diff --git a/funasr/runtime/python/onnxruntime/demo_vad.py b/funasr/runtime/python/onnxruntime/demo_vad.py index ae033cc5b..2e171978c 100644 --- a/funasr/runtime/python/onnxruntime/demo_vad.py +++ b/funasr/runtime/python/onnxruntime/demo_vad.py @@ -1,12 +1,30 @@ - +import soundfile from funasr_onnx import Fsmn_vad model_dir = "/Users/zhifu/Downloads/speech_fsmn_vad_zh-cn-16k-common-pytorch" - +wav_path = "/Users/zhifu/Downloads/speech_fsmn_vad_zh-cn-16k-common-pytorch/example/vad_example.wav" model = Fsmn_vad(model_dir) -wav_path = "/Users/zhifu/Downloads/speech_fsmn_vad_zh-cn-16k-common-pytorch/example/vad_example.wav" +#offline vad +# result = model(wav_path) +# print(result) + +#online vad +speech, sample_rate = soundfile.read(wav_path) +speech_length = speech.shape[0] + +sample_offset = 0 +step = 160 * 10 +param_dict = {'in_cache': []} +for sample_offset in range(0, speech_length, min(step, speech_length - sample_offset)): + if sample_offset + step >= speech_length - 1: + step = speech_length - sample_offset + is_final = True + else: + is_final = False + param_dict['is_final'] = is_final + segments_result = model(audio_in=speech[sample_offset: sample_offset + step], + param_dict=param_dict) + print(segments_result) -result = model(wav_path) -print(result) \ No newline at end of file diff --git a/funasr/runtime/python/onnxruntime/funasr_onnx/vad_bin.py b/funasr/runtime/python/onnxruntime/funasr_onnx/vad_bin.py index 0b7ecffc0..cdd4578d1 100644 --- a/funasr/runtime/python/onnxruntime/funasr_onnx/vad_bin.py +++ b/funasr/runtime/python/onnxruntime/funasr_onnx/vad_bin.py @@ -53,13 +53,13 @@ class Fsmn_vad(): proj_dim = self.encoder_conf["proj_dim"] lorder = self.encoder_conf["lorder"] for i in range(fsmn_layers): - cache = np.zeros(1, proj_dim, lorder-1, 1).astype(np.float32) + cache = np.zeros((1, proj_dim, lorder-1, 1)).astype(np.float32) in_cache.append(cache) return in_cache - def __call__(self, wav_content: Union[str, np.ndarray, List[str]], **kwargs) -> List: - waveform_list = self.load_data(wav_content, self.frontend.opts.frame_opts.samp_freq) + def __call__(self, audio_in: Union[str, np.ndarray, List[str]], **kwargs) -> List: + waveform_list = self.load_data(audio_in, self.frontend.opts.frame_opts.samp_freq) waveform_nums = len(waveform_list) is_final = kwargs.get('kwargs', False) @@ -70,13 +70,13 @@ class Fsmn_vad(): waveform = waveform_list[beg_idx:end_idx] feats, feats_len = self.extract_feat(waveform) param_dict = kwargs.get('param_dict', dict()) - in_cache = param_dict.get('cache', list()) + in_cache = param_dict.get('in_cache', list()) in_cache = self.prepare_cache(in_cache) try: inputs = [feats] inputs.extend(in_cache) scores, out_caches = self.infer(inputs) - param_dict['cache'] = out_caches + param_dict['in_cache'] = out_caches segments = self.vad_scorer(scores, waveform[0][None, :], is_final=is_final, max_end_sil=self.max_end_sil) except ONNXRuntimeError: