This commit is contained in:
游雁 2024-03-26 00:09:15 +08:00
parent 97dd199b38
commit bf341eed2b

View File

@ -23,6 +23,10 @@ def CustomDistributedBatchSampler_fn(dataset, **kwargs):
batch_sampler = CustomDistributedBatchSampler(dataset, **kwargs)
else:
# if kwargs.get("sort_size", -1) > 0:
# batch_sampler = CustomDistributedBufferDynamicBatchSampler(dataset, **kwargs)
# else:
# batch_sampler = CustomDistributedDynamicBatchSampler(dataset, **kwargs)
batch_sampler = CustomDistributedDynamicBatchSampler(dataset, **kwargs)
dataloader_args["batch_sampler"] = batch_sampler
@ -286,6 +290,81 @@ class CustomDistributedDynamicBatchSampler(DistributedSampler):
self.epoch = epoch
class CustomDistributedBufferDynamicBatchSampler(DistributedSampler):
def __init__(self, dataset,
batch_size,
num_replicas=None,
rank=None,
shuffle=True,
drop_last=False,
is_training: bool = True,
sort_size: int = 1024,
**kwargs,
):
try:
rank = dist.get_rank()
num_replicas = dist.get_world_size()
except:
rank = 0
num_replicas = 1
self.rank = rank
self.num_replicas = num_replicas
self.dataset = dataset
self.batch_size = batch_size
self.is_training = is_training
self.shuffle = shuffle and is_training
self.drop_last = drop_last
self.total_size = len(self.dataset)
# self.num_samples = int(math.ceil(self.total_size / self.num_replicas))
self.epoch = 0
self.sort_size = sort_size
def __iter__(self):
if self.shuffle:
g = torch.Generator()
g.manual_seed(self.epoch)
indices = torch.randperm(self.total_size, generator=g).tolist()
else:
indices = list(range(self.total_size))
# Distribute indices among replicas
indices = indices[self.rank:self.total_size:self.num_replicas]
# Sort indices into buffers
sorted_buffers = [sorted(indices[i:i + self.sort_size], key=lambda idx: self.dataset.get_source_len(idx)) for i in range(0, len(indices), self.sort_size)]
batches = []
for buffer in sorted_buffers:
batch = []
max_len_in_batch = 0
for idx in buffer:
sample_length = self.dataset.get_source_len(idx)
potential_batch_length = max(max_len_in_batch, sample_length) * (len(batch) + 1)
if potential_batch_length <= self.batch_size:
batch.append(idx)
max_len_in_batch = max(max_len_in_batch, sample_length)
else:
batches.append(batch)
batch = [idx]
max_len_in_batch = sample_length
# Add the last batch if it's not empty and we're not dropping it
if batch and (not self.drop_last or len(batch) * max_len_in_batch == self.batch_size):
batches.append(batch)
return iter(batches)
def __len__(self):
return 1
def set_epoch(self, epoch):
self.epoch = epoch
class DistributedSamplerWarp(BatchSampler):
def __init__(self, dataset, batch_size, num_replicas=None, rank=None, shuffle=True, drop_last=False):
if num_replicas is None: