision=${model_revision} \
|
||||
+input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav" \
|
||||
+output_dir="./outputs/debug" \
|
||||
+device="cpu" \
|
||||
@ -7,11 +7,9 @@ from funasr import AutoModel
|
||||
wav_file = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav"
|
||||
|
||||
chunk_size = 60000 # ms
|
||||
model = AutoModel(model="/Users/zhifu/Downloads/modelscope_models/speech_fsmn_vad_zh-cn-16k-common-streaming", model_revision="v2.0.0")
|
||||
model = AutoModel(model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch", model_revision="v2.0.1")
|
||||
|
||||
res = model(input=wav_file,
|
||||
chunk_size=chunk_size,
|
||||
)
|
||||
res = model(input=wav_file, chunk_size=chunk_size, )
|
||||
print(res)
|
||||
|
||||
|
||||
@ -22,7 +20,7 @@ import os
|
||||
wav_file = os.path.join(model.model_path, "example/vad_example.wav")
|
||||
speech, sample_rate = soundfile.read(wav_file)
|
||||
|
||||
chunk_stride = int(chunk_size * 16000 / 1000)
|
||||
chunk_stride = int(chunk_size * sample_rate / 1000)
|
||||
|
||||
cache = {}
|
||||
|
||||
@ -35,4 +33,5 @@ for i in range(total_chunk_num):
|
||||
is_final=is_final,
|
||||
chunk_size=chunk_size,
|
||||
)
|
||||
print(res)
|
||||
if len(res[0]["value"]):
|
||||
print(res)
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
|
||||
|
||||
model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch"
|
||||
model_revision="v2.0.0"
|
||||
model_revision="v2.0.1"
|
||||
|
||||
python funasr/bin/inference.py \
|
||||
+model=${model} \
|
||||
|
||||
@ -8,7 +8,7 @@ from funasr import AutoModel
|
||||
model = AutoModel(model="damo/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
|
||||
model_revision="v2.0.0",
|
||||
vad_model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch",
|
||||
vad_model_revision="v2.0.0",
|
||||
vad_model_revision="v2.0.1",
|
||||
punc_model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch",
|
||||
punc_model_revision="v2.0.0",
|
||||
spk_model="damo/speech_campplus_sv_zh-cn_16k-common",
|
||||
|
||||
@ -2,7 +2,7 @@
|
||||
model="damo/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
|
||||
model_revision="v2.0.0"
|
||||
vad_model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch"
|
||||
vad_model_revision="v2.0.0"
|
||||
vad_model_revision="v2.0.1"
|
||||
punc_model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch"
|
||||
punc_model_revision="v2.0.0"
|
||||
spk_model="damo/speech_campplus_sv_zh-cn_16k-common"
|
||||
|
||||
@ -8,7 +8,7 @@ from funasr import AutoModel
|
||||
model = AutoModel(model="damo/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
|
||||
model_revision="v2.0.0",
|
||||
vad_model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch",
|
||||
vad_model_revision="v2.0.0",
|
||||
vad_model_revision="v2.0.1",
|
||||
punc_model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch",
|
||||
punc_model_revision="v2.0.0",
|
||||
)
|
||||
|
||||
@ -2,7 +2,7 @@
|
||||
model="damo/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
|
||||
model_revision="v2.0.0"
|
||||
vad_model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch"
|
||||
vad_model_revision="v2.0.0"
|
||||
vad_model_revision="v2.0.1"
|
||||
punc_model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch"
|
||||
punc_model_revision="v2.0.0"
|
||||
|
||||
|
||||
@ -402,8 +402,7 @@ class WavFrontendOnline(nn.Module):
|
||||
self, input: torch.Tensor, input_lengths: torch.Tensor, cache: dict = {}, **kwargs
|
||||
):
|
||||
is_final = kwargs.get("is_final", False)
|
||||
reset = kwargs.get("reset", False)
|
||||
if len(cache) == 0 or reset:
|
||||
if len(cache) == 0:
|
||||
self.init_cache(cache)
|
||||
|
||||
batch_size = input.shape[0]
|
||||
|
||||
@ -1,303 +0,0 @@
|
||||
from typing import Tuple, Dict
|
||||
import copy
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from funasr.register import tables
|
||||
|
||||
class LinearTransform(nn.Module):
|
||||
|
||||
def __init__(self, input_dim, output_dim):
|
||||
super(LinearTransform, self).__init__()
|
||||
self.input_dim = input_dim
|
||||
self.output_dim = output_dim
|
||||
self.linear = nn.Linear(input_dim, output_dim, bias=False)
|
||||
|
||||
def forward(self, input):
|
||||
output = self.linear(input)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class AffineTransform(nn.Module):
|
||||
|
||||
def __init__(self, input_dim, output_dim):
|
||||
super(AffineTransform, self).__init__()
|
||||
self.input_dim = input_dim
|
||||
self.output_dim = output_dim
|
||||
self.linear = nn.Linear(input_dim, output_dim)
|
||||
|
||||
def forward(self, input):
|
||||
output = self.linear(input)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class RectifiedLinear(nn.Module):
|
||||
|
||||
def __init__(self, input_dim, output_dim):
|
||||
super(RectifiedLinear, self).__init__()
|
||||
self.dim = input_dim
|
||||
self.relu = nn.ReLU()
|
||||
self.dropout = nn.Dropout(0.1)
|
||||
|
||||
def forward(self, input):
|
||||
out = self.relu(input)
|
||||
return out
|
||||
|
||||
|
||||
class FSMNBlock(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_dim: int,
|
||||
output_dim: int,
|
||||
lorder=None,
|
||||
rorder=None,
|
||||
lstride=1,
|
||||
rstride=1,
|
||||
):
|
||||
super(FSMNBlock, self).__init__()
|
||||
|
||||
self.dim = input_dim
|
||||
|
||||
if lorder is None:
|
||||
return
|
||||
|
||||
self.lorder = lorder
|
||||
self.rorder = rorder
|
||||
self.lstride = lstride
|
||||
self.rstride = rstride
|
||||
|
||||
self.conv_left = nn.Conv2d(
|
||||
self.dim, self.dim, [lorder, 1], dilation=[lstride, 1], groups=self.dim, bias=False)
|
||||
|
||||
if self.rorder > 0:
|
||||
self.conv_right = nn.Conv2d(
|
||||
self.dim, self.dim, [rorder, 1], dilation=[rstride, 1], groups=self.dim, bias=False)
|
||||
else:
|
||||
self.conv_right = None
|
||||
|
||||
def forward(self, input: torch.Tensor, cache: torch.Tensor):
|
||||
x = torch.unsqueeze(input, 1)
|
||||
x_per = x.permute(0, 3, 2, 1) # B D T C
|
||||
|
||||
cache = cache.to(x_per.device)
|
||||
y_left = torch.cat((cache, x_per), dim=2)
|
||||
cache = y_left[:, :, -(self.lorder - 1) * self.lstride:, :]
|
||||
y_left = self.conv_left(y_left)
|
||||
out = x_per + y_left
|
||||
|
||||
if self.conv_right is not None:
|
||||
# maybe need to check
|
||||
y_right = F.pad(x_per, [0, 0, 0, self.rorder * self.rstride])
|
||||
y_right = y_right[:, :, self.rstride:, :]
|
||||
y_right = self.conv_right(y_right)
|
||||
out += y_right
|
||||
|
||||
out_per = out.permute(0, 3, 2, 1)
|
||||
output = out_per.squeeze(1)
|
||||
|
||||
return output, cache
|
||||
|
||||
|
||||
class BasicBlock(nn.Sequential):
|
||||
def __init__(self,
|
||||
linear_dim: int,
|
||||
proj_dim: int,
|
||||
lorder: int,
|
||||
rorder: int,
|
||||
lstride: int,
|
||||
rstride: int,
|
||||
stack_layer: int
|
||||
):
|
||||
super(BasicBlock, self).__init__()
|
||||
self.lorder = lorder
|
||||
self.rorder = rorder
|
||||
self.lstride = lstride
|
||||
self.rstride = rstride
|
||||
self.stack_layer = stack_layer
|
||||
self.linear = LinearTransform(linear_dim, proj_dim)
|
||||
self.fsmn_block = FSMNBlock(proj_dim, proj_dim, lorder, rorder, lstride, rstride)
|
||||
self.affine = AffineTransform(proj_dim, linear_dim)
|
||||
self.relu = RectifiedLinear(linear_dim, linear_dim)
|
||||
|
||||
def forward(self, input: torch.Tensor, cache: Dict[str, torch.Tensor]):
|
||||
x1 = self.linear(input) # B T D
|
||||
cache_layer_name = 'cache_layer_{}'.format(self.stack_layer)
|
||||
if cache_layer_name not in cache:
|
||||
cache[cache_layer_name] = torch.zeros(x1.shape[0], x1.shape[-1], (self.lorder - 1) * self.lstride, 1)
|
||||
x2, cache[cache_layer_name] = self.fsmn_block(x1, cache[cache_layer_name])
|
||||
x3 = self.affine(x2)
|
||||
x4 = self.relu(x3)
|
||||
return x4
|
||||
|
||||
|
||||
class FsmnStack(nn.Sequential):
|
||||
def __init__(self, *args):
|
||||
super(FsmnStack, self).__init__(*args)
|
||||
|
||||
def forward(self, input: torch.Tensor, cache: Dict[str, torch.Tensor]):
|
||||
x = input
|
||||
for module in self._modules.values():
|
||||
x = module(x, cache)
|
||||
return x
|
||||
|
||||
|
||||
'''
|
||||
FSMN net for keyword spotting
|
||||
input_dim: input dimension
|
||||
linear_dim: fsmn input dimensionll
|
||||
proj_dim: fsmn projection dimension
|
||||
lorder: fsmn left order
|
||||
rorder: fsmn right order
|
||||
num_syn: output dimension
|
||||
fsmn_layers: no. of sequential fsmn layers
|
||||
'''
|
||||
|
||||
@tables.register("encoder_classes", "FSMN")
|
||||
class FSMN(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
input_dim: int,
|
||||
input_affine_dim: int,
|
||||
fsmn_layers: int,
|
||||
linear_dim: int,
|
||||
proj_dim: int,
|
||||
lorder: int,
|
||||
rorder: int,
|
||||
lstride: int,
|
||||
rstride: int,
|
||||
output_affine_dim: int,
|
||||
output_dim: int
|
||||
):
|
||||
super(FSMN, self).__init__()
|
||||
|
||||
self.input_dim = input_dim
|
||||
self.input_affine_dim = input_affine_dim
|
||||
self.fsmn_layers = fsmn_layers
|
||||
self.linear_dim = linear_dim
|
||||
self.proj_dim = proj_dim
|
||||
self.output_affine_dim = output_affine_dim
|
||||
self.output_dim = output_dim
|
||||
|
||||
self.in_linear1 = AffineTransform(input_dim, input_affine_dim)
|
||||
self.in_linear2 = AffineTransform(input_affine_dim, linear_dim)
|
||||
self.relu = RectifiedLinear(linear_dim, linear_dim)
|
||||
self.fsmn = FsmnStack(*[BasicBlock(linear_dim, proj_dim, lorder, rorder, lstride, rstride, i) for i in
|
||||
range(fsmn_layers)])
|
||||
self.out_linear1 = AffineTransform(linear_dim, output_affine_dim)
|
||||
self.out_linear2 = AffineTransform(output_affine_dim, output_dim)
|
||||
self.softmax = nn.Softmax(dim=-1)
|
||||
|
||||
def fuse_modules(self):
|
||||
pass
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input: torch.Tensor,
|
||||
cache: Dict[str, torch.Tensor]
|
||||
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
|
||||
"""
|
||||
Args:
|
||||
input (torch.Tensor): Input tensor (B, T, D)
|
||||
cache: when cache is not None, the forward is in streaming. The type of cache is a dict, egs,
|
||||
{'cache_layer_1': torch.Tensor(B, T1, D)}, T1 is equal to self.lorder. It is {} for the 1st frame
|
||||
"""
|
||||
|
||||
x1 = self.in_linear1(input)
|
||||
x2 = self.in_linear2(x1)
|
||||
x3 = self.relu(x2)
|
||||
x4 = self.fsmn(x3, cache) # self.cache will update automatically in self.fsmn
|
||||
x5 = self.out_linear1(x4)
|
||||
x6 = self.out_linear2(x5)
|
||||
x7 = self.softmax(x6)
|
||||
|
||||
return x7
|
||||
|
||||
|
||||
'''
|
||||
one deep fsmn layer
|
||||
dimproj: projection dimension, input and output dimension of memory blocks
|
||||
dimlinear: dimension of mapping layer
|
||||
lorder: left order
|
||||
rorder: right order
|
||||
lstride: left stride
|
||||
rstride: right stride
|
||||
'''
|
||||
|
||||
@tables.register("encoder_classes", "DFSMN")
|
||||
class DFSMN(nn.Module):
|
||||
|
||||
def __init__(self, dimproj=64, dimlinear=128, lorder=20, rorder=1, lstride=1, rstride=1):
|
||||
super(DFSMN, self).__init__()
|
||||
|
||||
self.lorder = lorder
|
||||
self.rorder = rorder
|
||||
self.lstride = lstride
|
||||
self.rstride = rstride
|
||||
|
||||
self.expand = AffineTransform(dimproj, dimlinear)
|
||||
self.shrink = LinearTransform(dimlinear, dimproj)
|
||||
|
||||
self.conv_left = nn.Conv2d(
|
||||
dimproj, dimproj, [lorder, 1], dilation=[lstride, 1], groups=dimproj, bias=False)
|
||||
|
||||
if rorder > 0:
|
||||
self.conv_right = nn.Conv2d(
|
||||
dimproj, dimproj, [rorder, 1], dilation=[rstride, 1], groups=dimproj, bias=False)
|
||||
else:
|
||||
self.conv_right = None
|
||||
|
||||
def forward(self, input):
|
||||
f1 = F.relu(self.expand(input))
|
||||
p1 = self.shrink(f1)
|
||||
|
||||
x = torch.unsqueeze(p1, 1)
|
||||
x_per = x.permute(0, 3, 2, 1)
|
||||
|
||||
y_left = F.pad(x_per, [0, 0, (self.lorder - 1) * self.lstride, 0])
|
||||
|
||||
if self.conv_right is not None:
|
||||
y_right = F.pad(x_per, [0, 0, 0, (self.rorder) * self.rstride])
|
||||
y_right = y_right[:, :, self.rstride:, :]
|
||||
out = x_per + self.conv_left(y_left) + self.conv_right(y_right)
|
||||
else:
|
||||
out = x_per + self.conv_left(y_left)
|
||||
|
||||
out1 = out.permute(0, 3, 2, 1)
|
||||
output = input + out1.squeeze(1)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
'''
|
||||
build stacked dfsmn layers
|
||||
'''
|
||||
|
||||
|
||||
def buildDFSMNRepeats(linear_dim=128, proj_dim=64, lorder=20, rorder=1, fsmn_layers=6):
|
||||
repeats = [
|
||||
nn.Sequential(
|
||||
DFSMN(proj_dim, linear_dim, lorder, rorder, 1, 1))
|
||||
for i in range(fsmn_layers)
|
||||
]
|
||||
|
||||
return nn.Sequential(*repeats)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
fsmn = FSMN(400, 140, 4, 250, 128, 10, 2, 1, 1, 140, 2599)
|
||||
print(fsmn)
|
||||
|
||||
num_params = sum(p.numel() for p in fsmn.parameters())
|
||||
print('the number of model params: {}'.format(num_params))
|
||||
x = torch.zeros(128, 200, 400) # batch-size * time * dim
|
||||
y, _ = fsmn(x) # batch-size * time * dim
|
||||
print('input shape: {}'.format(x.shape))
|
||||
print('output shape: {}'.format(y.shape))
|
||||
|
||||
print(fsmn.to_kaldi_net())
|
||||
@ -1,740 +0,0 @@
|
||||
from enum import Enum
|
||||
from typing import List, Tuple, Dict, Any
|
||||
import logging
|
||||
import os
|
||||
import json
|
||||
import torch
|
||||
from torch import nn
|
||||
import math
|
||||
from typing import Optional
|
||||
import time
|
||||
from funasr.register import tables
|
||||
from funasr.utils.load_utils import load_audio_text_image_video,extract_fbank
|
||||
from funasr.utils.datadir_writer import DatadirWriter
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from funasr.train_utils.device_funcs import to_device
|
||||
|
||||
class VadStateMachine(Enum):
|
||||
kVadInStateStartPointNotDetected = 1
|
||||
kVadInStateInSpeechSegment = 2
|
||||
kVadInStateEndPointDetected = 3
|
||||
|
||||
|
||||
class FrameState(Enum):
|
||||
kFrameStateInvalid = -1
|
||||
kFrameStateSpeech = 1
|
||||
kFrameStateSil = 0
|
||||
|
||||
|
||||
# final voice/unvoice state per frame
|
||||
class AudioChangeState(Enum):
|
||||
kChangeStateSpeech2Speech = 0
|
||||
kChangeStateSpeech2Sil = 1
|
||||
kChangeStateSil2Sil = 2
|
||||
kChangeStateSil2Speech = 3
|
||||
kChangeStateNoBegin = 4
|
||||
kChangeStateInvalid = 5
|
||||
|
||||
|
||||
class VadDetectMode(Enum):
|
||||
kVadSingleUtteranceDetectMode = 0
|
||||
kVadMutipleUtteranceDetectMode = 1
|
||||
|
||||
|
||||
class VADXOptions:
|
||||
"""
|
||||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||||
Deep-FSMN for Large Vocabulary Continuous Speech Recognition
|
||||
https://arxiv.org/abs/1803.05030
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
sample_rate: int = 16000,
|
||||
detect_mode: int = VadDetectMode.kVadMutipleUtteranceDetectMode.value,
|
||||
snr_mode: int = 0,
|
||||
max_end_silence_time: int = 800,
|
||||
max_start_silence_time: int = 3000,
|
||||
do_start_point_detection: bool = True,
|
||||
do_end_point_detection: bool = True,
|
||||
window_size_ms: int = 200,
|
||||
sil_to_speech_time_thres: int = 150,
|
||||
speech_to_sil_time_thres: int = 150,
|
||||
speech_2_noise_ratio: float = 1.0,
|
||||
do_extend: int = 1,
|
||||
lookback_time_start_point: int = 200,
|
||||
lookahead_time_end_point: int = 100,
|
||||
max_single_segment_time: int = 60000,
|
||||
nn_eval_block_size: int = 8,
|
||||
dcd_block_size: int = 4,
|
||||
snr_thres: int = -100.0,
|
||||
noise_frame_num_used_for_snr: int = 100,
|
||||
decibel_thres: int = -100.0,
|
||||
speech_noise_thres: float = 0.6,
|
||||
fe_prior_thres: float = 1e-4,
|
||||
silence_pdf_num: int = 1,
|
||||
sil_pdf_ids: List[int] = [0],
|
||||
speech_noise_thresh_low: float = -0.1,
|
||||
speech_noise_thresh_high: float = 0.3,
|
||||
output_frame_probs: bool = False,
|
||||
frame_in_ms: int = 10,
|
||||
frame_length_ms: int = 25,
|
||||
**kwargs,
|
||||
):
|
||||
self.sample_rate = sample_rate
|
||||
self.detect_mode = detect_mode
|
||||
self.snr_mode = snr_mode
|
||||
self.max_end_silence_time = max_end_silence_time
|
||||
self.max_start_silence_time = max_start_silence_time
|
||||
self.do_start_point_detection = do_start_point_detection
|
||||
self.do_end_point_detection = do_end_point_detection
|
||||
self.window_size_ms = window_size_ms
|
||||
self.sil_to_speech_time_thres = sil_to_speech_time_thres
|
||||
self.speech_to_sil_time_thres = speech_to_sil_time_thres
|
||||
self.speech_2_noise_ratio = speech_2_noise_ratio
|
||||
self.do_extend = do_extend
|
||||
self.lookback_time_start_point = lookback_time_start_point
|
||||
self.lookahead_time_end_point = lookahead_time_end_point
|
||||
self.max_single_segment_time = max_single_segment_time
|
||||
self.nn_eval_block_size = nn_eval_block_size
|
||||
self.dcd_block_size = dcd_block_size
|
||||
self.snr_thres = snr_thres
|
||||
self.noise_frame_num_used_for_snr = noise_frame_num_used_for_snr
|
||||
self.decibel_thres = decibel_thres
|
||||
self.speech_noise_thres = speech_noise_thres
|
||||
self.fe_prior_thres = fe_prior_thres
|
||||
self.silence_pdf_num = silence_pdf_num
|
||||
self.sil_pdf_ids = sil_pdf_ids
|
||||
self.speech_noise_thresh_low = speech_noise_thresh_low
|
||||
self.speech_noise_thresh_high = speech_noise_thresh_high
|
||||
self.output_frame_probs = output_frame_probs
|
||||
self.frame_in_ms = frame_in_ms
|
||||
self.frame_length_ms = frame_length_ms
|
||||
|
||||
|
||||
class E2EVadSpeechBufWithDoa(object):
|
||||
"""
|
||||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||||
Deep-FSMN for Large Vocabulary Continuous Speech Recognition
|
||||
https://arxiv.org/abs/1803.05030
|
||||
"""
|
||||
def __init__(self):
|
||||
self.start_ms = 0
|
||||
self.end_ms = 0
|
||||
self.buffer = []
|
||||
self.contain_seg_start_point = False
|
||||
self.contain_seg_end_point = False
|
||||
self.doa = 0
|
||||
|
||||
def Reset(self):
|
||||
self.start_ms = 0
|
||||
self.end_ms = 0
|
||||
self.buffer = []
|
||||
self.contain_seg_start_point = False
|
||||
self.contain_seg_end_point = False
|
||||
self.doa = 0
|
||||
|
||||
|
||||
class E2EVadFrameProb(object):
|
||||
"""
|
||||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||||
Deep-FSMN for Large Vocabulary Continuous Speech Recognition
|
||||
https://arxiv.org/abs/1803.05030
|
||||
"""
|
||||
def __init__(self):
|
||||
self.noise_prob = 0.0
|
||||
self.speech_prob = 0.0
|
||||
self.score = 0.0
|
||||
self.frame_id = 0
|
||||
self.frm_state = 0
|
||||
|
||||
|
||||
class WindowDetector(object):
|
||||
"""
|
||||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||||
Deep-FSMN for Large Vocabulary Continuous Speech Recognition
|
||||
https://arxiv.org/abs/1803.05030
|
||||
"""
|
||||
def __init__(self, window_size_ms: int, sil_to_speech_time: int,
|
||||
speech_to_sil_time: int, frame_size_ms: int):
|
||||
self.window_size_ms = window_size_ms
|
||||
self.sil_to_speech_time = sil_to_speech_time
|
||||
self.speech_to_sil_time = speech_to_sil_time
|
||||
self.frame_size_ms = frame_size_ms
|
||||
|
||||
self.win_size_frame = int(window_size_ms / frame_size_ms)
|
||||
self.win_sum = 0
|
||||
self.win_state = [0] * self.win_size_frame # 初始化窗
|
||||
|
||||
self.cur_win_pos = 0
|
||||
self.pre_frame_state = FrameState.kFrameStateSil
|
||||
self.cur_frame_state = FrameState.kFrameStateSil
|
||||
self.sil_to_speech_frmcnt_thres = int(sil_to_speech_time / frame_size_ms)
|
||||
self.speech_to_sil_frmcnt_thres = int(speech_to_sil_time / frame_size_ms)
|
||||
|
||||
self.voice_last_frame_count = 0
|
||||
self.noise_last_frame_count = 0
|
||||
self.hydre_frame_count = 0
|
||||
|
||||
def Reset(self) -> None:
|
||||
self.cur_win_pos = 0
|
||||
self.win_sum = 0
|
||||
self.win_state = [0] * self.win_size_frame
|
||||
self.pre_frame_state = FrameState.kFrameStateSil
|
||||
self.cur_frame_state = FrameState.kFrameStateSil
|
||||
self.voice_last_frame_count = 0
|
||||
self.noise_last_frame_count = 0
|
||||
self.hydre_frame_count = 0
|
||||
|
||||
def GetWinSize(self) -> int:
|
||||
return int(self.win_size_frame)
|
||||
|
||||
def DetectOneFrame(self, frameState: FrameState, frame_count: int) -> AudioChangeState:
|
||||
cur_frame_state = FrameState.kFrameStateSil
|
||||
if frameState == FrameState.kFrameStateSpeech:
|
||||
cur_frame_state = 1
|
||||
elif frameState == FrameState.kFrameStateSil:
|
||||
cur_frame_state = 0
|
||||
else:
|
||||
return AudioChangeState.kChangeStateInvalid
|
||||
self.win_sum -= self.win_state[self.cur_win_pos]
|
||||
self.win_sum += cur_frame_state
|
||||
self.win_state[self.cur_win_pos] = cur_frame_state
|
||||
self.cur_win_pos = (self.cur_win_pos + 1) % self.win_size_frame
|
||||
|
||||
if self.pre_frame_state == FrameState.kFrameStateSil and self.win_sum >= self.sil_to_speech_frmcnt_thres:
|
||||
self.pre_frame_state = FrameState.kFrameStateSpeech
|
||||
return AudioChangeState.kChangeStateSil2Speech
|
||||
|
||||
if self.pre_frame_state == FrameState.kFrameStateSpeech and self.win_sum <= self.speech_to_sil_frmcnt_thres:
|
||||
self.pre_frame_state = FrameState.kFrameStateSil
|
||||
return AudioChangeState.kChangeStateSpeech2Sil
|
||||
|
||||
if self.pre_frame_state == FrameState.kFrameStateSil:
|
||||
return AudioChangeState.kChangeStateSil2Sil
|
||||
if self.pre_frame_state == FrameState.kFrameStateSpeech:
|
||||
return AudioChangeState.kChangeStateSpeech2Speech
|
||||
return AudioChangeState.kChangeStateInvalid
|
||||
|
||||
def FrameSizeMs(self) -> int:
|
||||
return int(self.frame_size_ms)
|
||||
|
||||
|
||||
@tables.register("model_classes", "FsmnVAD")
|
||||
class FsmnVAD(nn.Module):
|
||||
"""
|
||||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||||
Deep-FSMN for Large Vocabulary Continuous Speech Recognition
|
||||
https://arxiv.org/abs/1803.05030
|
||||
"""
|
||||
def __init__(self,
|
||||
encoder: str = None,
|
||||
encoder_conf: Optional[Dict] = None,
|
||||
vad_post_args: Dict[str, Any] = None,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.vad_opts = VADXOptions(**kwargs)
|
||||
self.windows_detector = WindowDetector(self.vad_opts.window_size_ms,
|
||||
self.vad_opts.sil_to_speech_time_thres,
|
||||
self.vad_opts.speech_to_sil_time_thres,
|
||||
self.vad_opts.frame_in_ms)
|
||||
|
||||
encoder_class = tables.encoder_classes.get(encoder.lower())
|
||||
encoder = encoder_class(**encoder_conf)
|
||||
self.encoder = encoder
|
||||
# init variables
|
||||
self.data_buf_start_frame = 0
|
||||
self.frm_cnt = 0
|
||||
self.latest_confirmed_speech_frame = 0
|
||||
self.lastest_confirmed_silence_frame = -1
|
||||
self.continous_silence_frame_count = 0
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateStartPointNotDetected
|
||||
self.confirmed_start_frame = -1
|
||||
self.confirmed_end_frame = -1
|
||||
self.number_end_time_detected = 0
|
||||
self.sil_frame = 0
|
||||
self.sil_pdf_ids = self.vad_opts.sil_pdf_ids
|
||||
self.noise_average_decibel = -100.0
|
||||
self.pre_end_silence_detected = False
|
||||
self.next_seg = True
|
||||
|
||||
self.output_data_buf = []
|
||||
self.output_data_buf_offset = 0
|
||||
self.frame_probs = []
|
||||
self.max_end_sil_frame_cnt_thresh = self.vad_opts.max_end_silence_time - self.vad_opts.speech_to_sil_time_thres
|
||||
self.speech_noise_thres = self.vad_opts.speech_noise_thres
|
||||
self.scores = None
|
||||
self.max_time_out = False
|
||||
self.decibel = []
|
||||
self.data_buf = None
|
||||
self.data_buf_all = None
|
||||
self.waveform = None
|
||||
self.last_drop_frames = 0
|
||||
|
||||
def AllResetDetection(self):
|
||||
self.data_buf_start_frame = 0
|
||||
self.frm_cnt = 0
|
||||
self.latest_confirmed_speech_frame = 0
|
||||
self.lastest_confirmed_silence_frame = -1
|
||||
self.continous_silence_frame_count = 0
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateStartPointNotDetected
|
||||
self.confirmed_start_frame = -1
|
||||
self.confirmed_end_frame = -1
|
||||
self.number_end_time_detected = 0
|
||||
self.sil_frame = 0
|
||||
self.sil_pdf_ids = self.vad_opts.sil_pdf_ids
|
||||
self.noise_average_decibel = -100.0
|
||||
self.pre_end_silence_detected = False
|
||||
self.next_seg = True
|
||||
|
||||
self.output_data_buf = []
|
||||
self.output_data_buf_offset = 0
|
||||
self.frame_probs = []
|
||||
self.max_end_sil_frame_cnt_thresh = self.vad_opts.max_end_silence_time - self.vad_opts.speech_to_sil_time_thres
|
||||
self.speech_noise_thres = self.vad_opts.speech_noise_thres
|
||||
self.scores = None
|
||||
self.max_time_out = False
|
||||
self.decibel = []
|
||||
self.data_buf = None
|
||||
self.data_buf_all = None
|
||||
self.waveform = None
|
||||
self.last_drop_frames = 0
|
||||
self.windows_detector.Reset()
|
||||
|
||||
def ResetDetection(self):
|
||||
self.continous_silence_frame_count = 0
|
||||
self.latest_confirmed_speech_frame = 0
|
||||
self.lastest_confirmed_silence_frame = -1
|
||||
self.confirmed_start_frame = -1
|
||||
self.confirmed_end_frame = -1
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateStartPointNotDetected
|
||||
self.windows_detector.Reset()
|
||||
self.sil_frame = 0
|
||||
self.frame_probs = []
|
||||
|
||||
if self.output_data_buf:
|
||||
assert self.output_data_buf[-1].contain_seg_end_point == True
|
||||
drop_frames = int(self.output_data_buf[-1].end_ms / self.vad_opts.frame_in_ms)
|
||||
real_drop_frames = drop_frames - self.last_drop_frames
|
||||
self.last_drop_frames = drop_frames
|
||||
self.data_buf_all = self.data_buf_all[real_drop_frames * int(self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000):]
|
||||
self.decibel = self.decibel[real_drop_frames:]
|
||||
self.scores = self.scores[:, real_drop_frames:, :]
|
||||
|
||||
def ComputeDecibel(self) -> None:
|
||||
frame_sample_length = int(self.vad_opts.frame_length_ms * self.vad_opts.sample_rate / 1000)
|
||||
frame_shift_length = int(self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000)
|
||||
if self.data_buf_all is None:
|
||||
self.data_buf_all = self.waveform[0] # self.data_buf is pointed to self.waveform[0]
|
||||
self.data_buf = self.data_buf_all
|
||||
else:
|
||||
self.data_buf_all = torch.cat((self.data_buf_all, self.waveform[0]))
|
||||
for offset in range(0, self.waveform.shape[1] - frame_sample_length + 1, frame_shift_length):
|
||||
self.decibel.append(
|
||||
10 * math.log10((self.waveform[0][offset: offset + frame_sample_length]).square().sum() + \
|
||||
0.000001))
|
||||
|
||||
def ComputeScores(self, feats: torch.Tensor, cache: Dict[str, torch.Tensor]) -> None:
|
||||
scores = self.encoder(feats, cache).to('cpu') # return B * T * D
|
||||
assert scores.shape[1] == feats.shape[1], "The shape between feats and scores does not match"
|
||||
self.vad_opts.nn_eval_block_size = scores.shape[1]
|
||||
self.frm_cnt += scores.shape[1] # count total frames
|
||||
if self.scores is None:
|
||||
self.scores = scores # the first calculation
|
||||
else:
|
||||
self.scores = torch.cat((self.scores, scores), dim=1)
|
||||
|
||||
def PopDataBufTillFrame(self, frame_idx: int) -> None: # need check again
|
||||
while self.data_buf_start_frame < frame_idx:
|
||||
if len(self.data_buf) >= int(self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000):
|
||||
self.data_buf_start_frame += 1
|
||||
self.data_buf = self.data_buf_all[(self.data_buf_start_frame - self.last_drop_frames) * int(
|
||||
self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000):]
|
||||
|
||||
def PopDataToOutputBuf(self, start_frm: int, frm_cnt: int, first_frm_is_start_point: bool,
|
||||
last_frm_is_end_point: bool, end_point_is_sent_end: bool) -> None:
|
||||
self.PopDataBufTillFrame(start_frm)
|
||||
expected_sample_number = int(frm_cnt * self.vad_opts.sample_rate * self.vad_opts.frame_in_ms / 1000)
|
||||
if last_frm_is_end_point:
|
||||
extra_sample = max(0, int(self.vad_opts.frame_length_ms * self.vad_opts.sample_rate / 1000 - \
|
||||
self.vad_opts.sample_rate * self.vad_opts.frame_in_ms / 1000))
|
||||
expected_sample_number += int(extra_sample)
|
||||
if end_point_is_sent_end:
|
||||
expected_sample_number = max(expected_sample_number, len(self.data_buf))
|
||||
if len(self.data_buf) < expected_sample_number:
|
||||
print('error in calling pop data_buf\n')
|
||||
|
||||
if len(self.output_data_buf) == 0 or first_frm_is_start_point:
|
||||
self.output_data_buf.append(E2EVadSpeechBufWithDoa())
|
||||
self.output_data_buf[-1].Reset()
|
||||
self.output_data_buf[-1].start_ms = start_frm * self.vad_opts.frame_in_ms
|
||||
self.output_data_buf[-1].end_ms = self.output_data_buf[-1].start_ms
|
||||
self.output_data_buf[-1].doa = 0
|
||||
cur_seg = self.output_data_buf[-1]
|
||||
if cur_seg.end_ms != start_frm * self.vad_opts.frame_in_ms:
|
||||
print('warning\n')
|
||||
out_pos = len(cur_seg.buffer) # cur_seg.buff现在没做任何操作
|
||||
data_to_pop = 0
|
||||
if end_point_is_sent_end:
|
||||
data_to_pop = expected_sample_number
|
||||
else:
|
||||
data_to_pop = int(frm_cnt * self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000)
|
||||
if data_to_pop > len(self.data_buf):
|
||||
print('VAD data_to_pop is bigger than self.data_buf.size()!!!\n')
|
||||
data_to_pop = len(self.data_buf)
|
||||
expected_sample_number = len(self.data_buf)
|
||||
|
||||
cur_seg.doa = 0
|
||||
for sample_cpy_out in range(0, data_to_pop):
|
||||
# cur_seg.buffer[out_pos ++] = data_buf_.back();
|
||||
out_pos += 1
|
||||
for sample_cpy_out in range(data_to_pop, expected_sample_number):
|
||||
# cur_seg.buffer[out_pos++] = data_buf_.back()
|
||||
out_pos += 1
|
||||
if cur_seg.end_ms != start_frm * self.vad_opts.frame_in_ms:
|
||||
print('Something wrong with the VAD algorithm\n')
|
||||
self.data_buf_start_frame += frm_cnt
|
||||
cur_seg.end_ms = (start_frm + frm_cnt) * self.vad_opts.frame_in_ms
|
||||
if first_frm_is_start_point:
|
||||
cur_seg.contain_seg_start_point = True
|
||||
if last_frm_is_end_point:
|
||||
cur_seg.contain_seg_end_point = True
|
||||
|
||||
def OnSilenceDetected(self, valid_frame: int):
|
||||
self.lastest_confirmed_silence_frame = valid_frame
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
|
||||
self.PopDataBufTillFrame(valid_frame)
|
||||
# silence_detected_callback_
|
||||
# pass
|
||||
|
||||
def OnVoiceDetected(self, valid_frame: int) -> None:
|
||||
self.latest_confirmed_speech_frame = valid_frame
|
||||
self.PopDataToOutputBuf(valid_frame, 1, False, False, False)
|
||||
|
||||
def OnVoiceStart(self, start_frame: int, fake_result: bool = False) -> None:
|
||||
if self.vad_opts.do_start_point_detection:
|
||||
pass
|
||||
if self.confirmed_start_frame != -1:
|
||||
print('not reset vad properly\n')
|
||||
else:
|
||||
self.confirmed_start_frame = start_frame
|
||||
|
||||
if not fake_result and self.vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
|
||||
self.PopDataToOutputBuf(self.confirmed_start_frame, 1, True, False, False)
|
||||
|
||||
def OnVoiceEnd(self, end_frame: int, fake_result: bool, is_last_frame: bool) -> None:
|
||||
for t in range(self.latest_confirmed_speech_frame + 1, end_frame):
|
||||
self.OnVoiceDetected(t)
|
||||
if self.vad_opts.do_end_point_detection:
|
||||
pass
|
||||
if self.confirmed_end_frame != -1:
|
||||
print('not reset vad properly\n')
|
||||
else:
|
||||
self.confirmed_end_frame = end_frame
|
||||
if not fake_result:
|
||||
self.sil_frame = 0
|
||||
self.PopDataToOutputBuf(self.confirmed_end_frame, 1, False, True, is_last_frame)
|
||||
self.number_end_time_detected += 1
|
||||
|
||||
def MaybeOnVoiceEndIfLastFrame(self, is_final_frame: bool, cur_frm_idx: int) -> None:
|
||||
if is_final_frame:
|
||||
self.OnVoiceEnd(cur_frm_idx, False, True)
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
|
||||
def GetLatency(self) -> int:
|
||||
return int(self.LatencyFrmNumAtStartPoint() * self.vad_opts.frame_in_ms)
|
||||
|
||||
def LatencyFrmNumAtStartPoint(self) -> int:
|
||||
vad_latency = self.windows_detector.GetWinSize()
|
||||
if self.vad_opts.do_extend:
|
||||
vad_latency += int(self.vad_opts.lookback_time_start_point / self.vad_opts.frame_in_ms)
|
||||
return vad_latency
|
||||
|
||||
def GetFrameState(self, t: int):
|
||||
frame_state = FrameState.kFrameStateInvalid
|
||||
cur_decibel = self.decibel[t]
|
||||
cur_snr = cur_decibel - self.noise_average_decibel
|
||||
# for each frame, calc log posterior probability of each state
|
||||
if cur_decibel < self.vad_opts.decibel_thres:
|
||||
frame_state = FrameState.kFrameStateSil
|
||||
self.DetectOneFrame(frame_state, t, False)
|
||||
return frame_state
|
||||
|
||||
sum_score = 0.0
|
||||
noise_prob = 0.0
|
||||
assert len(self.sil_pdf_ids) == self.vad_opts.silence_pdf_num
|
||||
if len(self.sil_pdf_ids) > 0:
|
||||
assert len(self.scores) == 1 # 只支持batch_size = 1的测试
|
||||
sil_pdf_scores = [self.scores[0][t][sil_pdf_id] for sil_pdf_id in self.sil_pdf_ids]
|
||||
sum_score = sum(sil_pdf_scores)
|
||||
noise_prob = math.log(sum_score) * self.vad_opts.speech_2_noise_ratio
|
||||
total_score = 1.0
|
||||
sum_score = total_score - sum_score
|
||||
speech_prob = math.log(sum_score)
|
||||
if self.vad_opts.output_frame_probs:
|
||||
frame_prob = E2EVadFrameProb()
|
||||
frame_prob.noise_prob = noise_prob
|
||||
frame_prob.speech_prob = speech_prob
|
||||
frame_prob.score = sum_score
|
||||
frame_prob.frame_id = t
|
||||
self.frame_probs.append(frame_prob)
|
||||
if math.exp(speech_prob) >= math.exp(noise_prob) + self.speech_noise_thres:
|
||||
if cur_snr >= self.vad_opts.snr_thres and cur_decibel >= self.vad_opts.decibel_thres:
|
||||
frame_state = FrameState.kFrameStateSpeech
|
||||
else:
|
||||
frame_state = FrameState.kFrameStateSil
|
||||
else:
|
||||
frame_state = FrameState.kFrameStateSil
|
||||
if self.noise_average_decibel < -99.9:
|
||||
self.noise_average_decibel = cur_decibel
|
||||
else:
|
||||
self.noise_average_decibel = (cur_decibel + self.noise_average_decibel * (
|
||||
self.vad_opts.noise_frame_num_used_for_snr
|
||||
- 1)) / self.vad_opts.noise_frame_num_used_for_snr
|
||||
|
||||
return frame_state
|
||||
|
||||
def forward(self, feats: torch.Tensor, waveform: torch.tensor, cache: Dict[str, torch.Tensor] = dict(),
|
||||
is_final: bool = False
|
||||
):
|
||||
if not cache:
|
||||
self.AllResetDetection()
|
||||
self.waveform = waveform # compute decibel for each frame
|
||||
self.ComputeDecibel()
|
||||
self.ComputeScores(feats, cache)
|
||||
if not is_final:
|
||||
self.DetectCommonFrames()
|
||||
else:
|
||||
self.DetectLastFrames()
|
||||
segments = []
|
||||
for batch_num in range(0, feats.shape[0]): # only support batch_size = 1 now
|
||||
segment_batch = []
|
||||
if len(self.output_data_buf) > 0:
|
||||
for i in range(self.output_data_buf_offset, len(self.output_data_buf)):
|
||||
if not is_final and (not self.output_data_buf[i].contain_seg_start_point or not self.output_data_buf[
|
||||
i].contain_seg_end_point):
|
||||
continue
|
||||
segment = [self.output_data_buf[i].start_ms, self.output_data_buf[i].end_ms]
|
||||
segment_batch.append(segment)
|
||||
self.output_data_buf_offset += 1 # need update this parameter
|
||||
if segment_batch:
|
||||
segments.append(segment_batch)
|
||||
if is_final:
|
||||
# reset class variables and clear the dict for the next query
|
||||
self.AllResetDetection()
|
||||
return segments, cache
|
||||
|
||||
def generate(self,
|
||||
data_in,
|
||||
data_lengths=None,
|
||||
key: list = None,
|
||||
tokenizer=None,
|
||||
frontend=None,
|
||||
**kwargs,
|
||||
):
|
||||
|
||||
|
||||
meta_data = {}
|
||||
audio_sample_list = [data_in]
|
||||
if isinstance(data_in, torch.Tensor): # fbank
|
||||
speech, speech_lengths = data_in, data_lengths
|
||||
if len(speech.shape) < 3:
|
||||
speech = speech[None, :, :]
|
||||
if speech_lengths is None:
|
||||
speech_lengths = speech.shape[1]
|
||||
else:
|
||||
# extract fbank feats
|
||||
time1 = time.perf_counter()
|
||||
audio_sample_list = load_audio_text_image_video(data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000))
|
||||
time2 = time.perf_counter()
|
||||
meta_data["load_data"] = f"{time2 - time1:0.3f}"
|
||||
speech, speech_lengths = extract_fbank(audio_sample_list, data_type=kwargs.get("data_type", "sound"),
|
||||
frontend=frontend)
|
||||
time3 = time.perf_counter()
|
||||
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
|
||||
meta_data[
|
||||
"batch_data_time"] = speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000
|
||||
|
||||
speech = speech.to(device=kwargs["device"])
|
||||
speech_lengths = speech_lengths.to(device=kwargs["device"])
|
||||
|
||||
# b. Forward Encoder streaming
|
||||
t_offset = 0
|
||||
feats = speech
|
||||
feats_len = speech_lengths.max().item()
|
||||
waveform = pad_sequence(audio_sample_list, batch_first=True).to(device=kwargs["device"]) # data: [batch, N]
|
||||
cache = kwargs.get("cache", {})
|
||||
batch_size = kwargs.get("batch_size", 1)
|
||||
step = min(feats_len, 6000)
|
||||
segments = [[]] * batch_size
|
||||
|
||||
for t_offset in range(0, feats_len, min(step, feats_len - t_offset)):
|
||||
if t_offset + step >= feats_len - 1:
|
||||
step = feats_len - t_offset
|
||||
is_final = True
|
||||
else:
|
||||
is_final = False
|
||||
batch = {
|
||||
"feats": feats[:, t_offset:t_offset + step, :],
|
||||
"waveform": waveform[:, t_offset * 160:min(waveform.shape[-1], (t_offset + step - 1) * 160 + 400)],
|
||||
"is_final": is_final,
|
||||
"cache": cache
|
||||
}
|
||||
|
||||
|
||||
batch = to_device(batch, device=kwargs["device"])
|
||||
segments_part, cache = self.forward(**batch)
|
||||
if segments_part:
|
||||
for batch_num in range(0, batch_size):
|
||||
segments[batch_num] += segments_part[batch_num]
|
||||
|
||||
ibest_writer = None
|
||||
if ibest_writer is None and kwargs.get("output_dir") is not None:
|
||||
writer = DatadirWriter(kwargs.get("output_dir"))
|
||||
ibest_writer = writer[f"{1}best_recog"]
|
||||
|
||||
results = []
|
||||
for i in range(batch_size):
|
||||
|
||||
|
||||
if ibest_writer is not None:
|
||||
ibest_writer["text"][key[i]] = segments[i]
|
||||
|
||||
result_i = {"key": key[i], "value": segments[i]}
|
||||
results.append(result_i)
|
||||
|
||||
if "MODELSCOPE_ENVIRONMENT" in os.environ and os.environ["MODELSCOPE_ENVIRONMENT"] == "eas":
|
||||
results[i] = json.dumps(results[i])
|
||||
|
||||
return results, meta_data
|
||||
|
||||
def DetectCommonFrames(self) -> int:
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateEndPointDetected:
|
||||
return 0
|
||||
for i in range(self.vad_opts.nn_eval_block_size - 1, -1, -1):
|
||||
frame_state = FrameState.kFrameStateInvalid
|
||||
frame_state = self.GetFrameState(self.frm_cnt - 1 - i - self.last_drop_frames)
|
||||
self.DetectOneFrame(frame_state, self.frm_cnt - 1 - i, False)
|
||||
|
||||
return 0
|
||||
|
||||
def DetectLastFrames(self) -> int:
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateEndPointDetected:
|
||||
return 0
|
||||
for i in range(self.vad_opts.nn_eval_block_size - 1, -1, -1):
|
||||
frame_state = FrameState.kFrameStateInvalid
|
||||
frame_state = self.GetFrameState(self.frm_cnt - 1 - i - self.last_drop_frames)
|
||||
if i != 0:
|
||||
self.DetectOneFrame(frame_state, self.frm_cnt - 1 - i, False)
|
||||
else:
|
||||
self.DetectOneFrame(frame_state, self.frm_cnt - 1, True)
|
||||
|
||||
return 0
|
||||
|
||||
def DetectOneFrame(self, cur_frm_state: FrameState, cur_frm_idx: int, is_final_frame: bool) -> None:
|
||||
tmp_cur_frm_state = FrameState.kFrameStateInvalid
|
||||
if cur_frm_state == FrameState.kFrameStateSpeech:
|
||||
if math.fabs(1.0) > self.vad_opts.fe_prior_thres:
|
||||
tmp_cur_frm_state = FrameState.kFrameStateSpeech
|
||||
else:
|
||||
tmp_cur_frm_state = FrameState.kFrameStateSil
|
||||
elif cur_frm_state == FrameState.kFrameStateSil:
|
||||
tmp_cur_frm_state = FrameState.kFrameStateSil
|
||||
state_change = self.windows_detector.DetectOneFrame(tmp_cur_frm_state, cur_frm_idx)
|
||||
frm_shift_in_ms = self.vad_opts.frame_in_ms
|
||||
if AudioChangeState.kChangeStateSil2Speech == state_change:
|
||||
silence_frame_count = self.continous_silence_frame_count
|
||||
self.continous_silence_frame_count = 0
|
||||
self.pre_end_silence_detected = False
|
||||
start_frame = 0
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
|
||||
start_frame = max(self.data_buf_start_frame, cur_frm_idx - self.LatencyFrmNumAtStartPoint())
|
||||
self.OnVoiceStart(start_frame)
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateInSpeechSegment
|
||||
for t in range(start_frame + 1, cur_frm_idx + 1):
|
||||
self.OnVoiceDetected(t)
|
||||
elif self.vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
|
||||
for t in range(self.latest_confirmed_speech_frame + 1, cur_frm_idx):
|
||||
self.OnVoiceDetected(t)
|
||||
if cur_frm_idx - self.confirmed_start_frame + 1 > \
|
||||
self.vad_opts.max_single_segment_time / frm_shift_in_ms:
|
||||
self.OnVoiceEnd(cur_frm_idx, False, False)
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
elif not is_final_frame:
|
||||
self.OnVoiceDetected(cur_frm_idx)
|
||||
else:
|
||||
self.MaybeOnVoiceEndIfLastFrame(is_final_frame, cur_frm_idx)
|
||||
else:
|
||||
pass
|
||||
elif AudioChangeState.kChangeStateSpeech2Sil == state_change:
|
||||
self.continous_silence_frame_count = 0
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
|
||||
pass
|
||||
elif self.vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
|
||||
if cur_frm_idx - self.confirmed_start_frame + 1 > \
|
||||
self.vad_opts.max_single_segment_time / frm_shift_in_ms:
|
||||
self.OnVoiceEnd(cur_frm_idx, False, False)
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
elif not is_final_frame:
|
||||
self.OnVoiceDetected(cur_frm_idx)
|
||||
else:
|
||||
self.MaybeOnVoiceEndIfLastFrame(is_final_frame, cur_frm_idx)
|
||||
else:
|
||||
pass
|
||||
elif AudioChangeState.kChangeStateSpeech2Speech == state_change:
|
||||
self.continous_silence_frame_count = 0
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
|
||||
if cur_frm_idx - self.confirmed_start_frame + 1 > \
|
||||
self.vad_opts.max_single_segment_time / frm_shift_in_ms:
|
||||
self.max_time_out = True
|
||||
self.OnVoiceEnd(cur_frm_idx, False, False)
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
elif not is_final_frame:
|
||||
self.OnVoiceDetected(cur_frm_idx)
|
||||
else:
|
||||
self.MaybeOnVoiceEndIfLastFrame(is_final_frame, cur_frm_idx)
|
||||
else:
|
||||
pass
|
||||
elif AudioChangeState.kChangeStateSil2Sil == state_change:
|
||||
self.continous_silence_frame_count += 1
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
|
||||
# silence timeout, return zero length decision
|
||||
if ((self.vad_opts.detect_mode == VadDetectMode.kVadSingleUtteranceDetectMode.value) and (
|
||||
self.continous_silence_frame_count * frm_shift_in_ms > self.vad_opts.max_start_silence_time)) \
|
||||
or (is_final_frame and self.number_end_time_detected == 0):
|
||||
for t in range(self.lastest_confirmed_silence_frame + 1, cur_frm_idx):
|
||||
self.OnSilenceDetected(t)
|
||||
self.OnVoiceStart(0, True)
|
||||
self.OnVoiceEnd(0, True, False);
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
else:
|
||||
if cur_frm_idx >= self.LatencyFrmNumAtStartPoint():
|
||||
self.OnSilenceDetected(cur_frm_idx - self.LatencyFrmNumAtStartPoint())
|
||||
elif self.vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
|
||||
if self.continous_silence_frame_count * frm_shift_in_ms >= self.max_end_sil_frame_cnt_thresh:
|
||||
lookback_frame = int(self.max_end_sil_frame_cnt_thresh / frm_shift_in_ms)
|
||||
if self.vad_opts.do_extend:
|
||||
lookback_frame -= int(self.vad_opts.lookahead_time_end_point / frm_shift_in_ms)
|
||||
lookback_frame -= 1
|
||||
lookback_frame = max(0, lookback_frame)
|
||||
self.OnVoiceEnd(cur_frm_idx - lookback_frame, False, False)
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
elif cur_frm_idx - self.confirmed_start_frame + 1 > \
|
||||
self.vad_opts.max_single_segment_time / frm_shift_in_ms:
|
||||
self.OnVoiceEnd(cur_frm_idx, False, False)
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
elif self.vad_opts.do_extend and not is_final_frame:
|
||||
if self.continous_silence_frame_count <= int(
|
||||
self.vad_opts.lookahead_time_end_point / frm_shift_in_ms):
|
||||
self.OnVoiceDetected(cur_frm_idx)
|
||||
else:
|
||||
self.MaybeOnVoiceEndIfLastFrame(is_final_frame, cur_frm_idx)
|
||||
else:
|
||||
pass
|
||||
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateEndPointDetected and \
|
||||
self.vad_opts.detect_mode == VadDetectMode.kVadMutipleUtteranceDetectMode.value:
|
||||
self.ResetDetection()
|
||||
|
||||
|
||||
|
||||
@ -1,62 +0,0 @@
|
||||
# This is an example that demonstrates how to configure a model file.
|
||||
# You can modify the configuration according to your own requirements.
|
||||
|
||||
# to print the register_table:
|
||||
# from funasr.register import tables
|
||||
# tables.print()
|
||||
|
||||
# network architecture
|
||||
model: FsmnVAD
|
||||
model_conf:
|
||||
sample_rate: 16000
|
||||
detect_mode: 1
|
||||
snr_mode: 0
|
||||
max_end_silence_time: 800
|
||||
max_start_silence_time: 3000
|
||||
do_start_point_detection: True
|
||||
do_end_point_detection: True
|
||||
window_size_ms: 200
|
||||
sil_to_speech_time_thres: 150
|
||||
speech_to_sil_time_thres: 150
|
||||
speech_2_noise_ratio: 1.0
|
||||
do_extend: 1
|
||||
lookback_time_start_point: 200
|
||||
lookahead_time_end_point: 100
|
||||
max_single_segment_time: 60000
|
||||
snr_thres: -100.0
|
||||
noise_frame_num_used_for_snr: 100
|
||||
decibel_thres: -100.0
|
||||
speech_noise_thres: 0.6
|
||||
fe_prior_thres: 0.0001
|
||||
silence_pdf_num: 1
|
||||
sil_pdf_ids: [0]
|
||||
speech_noise_thresh_low: -0.1
|
||||
speech_noise_thresh_high: 0.3
|
||||
output_frame_probs: False
|
||||
frame_in_ms: 10
|
||||
frame_length_ms: 25
|
||||
|
||||
encoder: FSMN
|
||||
encoder_conf:
|
||||
input_dim: 400
|
||||
input_affine_dim: 140
|
||||
fsmn_layers: 4
|
||||
linear_dim: 250
|
||||
proj_dim: 128
|
||||
lorder: 20
|
||||
rorder: 0
|
||||
lstride: 1
|
||||
rstride: 0
|
||||
output_affine_dim: 140
|
||||
output_dim: 248
|
||||
|
||||
frontend: WavFrontend
|
||||
frontend_conf:
|
||||
fs: 16000
|
||||
window: hamming
|
||||
n_mels: 80
|
||||
frame_length: 25
|
||||
frame_shift: 10
|
||||
dither: 0.0
|
||||
lfr_m: 5
|
||||
lfr_n: 1
|
||||
@ -11,7 +11,8 @@ import time
|
||||
from funasr.register import tables
|
||||
from funasr.utils.load_utils import load_audio_text_image_video,extract_fbank
|
||||
from funasr.utils.datadir_writer import DatadirWriter
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
class VadStateMachine(Enum):
|
||||
kVadInStateStartPointNotDetected = 1
|
||||
@ -39,7 +40,6 @@ class VadDetectMode(Enum):
|
||||
kVadSingleUtteranceDetectMode = 0
|
||||
kVadMutipleUtteranceDetectMode = 1
|
||||
|
||||
|
||||
class VADXOptions:
|
||||
"""
|
||||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||||
@ -153,8 +153,10 @@ class WindowDetector(object):
|
||||
Deep-FSMN for Large Vocabulary Continuous Speech Recognition
|
||||
https://arxiv.org/abs/1803.05030
|
||||
"""
|
||||
def __init__(self, window_size_ms: int, sil_to_speech_time: int,
|
||||
speech_to_sil_time: int, frame_size_ms: int):
|
||||
def __init__(self, window_size_ms: int,
|
||||
sil_to_speech_time: int,
|
||||
speech_to_sil_time: int,
|
||||
frame_size_ms: int):
|
||||
self.window_size_ms = window_size_ms
|
||||
self.sil_to_speech_time = sil_to_speech_time
|
||||
self.speech_to_sil_time = speech_to_sil_time
|
||||
@ -187,7 +189,7 @@ class WindowDetector(object):
|
||||
def GetWinSize(self) -> int:
|
||||
return int(self.win_size_frame)
|
||||
|
||||
def DetectOneFrame(self, frameState: FrameState, frame_count: int) -> AudioChangeState:
|
||||
def DetectOneFrame(self, frameState: FrameState, frame_count: int, cache: dict={}) -> AudioChangeState:
|
||||
cur_frame_state = FrameState.kFrameStateSil
|
||||
if frameState == FrameState.kFrameStateSpeech:
|
||||
cur_frame_state = 1
|
||||
@ -218,6 +220,38 @@ class WindowDetector(object):
|
||||
return int(self.frame_size_ms)
|
||||
|
||||
|
||||
@dataclass
|
||||
class StatsItem:
|
||||
|
||||
# init variables
|
||||
data_buf_start_frame = 0
|
||||
frm_cnt = 0
|
||||
latest_confirmed_speech_frame = 0
|
||||
lastest_confirmed_silence_frame = -1
|
||||
continous_silence_frame_count = 0
|
||||
vad_state_machine = VadStateMachine.kVadInStateStartPointNotDetected
|
||||
confirmed_start_frame = -1
|
||||
confirmed_end_frame = -1
|
||||
number_end_time_detected = 0
|
||||
sil_frame = 0
|
||||
sil_pdf_ids: list
|
||||
noise_average_decibel = -100.0
|
||||
pre_end_silence_detected = False
|
||||
next_seg = True # unused
|
||||
|
||||
output_data_buf = []
|
||||
output_data_buf_offset = 0
|
||||
frame_probs = [] # unused
|
||||
max_end_sil_frame_cnt_thresh: int
|
||||
speech_noise_thres: float
|
||||
scores = None
|
||||
max_time_out = False #unused
|
||||
decibel = []
|
||||
data_buf = None
|
||||
data_buf_all = None
|
||||
waveform = None
|
||||
last_drop_frames = 0
|
||||
|
||||
@tables.register("model_classes", "FsmnVADStreaming")
|
||||
class FsmnVADStreaming(nn.Module):
|
||||
"""
|
||||
@ -233,143 +267,82 @@ class FsmnVADStreaming(nn.Module):
|
||||
):
|
||||
super().__init__()
|
||||
self.vad_opts = VADXOptions(**kwargs)
|
||||
self.windows_detector = WindowDetector(self.vad_opts.window_size_ms,
|
||||
self.vad_opts.sil_to_speech_time_thres,
|
||||
self.vad_opts.speech_to_sil_time_thres,
|
||||
self.vad_opts.frame_in_ms)
|
||||
|
||||
|
||||
encoder_class = tables.encoder_classes.get(encoder.lower())
|
||||
encoder = encoder_class(**encoder_conf)
|
||||
self.encoder = encoder
|
||||
# init variables
|
||||
self.data_buf_start_frame = 0
|
||||
self.frm_cnt = 0
|
||||
self.latest_confirmed_speech_frame = 0
|
||||
self.lastest_confirmed_silence_frame = -1
|
||||
self.continous_silence_frame_count = 0
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateStartPointNotDetected
|
||||
self.confirmed_start_frame = -1
|
||||
self.confirmed_end_frame = -1
|
||||
self.number_end_time_detected = 0
|
||||
self.sil_frame = 0
|
||||
self.sil_pdf_ids = self.vad_opts.sil_pdf_ids
|
||||
self.noise_average_decibel = -100.0
|
||||
self.pre_end_silence_detected = False
|
||||
self.next_seg = True
|
||||
|
||||
self.output_data_buf = []
|
||||
self.output_data_buf_offset = 0
|
||||
self.frame_probs = []
|
||||
self.max_end_sil_frame_cnt_thresh = self.vad_opts.max_end_silence_time - self.vad_opts.speech_to_sil_time_thres
|
||||
self.speech_noise_thres = self.vad_opts.speech_noise_thres
|
||||
self.scores = None
|
||||
self.max_time_out = False
|
||||
self.decibel = []
|
||||
self.data_buf = None
|
||||
self.data_buf_all = None
|
||||
self.waveform = None
|
||||
self.last_drop_frames = 0
|
||||
|
||||
def AllResetDetection(self):
|
||||
self.data_buf_start_frame = 0
|
||||
self.frm_cnt = 0
|
||||
self.latest_confirmed_speech_frame = 0
|
||||
self.lastest_confirmed_silence_frame = -1
|
||||
self.continous_silence_frame_count = 0
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateStartPointNotDetected
|
||||
self.confirmed_start_frame = -1
|
||||
self.confirmed_end_frame = -1
|
||||
self.number_end_time_detected = 0
|
||||
self.sil_frame = 0
|
||||
self.sil_pdf_ids = self.vad_opts.sil_pdf_ids
|
||||
self.noise_average_decibel = -100.0
|
||||
self.pre_end_silence_detected = False
|
||||
self.next_seg = True
|
||||
def ResetDetection(self, cache: dict = {}):
|
||||
cache["stats"].continous_silence_frame_count = 0
|
||||
cache["stats"].latest_confirmed_speech_frame = 0
|
||||
cache["stats"].lastest_confirmed_silence_frame = -1
|
||||
cache["stats"].confirmed_start_frame = -1
|
||||
cache["stats"].confirmed_end_frame = -1
|
||||
cache["stats"].vad_state_machine = VadStateMachine.kVadInStateStartPointNotDetected
|
||||
cache["windows_detector"].Reset()
|
||||
cache["stats"].sil_frame = 0
|
||||
cache["stats"].frame_probs = []
|
||||
|
||||
self.output_data_buf = []
|
||||
self.output_data_buf_offset = 0
|
||||
self.frame_probs = []
|
||||
self.max_end_sil_frame_cnt_thresh = self.vad_opts.max_end_silence_time - self.vad_opts.speech_to_sil_time_thres
|
||||
self.speech_noise_thres = self.vad_opts.speech_noise_thres
|
||||
self.scores = None
|
||||
self.max_time_out = False
|
||||
self.decibel = []
|
||||
self.data_buf = None
|
||||
self.data_buf_all = None
|
||||
self.waveform = None
|
||||
self.last_drop_frames = 0
|
||||
self.windows_detector.Reset()
|
||||
if cache["stats"].output_data_buf:
|
||||
assert cache["stats"].output_data_buf[-1].contain_seg_end_point == True
|
||||
drop_frames = int(cache["stats"].output_data_buf[-1].end_ms / self.vad_opts.frame_in_ms)
|
||||
real_drop_frames = drop_frames - cache["stats"].last_drop_frames
|
||||
cache["stats"].last_drop_frames = drop_frames
|
||||
cache["stats"].data_buf_all = cache["stats"].data_buf_all[real_drop_frames * int(self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000):]
|
||||
cache["stats"].decibel = cache["stats"].decibel[real_drop_frames:]
|
||||
cache["stats"].scores = cache["stats"].scores[:, real_drop_frames:, :]
|
||||
|
||||
def ResetDetection(self):
|
||||
self.continous_silence_frame_count = 0
|
||||
self.latest_confirmed_speech_frame = 0
|
||||
self.lastest_confirmed_silence_frame = -1
|
||||
self.confirmed_start_frame = -1
|
||||
self.confirmed_end_frame = -1
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateStartPointNotDetected
|
||||
self.windows_detector.Reset()
|
||||
self.sil_frame = 0
|
||||
self.frame_probs = []
|
||||
|
||||
if self.output_data_buf:
|
||||
assert self.output_data_buf[-1].contain_seg_end_point == True
|
||||
drop_frames = int(self.output_data_buf[-1].end_ms / self.vad_opts.frame_in_ms)
|
||||
real_drop_frames = drop_frames - self.last_drop_frames
|
||||
self.last_drop_frames = drop_frames
|
||||
self.data_buf_all = self.data_buf_all[real_drop_frames * int(self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000):]
|
||||
self.decibel = self.decibel[real_drop_frames:]
|
||||
self.scores = self.scores[:, real_drop_frames:, :]
|
||||
|
||||
def ComputeDecibel(self) -> None:
|
||||
def ComputeDecibel(self, cache: dict = {}) -> None:
|
||||
frame_sample_length = int(self.vad_opts.frame_length_ms * self.vad_opts.sample_rate / 1000)
|
||||
frame_shift_length = int(self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000)
|
||||
if self.data_buf_all is None:
|
||||
self.data_buf_all = self.waveform[0] # self.data_buf is pointed to self.waveform[0]
|
||||
self.data_buf = self.data_buf_all
|
||||
if cache["stats"].data_buf_all is None:
|
||||
cache["stats"].data_buf_all = cache["stats"].waveform[0] # cache["stats"].data_buf is pointed to cache["stats"].waveform[0]
|
||||
cache["stats"].data_buf = cache["stats"].data_buf_all
|
||||
else:
|
||||
self.data_buf_all = torch.cat((self.data_buf_all, self.waveform[0]))
|
||||
for offset in range(0, self.waveform.shape[1] - frame_sample_length + 1, frame_shift_length):
|
||||
self.decibel.append(
|
||||
10 * math.log10((self.waveform[0][offset: offset + frame_sample_length]).square().sum() + \
|
||||
cache["stats"].data_buf_all = torch.cat((cache["stats"].data_buf_all, cache["stats"].waveform[0]))
|
||||
for offset in range(0, cache["stats"].waveform.shape[1] - frame_sample_length + 1, frame_shift_length):
|
||||
cache["stats"].decibel.append(
|
||||
10 * math.log10((cache["stats"].waveform[0][offset: offset + frame_sample_length]).square().sum() + \
|
||||
0.000001))
|
||||
|
||||
def ComputeScores(self, feats: torch.Tensor, cache: Dict[str, torch.Tensor]) -> None:
|
||||
scores = self.encoder(feats, cache).to('cpu') # return B * T * D
|
||||
def ComputeScores(self, feats: torch.Tensor, cache: dict = {}) -> None:
|
||||
scores = self.encoder(feats, cache=cache["encoder"]).to('cpu') # return B * T * D
|
||||
assert scores.shape[1] == feats.shape[1], "The shape between feats and scores does not match"
|
||||
self.vad_opts.nn_eval_block_size = scores.shape[1]
|
||||
self.frm_cnt += scores.shape[1] # count total frames
|
||||
if self.scores is None:
|
||||
self.scores = scores # the first calculation
|
||||
cache["stats"].frm_cnt += scores.shape[1] # count total frames
|
||||
if cache["stats"].scores is None:
|
||||
cache["stats"].scores = scores # the first calculation
|
||||
else:
|
||||
self.scores = torch.cat((self.scores, scores), dim=1)
|
||||
cache["stats"].scores = torch.cat((cache["stats"].scores, scores), dim=1)
|
||||
|
||||
def PopDataBufTillFrame(self, frame_idx: int) -> None: # need check again
|
||||
while self.data_buf_start_frame < frame_idx:
|
||||
if len(self.data_buf) >= int(self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000):
|
||||
self.data_buf_start_frame += 1
|
||||
self.data_buf = self.data_buf_all[(self.data_buf_start_frame - self.last_drop_frames) * int(
|
||||
def PopDataBufTillFrame(self, frame_idx: int, cache: dict={}) -> None: # need check again
|
||||
while cache["stats"].data_buf_start_frame < frame_idx:
|
||||
if len(cache["stats"].data_buf) >= int(self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000):
|
||||
cache["stats"].data_buf_start_frame += 1
|
||||
cache["stats"].data_buf = cache["stats"].data_buf_all[(cache["stats"].data_buf_start_frame - cache["stats"].last_drop_frames) * int(
|
||||
self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000):]
|
||||
|
||||
def PopDataToOutputBuf(self, start_frm: int, frm_cnt: int, first_frm_is_start_point: bool,
|
||||
last_frm_is_end_point: bool, end_point_is_sent_end: bool) -> None:
|
||||
self.PopDataBufTillFrame(start_frm)
|
||||
last_frm_is_end_point: bool, end_point_is_sent_end: bool, cache: dict={}) -> None:
|
||||
self.PopDataBufTillFrame(start_frm, cache=cache)
|
||||
expected_sample_number = int(frm_cnt * self.vad_opts.sample_rate * self.vad_opts.frame_in_ms / 1000)
|
||||
if last_frm_is_end_point:
|
||||
extra_sample = max(0, int(self.vad_opts.frame_length_ms * self.vad_opts.sample_rate / 1000 - \
|
||||
self.vad_opts.sample_rate * self.vad_opts.frame_in_ms / 1000))
|
||||
expected_sample_number += int(extra_sample)
|
||||
if end_point_is_sent_end:
|
||||
expected_sample_number = max(expected_sample_number, len(self.data_buf))
|
||||
if len(self.data_buf) < expected_sample_number:
|
||||
expected_sample_number = max(expected_sample_number, len(cache["stats"].data_buf))
|
||||
if len(cache["stats"].data_buf) < expected_sample_number:
|
||||
print('error in calling pop data_buf\n')
|
||||
|
||||
if len(self.output_data_buf) == 0 or first_frm_is_start_point:
|
||||
self.output_data_buf.append(E2EVadSpeechBufWithDoa())
|
||||
self.output_data_buf[-1].Reset()
|
||||
self.output_data_buf[-1].start_ms = start_frm * self.vad_opts.frame_in_ms
|
||||
self.output_data_buf[-1].end_ms = self.output_data_buf[-1].start_ms
|
||||
self.output_data_buf[-1].doa = 0
|
||||
cur_seg = self.output_data_buf[-1]
|
||||
if len(cache["stats"].output_data_buf) == 0 or first_frm_is_start_point:
|
||||
cache["stats"].output_data_buf.append(E2EVadSpeechBufWithDoa())
|
||||
cache["stats"].output_data_buf[-1].Reset()
|
||||
cache["stats"].output_data_buf[-1].start_ms = start_frm * self.vad_opts.frame_in_ms
|
||||
cache["stats"].output_data_buf[-1].end_ms = cache["stats"].output_data_buf[-1].start_ms
|
||||
cache["stats"].output_data_buf[-1].doa = 0
|
||||
cur_seg = cache["stats"].output_data_buf[-1]
|
||||
if cur_seg.end_ms != start_frm * self.vad_opts.frame_in_ms:
|
||||
print('warning\n')
|
||||
out_pos = len(cur_seg.buffer) # cur_seg.buff现在没做任何操作
|
||||
@ -378,10 +351,10 @@ class FsmnVADStreaming(nn.Module):
|
||||
data_to_pop = expected_sample_number
|
||||
else:
|
||||
data_to_pop = int(frm_cnt * self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000)
|
||||
if data_to_pop > len(self.data_buf):
|
||||
print('VAD data_to_pop is bigger than self.data_buf.size()!!!\n')
|
||||
data_to_pop = len(self.data_buf)
|
||||
expected_sample_number = len(self.data_buf)
|
||||
if data_to_pop > len(cache["stats"].data_buf):
|
||||
print('VAD data_to_pop is bigger than cache["stats"].data_buf.size()!!!\n')
|
||||
data_to_pop = len(cache["stats"].data_buf)
|
||||
expected_sample_number = len(cache["stats"].data_buf)
|
||||
|
||||
cur_seg.doa = 0
|
||||
for sample_cpy_out in range(0, data_to_pop):
|
||||
@ -392,79 +365,79 @@ class FsmnVADStreaming(nn.Module):
|
||||
out_pos += 1
|
||||
if cur_seg.end_ms != start_frm * self.vad_opts.frame_in_ms:
|
||||
print('Something wrong with the VAD algorithm\n')
|
||||
self.data_buf_start_frame += frm_cnt
|
||||
cache["stats"].data_buf_start_frame += frm_cnt
|
||||
cur_seg.end_ms = (start_frm + frm_cnt) * self.vad_opts.frame_in_ms
|
||||
if first_frm_is_start_point:
|
||||
cur_seg.contain_seg_start_point = True
|
||||
if last_frm_is_end_point:
|
||||
cur_seg.contain_seg_end_point = True
|
||||
|
||||
def OnSilenceDetected(self, valid_frame: int):
|
||||
self.lastest_confirmed_silence_frame = valid_frame
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
|
||||
self.PopDataBufTillFrame(valid_frame)
|
||||
def OnSilenceDetected(self, valid_frame: int, cache: dict = {}):
|
||||
cache["stats"].lastest_confirmed_silence_frame = valid_frame
|
||||
if cache["stats"].vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
|
||||
self.PopDataBufTillFrame(valid_frame, cache=cache)
|
||||
# silence_detected_callback_
|
||||
# pass
|
||||
|
||||
def OnVoiceDetected(self, valid_frame: int) -> None:
|
||||
self.latest_confirmed_speech_frame = valid_frame
|
||||
self.PopDataToOutputBuf(valid_frame, 1, False, False, False)
|
||||
def OnVoiceDetected(self, valid_frame: int, cache:dict={}) -> None:
|
||||
cache["stats"].latest_confirmed_speech_frame = valid_frame
|
||||
self.PopDataToOutputBuf(valid_frame, 1, False, False, False, cache=cache)
|
||||
|
||||
def OnVoiceStart(self, start_frame: int, fake_result: bool = False) -> None:
|
||||
def OnVoiceStart(self, start_frame: int, fake_result: bool = False, cache:dict={}) -> None:
|
||||
if self.vad_opts.do_start_point_detection:
|
||||
pass
|
||||
if self.confirmed_start_frame != -1:
|
||||
if cache["stats"].confirmed_start_frame != -1:
|
||||
print('not reset vad properly\n')
|
||||
else:
|
||||
self.confirmed_start_frame = start_frame
|
||||
cache["stats"].confirmed_start_frame = start_frame
|
||||
|
||||
if not fake_result and self.vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
|
||||
self.PopDataToOutputBuf(self.confirmed_start_frame, 1, True, False, False)
|
||||
if not fake_result and cache["stats"].vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
|
||||
self.PopDataToOutputBuf(cache["stats"].confirmed_start_frame, 1, True, False, False, cache=cache)
|
||||
|
||||
def OnVoiceEnd(self, end_frame: int, fake_result: bool, is_last_frame: bool) -> None:
|
||||
for t in range(self.latest_confirmed_speech_frame + 1, end_frame):
|
||||
self.OnVoiceDetected(t)
|
||||
def OnVoiceEnd(self, end_frame: int, fake_result: bool, is_last_frame: bool, cache:dict={}) -> None:
|
||||
for t in range(cache["stats"].latest_confirmed_speech_frame + 1, end_frame):
|
||||
self.OnVoiceDetected(t, cache=cache)
|
||||
if self.vad_opts.do_end_point_detection:
|
||||
pass
|
||||
if self.confirmed_end_frame != -1:
|
||||
if cache["stats"].confirmed_end_frame != -1:
|
||||
print('not reset vad properly\n')
|
||||
else:
|
||||
self.confirmed_end_frame = end_frame
|
||||
cache["stats"].confirmed_end_frame = end_frame
|
||||
if not fake_result:
|
||||
self.sil_frame = 0
|
||||
self.PopDataToOutputBuf(self.confirmed_end_frame, 1, False, True, is_last_frame)
|
||||
self.number_end_time_detected += 1
|
||||
cache["stats"].sil_frame = 0
|
||||
self.PopDataToOutputBuf(cache["stats"].confirmed_end_frame, 1, False, True, is_last_frame, cache=cache)
|
||||
cache["stats"].number_end_time_detected += 1
|
||||
|
||||
def MaybeOnVoiceEndIfLastFrame(self, is_final_frame: bool, cur_frm_idx: int) -> None:
|
||||
def MaybeOnVoiceEndIfLastFrame(self, is_final_frame: bool, cur_frm_idx: int, cache: dict = {}) -> None:
|
||||
if is_final_frame:
|
||||
self.OnVoiceEnd(cur_frm_idx, False, True)
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
self.OnVoiceEnd(cur_frm_idx, False, True, cache=cache)
|
||||
cache["stats"].vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
|
||||
def GetLatency(self) -> int:
|
||||
return int(self.LatencyFrmNumAtStartPoint() * self.vad_opts.frame_in_ms)
|
||||
def GetLatency(self, cache: dict = {}) -> int:
|
||||
return int(self.LatencyFrmNumAtStartPoint(cache=cache) * self.vad_opts.frame_in_ms)
|
||||
|
||||
def LatencyFrmNumAtStartPoint(self) -> int:
|
||||
vad_latency = self.windows_detector.GetWinSize()
|
||||
def LatencyFrmNumAtStartPoint(self, cache: dict = {}) -> int:
|
||||
vad_latency = cache["windows_detector"].GetWinSize()
|
||||
if self.vad_opts.do_extend:
|
||||
vad_latency += int(self.vad_opts.lookback_time_start_point / self.vad_opts.frame_in_ms)
|
||||
return vad_latency
|
||||
|
||||
def GetFrameState(self, t: int):
|
||||
def GetFrameState(self, t: int, cache: dict = {}):
|
||||
frame_state = FrameState.kFrameStateInvalid
|
||||
cur_decibel = self.decibel[t]
|
||||
cur_snr = cur_decibel - self.noise_average_decibel
|
||||
cur_decibel = cache["stats"].decibel[t]
|
||||
cur_snr = cur_decibel - cache["stats"].noise_average_decibel
|
||||
# for each frame, calc log posterior probability of each state
|
||||
if cur_decibel < self.vad_opts.decibel_thres:
|
||||
frame_state = FrameState.kFrameStateSil
|
||||
self.DetectOneFrame(frame_state, t, False)
|
||||
self.DetectOneFrame(frame_state, t, False, cache=cache)
|
||||
return frame_state
|
||||
|
||||
sum_score = 0.0
|
||||
noise_prob = 0.0
|
||||
assert len(self.sil_pdf_ids) == self.vad_opts.silence_pdf_num
|
||||
if len(self.sil_pdf_ids) > 0:
|
||||
assert len(self.scores) == 1 # 只支持batch_size = 1的测试
|
||||
sil_pdf_scores = [self.scores[0][t][sil_pdf_id] for sil_pdf_id in self.sil_pdf_ids]
|
||||
assert len(cache["stats"].sil_pdf_ids) == self.vad_opts.silence_pdf_num
|
||||
if len(cache["stats"].sil_pdf_ids) > 0:
|
||||
assert len(cache["stats"].scores) == 1 # 只支持batch_size = 1的测试
|
||||
sil_pdf_scores = [cache["stats"].scores[0][t][sil_pdf_id] for sil_pdf_id in cache["stats"].sil_pdf_ids]
|
||||
sum_score = sum(sil_pdf_scores)
|
||||
noise_prob = math.log(sum_score) * self.vad_opts.speech_2_noise_ratio
|
||||
total_score = 1.0
|
||||
@ -476,58 +449,69 @@ class FsmnVADStreaming(nn.Module):
|
||||
frame_prob.speech_prob = speech_prob
|
||||
frame_prob.score = sum_score
|
||||
frame_prob.frame_id = t
|
||||
self.frame_probs.append(frame_prob)
|
||||
if math.exp(speech_prob) >= math.exp(noise_prob) + self.speech_noise_thres:
|
||||
cache["stats"].frame_probs.append(frame_prob)
|
||||
if math.exp(speech_prob) >= math.exp(noise_prob) + cache["stats"].speech_noise_thres:
|
||||
if cur_snr >= self.vad_opts.snr_thres and cur_decibel >= self.vad_opts.decibel_thres:
|
||||
frame_state = FrameState.kFrameStateSpeech
|
||||
else:
|
||||
frame_state = FrameState.kFrameStateSil
|
||||
else:
|
||||
frame_state = FrameState.kFrameStateSil
|
||||
if self.noise_average_decibel < -99.9:
|
||||
self.noise_average_decibel = cur_decibel
|
||||
if cache["stats"].noise_average_decibel < -99.9:
|
||||
cache["stats"].noise_average_decibel = cur_decibel
|
||||
else:
|
||||
self.noise_average_decibel = (cur_decibel + self.noise_average_decibel * (
|
||||
cache["stats"].noise_average_decibel = (cur_decibel + cache["stats"].noise_average_decibel * (
|
||||
self.vad_opts.noise_frame_num_used_for_snr
|
||||
- 1)) / self.vad_opts.noise_frame_num_used_for_snr
|
||||
|
||||
return frame_state
|
||||
|
||||
def forward(self, feats: torch.Tensor, waveform: torch.tensor, cache: Dict[str, torch.Tensor] = dict(),
|
||||
def forward(self, feats: torch.Tensor, waveform: torch.tensor, cache: dict = {},
|
||||
is_final: bool = False
|
||||
):
|
||||
if len(cache) == 0:
|
||||
self.AllResetDetection()
|
||||
self.waveform = waveform # compute decibel for each frame
|
||||
self.ComputeDecibel()
|
||||
self.ComputeScores(feats, cache)
|
||||
# if len(cache) == 0:
|
||||
# self.AllResetDetection()
|
||||
# self.waveform = waveform # compute decibel for each frame
|
||||
cache["stats"].waveform = waveform
|
||||
self.ComputeDecibel(cache=cache)
|
||||
self.ComputeScores(feats, cache=cache)
|
||||
if not is_final:
|
||||
self.DetectCommonFrames()
|
||||
self.DetectCommonFrames(cache=cache)
|
||||
else:
|
||||
self.DetectLastFrames()
|
||||
self.DetectLastFrames(cache=cache)
|
||||
segments = []
|
||||
for batch_num in range(0, feats.shape[0]): # only support batch_size = 1 now
|
||||
segment_batch = []
|
||||
if len(self.output_data_buf) > 0:
|
||||
for i in range(self.output_data_buf_offset, len(self.output_data_buf)):
|
||||
if not is_final and (not self.output_data_buf[i].contain_seg_start_point or not self.output_data_buf[
|
||||
if len(cache["stats"].output_data_buf) > 0:
|
||||
for i in range(cache["stats"].output_data_buf_offset, len(cache["stats"].output_data_buf)):
|
||||
if not is_final and (not cache["stats"].output_data_buf[i].contain_seg_start_point or not cache["stats"].output_data_buf[
|
||||
i].contain_seg_end_point):
|
||||
continue
|
||||
segment = [self.output_data_buf[i].start_ms, self.output_data_buf[i].end_ms]
|
||||
segment = [cache["stats"].output_data_buf[i].start_ms, cache["stats"].output_data_buf[i].end_ms]
|
||||
segment_batch.append(segment)
|
||||
self.output_data_buf_offset += 1 # need update this parameter
|
||||
cache["stats"].output_data_buf_offset += 1 # need update this parameter
|
||||
if segment_batch:
|
||||
segments.append(segment_batch)
|
||||
if is_final:
|
||||
# reset class variables and clear the dict for the next query
|
||||
self.AllResetDetection()
|
||||
# if is_final:
|
||||
# # reset class variables and clear the dict for the next query
|
||||
# self.AllResetDetection()
|
||||
return segments
|
||||
|
||||
def init_cache(self, cache: dict = {}, **kwargs):
|
||||
cache["frontend"] = {}
|
||||
cache["prev_samples"] = torch.empty(0)
|
||||
cache["encoder"] = {}
|
||||
|
||||
windows_detector = WindowDetector(self.vad_opts.window_size_ms,
|
||||
self.vad_opts.sil_to_speech_time_thres,
|
||||
self.vad_opts.speech_to_sil_time_thres,
|
||||
self.vad_opts.frame_in_ms)
|
||||
|
||||
stats = StatsItem(sil_pdf_ids=self.vad_opts.sil_pdf_ids,
|
||||
max_end_sil_frame_cnt_thresh=self.vad_opts.max_end_silence_time - self.vad_opts.speech_to_sil_time_thres,
|
||||
speech_noise_thres=self.vad_opts.speech_noise_thres,
|
||||
)
|
||||
cache["windows_detector"] = windows_detector
|
||||
cache["stats"] = stats
|
||||
return cache
|
||||
|
||||
def generate(self,
|
||||
@ -544,7 +528,7 @@ class FsmnVADStreaming(nn.Module):
|
||||
self.init_cache(cache, **kwargs)
|
||||
|
||||
meta_data = {}
|
||||
chunk_size = kwargs.get("chunk_size", 50) # 50ms
|
||||
chunk_size = kwargs.get("chunk_size", 60000) # 50ms
|
||||
chunk_stride_samples = int(chunk_size * frontend.fs / 1000)
|
||||
|
||||
time1 = time.perf_counter()
|
||||
@ -585,10 +569,11 @@ class FsmnVADStreaming(nn.Module):
|
||||
"feats": speech,
|
||||
"waveform": cache["frontend"]["waveforms"],
|
||||
"is_final": kwargs["is_final"],
|
||||
"cache": cache["encoder"]
|
||||
"cache": cache
|
||||
}
|
||||
segments_i = self.forward(**batch)
|
||||
segments.extend(segments_i)
|
||||
if len(segments_i) > 0:
|
||||
segments.extend(*segments_i)
|
||||
|
||||
|
||||
cache["prev_samples"] = audio_sample[:-m]
|
||||
@ -614,30 +599,30 @@ class FsmnVADStreaming(nn.Module):
|
||||
return results, meta_data
|
||||
|
||||
|
||||
def DetectCommonFrames(self) -> int:
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateEndPointDetected:
|
||||
def DetectCommonFrames(self, cache: dict = {}) -> int:
|
||||
if cache["stats"].vad_state_machine == VadStateMachine.kVadInStateEndPointDetected:
|
||||
return 0
|
||||
for i in range(self.vad_opts.nn_eval_block_size - 1, -1, -1):
|
||||
frame_state = FrameState.kFrameStateInvalid
|
||||
frame_state = self.GetFrameState(self.frm_cnt - 1 - i - self.last_drop_frames)
|
||||
self.DetectOneFrame(frame_state, self.frm_cnt - 1 - i, False)
|
||||
frame_state = self.GetFrameState(cache["stats"].frm_cnt - 1 - i - cache["stats"].last_drop_frames, cache=cache)
|
||||
self.DetectOneFrame(frame_state, cache["stats"].frm_cnt - 1 - i, False, cache=cache)
|
||||
|
||||
return 0
|
||||
|
||||
def DetectLastFrames(self) -> int:
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateEndPointDetected:
|
||||
def DetectLastFrames(self, cache: dict = {}) -> int:
|
||||
if cache["stats"].vad_state_machine == VadStateMachine.kVadInStateEndPointDetected:
|
||||
return 0
|
||||
for i in range(self.vad_opts.nn_eval_block_size - 1, -1, -1):
|
||||
frame_state = FrameState.kFrameStateInvalid
|
||||
frame_state = self.GetFrameState(self.frm_cnt - 1 - i - self.last_drop_frames)
|
||||
frame_state = self.GetFrameState(cache["stats"].frm_cnt - 1 - i - cache["stats"].last_drop_frames, cache=cache)
|
||||
if i != 0:
|
||||
self.DetectOneFrame(frame_state, self.frm_cnt - 1 - i, False)
|
||||
self.DetectOneFrame(frame_state, cache["stats"].frm_cnt - 1 - i, False, cache=cache)
|
||||
else:
|
||||
self.DetectOneFrame(frame_state, self.frm_cnt - 1, True)
|
||||
self.DetectOneFrame(frame_state, cache["stats"].frm_cnt - 1, True, cache=cache)
|
||||
|
||||
return 0
|
||||
|
||||
def DetectOneFrame(self, cur_frm_state: FrameState, cur_frm_idx: int, is_final_frame: bool) -> None:
|
||||
def DetectOneFrame(self, cur_frm_state: FrameState, cur_frm_idx: int, is_final_frame: bool, cache: dict = {}) -> None:
|
||||
tmp_cur_frm_state = FrameState.kFrameStateInvalid
|
||||
if cur_frm_state == FrameState.kFrameStateSpeech:
|
||||
if math.fabs(1.0) > self.vad_opts.fe_prior_thres:
|
||||
@ -646,101 +631,101 @@ class FsmnVADStreaming(nn.Module):
|
||||
tmp_cur_frm_state = FrameState.kFrameStateSil
|
||||
elif cur_frm_state == FrameState.kFrameStateSil:
|
||||
tmp_cur_frm_state = FrameState.kFrameStateSil
|
||||
state_change = self.windows_detector.DetectOneFrame(tmp_cur_frm_state, cur_frm_idx)
|
||||
state_change = cache["windows_detector"].DetectOneFrame(tmp_cur_frm_state, cur_frm_idx, cache=cache)
|
||||
frm_shift_in_ms = self.vad_opts.frame_in_ms
|
||||
if AudioChangeState.kChangeStateSil2Speech == state_change:
|
||||
silence_frame_count = self.continous_silence_frame_count
|
||||
self.continous_silence_frame_count = 0
|
||||
self.pre_end_silence_detected = False
|
||||
silence_frame_count = cache["stats"].continous_silence_frame_count
|
||||
cache["stats"].continous_silence_frame_count = 0
|
||||
cache["stats"].pre_end_silence_detected = False
|
||||
start_frame = 0
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
|
||||
start_frame = max(self.data_buf_start_frame, cur_frm_idx - self.LatencyFrmNumAtStartPoint())
|
||||
self.OnVoiceStart(start_frame)
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateInSpeechSegment
|
||||
if cache["stats"].vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
|
||||
start_frame = max(cache["stats"].data_buf_start_frame, cur_frm_idx - self.LatencyFrmNumAtStartPoint(cache=cache))
|
||||
self.OnVoiceStart(start_frame, cache=cache)
|
||||
cache["stats"].vad_state_machine = VadStateMachine.kVadInStateInSpeechSegment
|
||||
for t in range(start_frame + 1, cur_frm_idx + 1):
|
||||
self.OnVoiceDetected(t)
|
||||
elif self.vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
|
||||
for t in range(self.latest_confirmed_speech_frame + 1, cur_frm_idx):
|
||||
self.OnVoiceDetected(t)
|
||||
if cur_frm_idx - self.confirmed_start_frame + 1 > \
|
||||
self.OnVoiceDetected(t, cache=cache)
|
||||
elif cache["stats"].vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
|
||||
for t in range(cache["stats"].latest_confirmed_speech_frame + 1, cur_frm_idx):
|
||||
self.OnVoiceDetected(t, cache=cache)
|
||||
if cur_frm_idx - cache["stats"].confirmed_start_frame + 1 > \
|
||||
self.vad_opts.max_single_segment_time / frm_shift_in_ms:
|
||||
self.OnVoiceEnd(cur_frm_idx, False, False)
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
self.OnVoiceEnd(cur_frm_idx, False, False, cache=cache)
|
||||
cache["stats"].vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
elif not is_final_frame:
|
||||
self.OnVoiceDetected(cur_frm_idx)
|
||||
self.OnVoiceDetected(cur_frm_idx, cache=cache)
|
||||
else:
|
||||
self.MaybeOnVoiceEndIfLastFrame(is_final_frame, cur_frm_idx)
|
||||
self.MaybeOnVoiceEndIfLastFrame(is_final_frame, cur_frm_idx, cache=cache)
|
||||
else:
|
||||
pass
|
||||
elif AudioChangeState.kChangeStateSpeech2Sil == state_change:
|
||||
self.continous_silence_frame_count = 0
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
|
||||
cache["stats"].continous_silence_frame_count = 0
|
||||
if cache["stats"].vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
|
||||
pass
|
||||
elif self.vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
|
||||
if cur_frm_idx - self.confirmed_start_frame + 1 > \
|
||||
elif cache["stats"].vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
|
||||
if cur_frm_idx - cache["stats"].confirmed_start_frame + 1 > \
|
||||
self.vad_opts.max_single_segment_time / frm_shift_in_ms:
|
||||
self.OnVoiceEnd(cur_frm_idx, False, False)
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
self.OnVoiceEnd(cur_frm_idx, False, False, cache=cache)
|
||||
cache["stats"].vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
elif not is_final_frame:
|
||||
self.OnVoiceDetected(cur_frm_idx)
|
||||
self.OnVoiceDetected(cur_frm_idx, cache=cache)
|
||||
else:
|
||||
self.MaybeOnVoiceEndIfLastFrame(is_final_frame, cur_frm_idx)
|
||||
self.MaybeOnVoiceEndIfLastFrame(is_final_frame, cur_frm_idx, cache=cache)
|
||||
else:
|
||||
pass
|
||||
elif AudioChangeState.kChangeStateSpeech2Speech == state_change:
|
||||
self.continous_silence_frame_count = 0
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
|
||||
if cur_frm_idx - self.confirmed_start_frame + 1 > \
|
||||
cache["stats"].continous_silence_frame_count = 0
|
||||
if cache["stats"].vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
|
||||
if cur_frm_idx - cache["stats"].confirmed_start_frame + 1 > \
|
||||
self.vad_opts.max_single_segment_time / frm_shift_in_ms:
|
||||
self.max_time_out = True
|
||||
self.OnVoiceEnd(cur_frm_idx, False, False)
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
cache["stats"].max_time_out = True
|
||||
self.OnVoiceEnd(cur_frm_idx, False, False, cache=cache)
|
||||
cache["stats"].vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
elif not is_final_frame:
|
||||
self.OnVoiceDetected(cur_frm_idx)
|
||||
self.OnVoiceDetected(cur_frm_idx, cache=cache)
|
||||
else:
|
||||
self.MaybeOnVoiceEndIfLastFrame(is_final_frame, cur_frm_idx)
|
||||
self.MaybeOnVoiceEndIfLastFrame(is_final_frame, cur_frm_idx, cache=cache)
|
||||
else:
|
||||
pass
|
||||
elif AudioChangeState.kChangeStateSil2Sil == state_change:
|
||||
self.continous_silence_frame_count += 1
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
|
||||
cache["stats"].continous_silence_frame_count += 1
|
||||
if cache["stats"].vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
|
||||
# silence timeout, return zero length decision
|
||||
if ((self.vad_opts.detect_mode == VadDetectMode.kVadSingleUtteranceDetectMode.value) and (
|
||||
self.continous_silence_frame_count * frm_shift_in_ms > self.vad_opts.max_start_silence_time)) \
|
||||
or (is_final_frame and self.number_end_time_detected == 0):
|
||||
for t in range(self.lastest_confirmed_silence_frame + 1, cur_frm_idx):
|
||||
self.OnSilenceDetected(t)
|
||||
self.OnVoiceStart(0, True)
|
||||
self.OnVoiceEnd(0, True, False);
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
cache["stats"].continous_silence_frame_count * frm_shift_in_ms > self.vad_opts.max_start_silence_time)) \
|
||||
or (is_final_frame and cache["stats"].number_end_time_detected == 0):
|
||||
for t in range(cache["stats"].lastest_confirmed_silence_frame + 1, cur_frm_idx):
|
||||
self.OnSilenceDetected(t, cache=cache)
|
||||
self.OnVoiceStart(0, True, cache=cache)
|
||||
self.OnVoiceEnd(0, True, False, cache=cache)
|
||||
cache["stats"].vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
else:
|
||||
if cur_frm_idx >= self.LatencyFrmNumAtStartPoint():
|
||||
self.OnSilenceDetected(cur_frm_idx - self.LatencyFrmNumAtStartPoint())
|
||||
elif self.vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
|
||||
if self.continous_silence_frame_count * frm_shift_in_ms >= self.max_end_sil_frame_cnt_thresh:
|
||||
lookback_frame = int(self.max_end_sil_frame_cnt_thresh / frm_shift_in_ms)
|
||||
if cur_frm_idx >= self.LatencyFrmNumAtStartPoint(cache=cache):
|
||||
self.OnSilenceDetected(cur_frm_idx - self.LatencyFrmNumAtStartPoint(cache=cache), cache=cache)
|
||||
elif cache["stats"].vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
|
||||
if cache["stats"].continous_silence_frame_count * frm_shift_in_ms >= cache["stats"].max_end_sil_frame_cnt_thresh:
|
||||
lookback_frame = int(cache["stats"].max_end_sil_frame_cnt_thresh / frm_shift_in_ms)
|
||||
if self.vad_opts.do_extend:
|
||||
lookback_frame -= int(self.vad_opts.lookahead_time_end_point / frm_shift_in_ms)
|
||||
lookback_frame -= 1
|
||||
lookback_frame = max(0, lookback_frame)
|
||||
self.OnVoiceEnd(cur_frm_idx - lookback_frame, False, False)
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
elif cur_frm_idx - self.confirmed_start_frame + 1 > \
|
||||
self.OnVoiceEnd(cur_frm_idx - lookback_frame, False, False, cache=cache)
|
||||
cache["stats"].vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
elif cur_frm_idx - cache["stats"].confirmed_start_frame + 1 > \
|
||||
self.vad_opts.max_single_segment_time / frm_shift_in_ms:
|
||||
self.OnVoiceEnd(cur_frm_idx, False, False)
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
self.OnVoiceEnd(cur_frm_idx, False, False, cache=cache)
|
||||
cache["stats"].vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
elif self.vad_opts.do_extend and not is_final_frame:
|
||||
if self.continous_silence_frame_count <= int(
|
||||
if cache["stats"].continous_silence_frame_count <= int(
|
||||
self.vad_opts.lookahead_time_end_point / frm_shift_in_ms):
|
||||
self.OnVoiceDetected(cur_frm_idx)
|
||||
self.OnVoiceDetected(cur_frm_idx, cache=cache)
|
||||
else:
|
||||
self.MaybeOnVoiceEndIfLastFrame(is_final_frame, cur_frm_idx)
|
||||
self.MaybeOnVoiceEndIfLastFrame(is_final_frame, cur_frm_idx, cache=cache)
|
||||
else:
|
||||
pass
|
||||
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateEndPointDetected and \
|
||||
if cache["stats"].vad_state_machine == VadStateMachine.kVadInStateEndPointDetected and \
|
||||
self.vad_opts.detect_mode == VadDetectMode.kVadMutipleUtteranceDetectMode.value:
|
||||
self.ResetDetection()
|
||||
self.ResetDetection(cache=cache)
|
||||
|
||||
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user