This commit is contained in:
游雁 2024-06-12 14:00:34 +08:00
parent d43f77408b
commit be26169447
2 changed files with 18 additions and 36 deletions

View File

@ -376,6 +376,7 @@ class OpenAIDatasetMultiTurn(torch.utils.data.Dataset):
target_ids = self.tokenizer.encode(target_out)
input_ids += source_ids + target_ids
labels += source_mask + target_ids
fbank.append(speech)
fbank_mask += fbank_mask_i
fbank_beg.append(fbank_beg_i)

View File

@ -10,36 +10,6 @@ import torch.optim
import pdb
def filter_state_dict(
dst_state: Dict[str, Union[float, torch.Tensor]],
src_state: Dict[str, Union[float, torch.Tensor]],
):
"""Filter name, size mismatch instances between dicts.
Args:
dst_state: reference state dict for filtering
src_state: target state dict for filtering
"""
match_state = {}
for key, value in src_state.items():
if key in dst_state and (dst_state[key].size() == src_state[key].size()):
match_state[key] = value
else:
if key not in dst_state:
logging.warning(
f"Filter out {key} from pretrained dict"
+ " because of name not found in target dict"
)
else:
logging.warning(
f"Filter out {key} from pretrained dict"
+ " because of size mismatch"
+ f"({dst_state[key].size()}-{src_state[key].size()})"
)
return match_state
def load_pretrained_model(
path: str,
model: torch.nn.Module,
@ -62,7 +32,7 @@ def load_pretrained_model(
obj = model
dst_state = obj.state_dict()
print(f"ckpt: {path}")
logging.info(f"ckpt: {path}")
if oss_bucket is None:
src_state = torch.load(path, map_location=map_location)
@ -77,9 +47,20 @@ def load_pretrained_model(
if isinstance(scope_map, str):
scope_map = scope_map.split(",")
scope_map += ["module.", "None"]
logging.info(f"scope_map: {scope_map}")
if excludes is not None:
if isinstance(excludes, str):
excludes = excludes.split(",")
logging.info(f"excludes: {excludes}")
for k in dst_state.keys():
for k_ex in excludes:
if k.startswith(k_ex):
logging.info(f"key: {{k}} matching: {k_ex}, excluded")
continue
k_src = k
if scope_map is not None:
@ -92,25 +73,25 @@ def load_pretrained_model(
if dst_prefix == "" and (src_prefix + k) in src_state.keys():
k_src = src_prefix + k
if not k_src.startswith("module."):
print(f"init param, map: {k} from {k_src} in ckpt")
logging.info(f"init param, map: {k} from {k_src} in ckpt")
elif (
k.startswith(dst_prefix)
and k.replace(dst_prefix, src_prefix, 1) in src_state.keys()
):
k_src = k.replace(dst_prefix, src_prefix, 1)
if not k_src.startswith("module."):
print(f"init param, map: {k} from {k_src} in ckpt")
logging.info(f"init param, map: {k} from {k_src} in ckpt")
if k_src in src_state.keys():
if ignore_init_mismatch and dst_state[k].shape != src_state[k_src].shape:
print(
logging.info(
f"ignore_init_mismatch:{ignore_init_mismatch}, dst: {k, dst_state[k].shape}, src: {k_src, src_state[k_src].shape}"
)
else:
dst_state[k] = src_state[k_src]
else:
print(f"Warning, miss key in ckpt: {k}, mapped: {k_src}")
logging.info(f"Warning, miss key in ckpt: {k}, mapped: {k_src}")
flag = obj.load_state_dict(dst_state, strict=True)
# print(flag)
logging.info(f"Loading ckpt: {path}, status: {flag}")