mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
train
This commit is contained in:
parent
97dd199b38
commit
bf341eed2b
@ -23,6 +23,10 @@ def CustomDistributedBatchSampler_fn(dataset, **kwargs):
|
||||
batch_sampler = CustomDistributedBatchSampler(dataset, **kwargs)
|
||||
|
||||
else:
|
||||
# if kwargs.get("sort_size", -1) > 0:
|
||||
# batch_sampler = CustomDistributedBufferDynamicBatchSampler(dataset, **kwargs)
|
||||
# else:
|
||||
# batch_sampler = CustomDistributedDynamicBatchSampler(dataset, **kwargs)
|
||||
batch_sampler = CustomDistributedDynamicBatchSampler(dataset, **kwargs)
|
||||
|
||||
dataloader_args["batch_sampler"] = batch_sampler
|
||||
@ -286,6 +290,81 @@ class CustomDistributedDynamicBatchSampler(DistributedSampler):
|
||||
self.epoch = epoch
|
||||
|
||||
|
||||
class CustomDistributedBufferDynamicBatchSampler(DistributedSampler):
|
||||
def __init__(self, dataset,
|
||||
batch_size,
|
||||
num_replicas=None,
|
||||
rank=None,
|
||||
shuffle=True,
|
||||
drop_last=False,
|
||||
is_training: bool = True,
|
||||
sort_size: int = 1024,
|
||||
**kwargs,
|
||||
):
|
||||
|
||||
try:
|
||||
rank = dist.get_rank()
|
||||
num_replicas = dist.get_world_size()
|
||||
except:
|
||||
rank = 0
|
||||
num_replicas = 1
|
||||
self.rank = rank
|
||||
self.num_replicas = num_replicas
|
||||
self.dataset = dataset
|
||||
self.batch_size = batch_size
|
||||
self.is_training = is_training
|
||||
self.shuffle = shuffle and is_training
|
||||
self.drop_last = drop_last
|
||||
|
||||
self.total_size = len(self.dataset)
|
||||
# self.num_samples = int(math.ceil(self.total_size / self.num_replicas))
|
||||
self.epoch = 0
|
||||
self.sort_size = sort_size
|
||||
|
||||
def __iter__(self):
|
||||
if self.shuffle:
|
||||
g = torch.Generator()
|
||||
g.manual_seed(self.epoch)
|
||||
indices = torch.randperm(self.total_size, generator=g).tolist()
|
||||
else:
|
||||
indices = list(range(self.total_size))
|
||||
|
||||
# Distribute indices among replicas
|
||||
indices = indices[self.rank:self.total_size:self.num_replicas]
|
||||
|
||||
# Sort indices into buffers
|
||||
sorted_buffers = [sorted(indices[i:i + self.sort_size], key=lambda idx: self.dataset.get_source_len(idx)) for i in range(0, len(indices), self.sort_size)]
|
||||
|
||||
batches = []
|
||||
for buffer in sorted_buffers:
|
||||
batch = []
|
||||
max_len_in_batch = 0
|
||||
for idx in buffer:
|
||||
sample_length = self.dataset.get_source_len(idx)
|
||||
potential_batch_length = max(max_len_in_batch, sample_length) * (len(batch) + 1)
|
||||
if potential_batch_length <= self.batch_size:
|
||||
batch.append(idx)
|
||||
max_len_in_batch = max(max_len_in_batch, sample_length)
|
||||
else:
|
||||
batches.append(batch)
|
||||
batch = [idx]
|
||||
max_len_in_batch = sample_length
|
||||
|
||||
# Add the last batch if it's not empty and we're not dropping it
|
||||
if batch and (not self.drop_last or len(batch) * max_len_in_batch == self.batch_size):
|
||||
batches.append(batch)
|
||||
|
||||
return iter(batches)
|
||||
|
||||
|
||||
def __len__(self):
|
||||
|
||||
return 1
|
||||
|
||||
def set_epoch(self, epoch):
|
||||
self.epoch = epoch
|
||||
|
||||
|
||||
class DistributedSamplerWarp(BatchSampler):
|
||||
def __init__(self, dataset, batch_size, num_replicas=None, rank=None, shuffle=True, drop_last=False):
|
||||
if num_replicas is None:
|
||||
|
||||
Loading…
Reference in New Issue
Block a user