mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
update egs_modelscope recipe
This commit is contained in:
parent
d1cde93914
commit
ba7d7a3628
@ -8,9 +8,14 @@ from modelscope.utils.constant import Tasks
|
||||
from funasr.utils.compute_wer import compute_wer
|
||||
|
||||
|
||||
def modelscope_infer_core(output_dir, split_dir, njob, idx):
|
||||
def modelscope_infer_core(output_dir, split_dir, njob, idx, batch_size, ngpu, model):
|
||||
output_dir_job = os.path.join(output_dir, "output.{}".format(idx))
|
||||
gpu_id = (int(idx) - 1) // njob
|
||||
if ngpu > 0:
|
||||
use_gpu = 1
|
||||
gpu_id = int(idx) - 1
|
||||
else:
|
||||
use_gpu = 0
|
||||
gpu_id = -1
|
||||
if "CUDA_VISIBLE_DEVICES" in os.environ.keys():
|
||||
gpu_list = os.environ['CUDA_VISIBLE_DEVICES'].split(",")
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_list[gpu_id])
|
||||
@ -18,9 +23,10 @@ def modelscope_infer_core(output_dir, split_dir, njob, idx):
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id)
|
||||
inference_pipline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-aishell1-vocab8404-pytorch",
|
||||
model=model,
|
||||
output_dir=output_dir_job,
|
||||
batch_size=64
|
||||
batch_size=batch_size,
|
||||
ngpu=use_gpu,
|
||||
)
|
||||
audio_in = os.path.join(split_dir, "wav.{}.scp".format(idx))
|
||||
inference_pipline(audio_in=audio_in)
|
||||
@ -30,13 +36,18 @@ def modelscope_infer(params):
|
||||
# prepare for multi-GPU decoding
|
||||
ngpu = params["ngpu"]
|
||||
njob = params["njob"]
|
||||
batch_size = params["batch_size"]
|
||||
output_dir = params["output_dir"]
|
||||
model = params["model"]
|
||||
if os.path.exists(output_dir):
|
||||
shutil.rmtree(output_dir)
|
||||
os.mkdir(output_dir)
|
||||
split_dir = os.path.join(output_dir, "split")
|
||||
os.mkdir(split_dir)
|
||||
nj = ngpu * njob
|
||||
if ngpu > 0:
|
||||
nj = ngpu
|
||||
elif ngpu == 0:
|
||||
nj = njob
|
||||
wav_scp_file = os.path.join(params["data_dir"], "wav.scp")
|
||||
with open(wav_scp_file) as f:
|
||||
lines = f.readlines()
|
||||
@ -56,7 +67,7 @@ def modelscope_infer(params):
|
||||
p = Pool(nj)
|
||||
for i in range(nj):
|
||||
p.apply_async(modelscope_infer_core,
|
||||
args=(output_dir, split_dir, njob, str(i + 1)))
|
||||
args=(output_dir, split_dir, njob, str(i + 1), batch_size, ngpu, model))
|
||||
p.close()
|
||||
p.join()
|
||||
|
||||
@ -81,8 +92,10 @@ def modelscope_infer(params):
|
||||
|
||||
if __name__ == "__main__":
|
||||
params = {}
|
||||
params["model"] = "damo/speech_paraformer-large_asr_nat-zh-cn-16k-aishell1-vocab8404-pytorch"
|
||||
params["data_dir"] = "./data/test"
|
||||
params["output_dir"] = "./results"
|
||||
params["ngpu"] = 1
|
||||
params["njob"] = 1
|
||||
modelscope_infer(params)
|
||||
params["ngpu"] = 1 # if ngpu > 0, will use gpu decoding
|
||||
params["njob"] = 1 # if ngpu = 0, will use cpu decoding
|
||||
params["batch_size"] = 64
|
||||
modelscope_infer(params)
|
||||
@ -4,23 +4,18 @@ import shutil
|
||||
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
from modelscope.hub.snapshot_download import snapshot_download
|
||||
|
||||
from funasr.utils.compute_wer import compute_wer
|
||||
|
||||
|
||||
def modelscope_infer_after_finetune(params):
|
||||
# prepare for decoding
|
||||
pretrained_model_path = os.path.join(os.environ["HOME"], ".cache/modelscope/hub", params["modelscope_model_name"])
|
||||
for file_name in params["required_files"]:
|
||||
if file_name == "configuration.json":
|
||||
with open(os.path.join(pretrained_model_path, file_name)) as f:
|
||||
config_dict = json.load(f)
|
||||
config_dict["model"]["am_model_name"] = params["decoding_model_name"]
|
||||
with open(os.path.join(params["output_dir"], "configuration.json"), "w") as f:
|
||||
json.dump(config_dict, f, indent=4, separators=(',', ': '))
|
||||
else:
|
||||
shutil.copy(os.path.join(pretrained_model_path, file_name),
|
||||
os.path.join(params["output_dir"], file_name))
|
||||
|
||||
try:
|
||||
pretrained_model_path = snapshot_download(params["modelscope_model_name"], cache_dir=params["output_dir"])
|
||||
except BaseException:
|
||||
raise BaseException(f"Please download pretrain model from ModelScope firstly.")
|
||||
shutil.copy(os.path.join(params["output_dir"], params["decoding_model_name"]), os.path.join(pretrained_model_path, "model.pb"))
|
||||
decoding_path = os.path.join(params["output_dir"], "decode_results")
|
||||
if os.path.exists(decoding_path):
|
||||
shutil.rmtree(decoding_path)
|
||||
@ -29,9 +24,9 @@ def modelscope_infer_after_finetune(params):
|
||||
# decoding
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model=params["output_dir"],
|
||||
model=pretrained_model_path,
|
||||
output_dir=decoding_path,
|
||||
batch_size=64
|
||||
batch_size=params["batch_size"]
|
||||
)
|
||||
audio_in = os.path.join(params["data_dir"], "wav.scp")
|
||||
inference_pipeline(audio_in=audio_in)
|
||||
@ -46,8 +41,8 @@ def modelscope_infer_after_finetune(params):
|
||||
if __name__ == '__main__':
|
||||
params = {}
|
||||
params["modelscope_model_name"] = "damo/speech_paraformer-large_asr_nat-zh-cn-16k-aishell1-vocab8404-pytorch"
|
||||
params["required_files"] = ["am.mvn", "decoding.yaml", "configuration.json"]
|
||||
params["output_dir"] = "./checkpoint"
|
||||
params["data_dir"] = "./data/test"
|
||||
params["decoding_model_name"] = "valid.acc.ave_10best.pb"
|
||||
modelscope_infer_after_finetune(params)
|
||||
params["batch_size"] = 64
|
||||
modelscope_infer_after_finetune(params)
|
||||
@ -8,9 +8,14 @@ from modelscope.utils.constant import Tasks
|
||||
from funasr.utils.compute_wer import compute_wer
|
||||
|
||||
|
||||
def modelscope_infer_core(output_dir, split_dir, njob, idx):
|
||||
def modelscope_infer_core(output_dir, split_dir, njob, idx, batch_size, ngpu, model):
|
||||
output_dir_job = os.path.join(output_dir, "output.{}".format(idx))
|
||||
gpu_id = (int(idx) - 1) // njob
|
||||
if ngpu > 0:
|
||||
use_gpu = 1
|
||||
gpu_id = int(idx) - 1
|
||||
else:
|
||||
use_gpu = 0
|
||||
gpu_id = -1
|
||||
if "CUDA_VISIBLE_DEVICES" in os.environ.keys():
|
||||
gpu_list = os.environ['CUDA_VISIBLE_DEVICES'].split(",")
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_list[gpu_id])
|
||||
@ -18,9 +23,10 @@ def modelscope_infer_core(output_dir, split_dir, njob, idx):
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id)
|
||||
inference_pipline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-aishell2-vocab8404-pytorch",
|
||||
model=model,
|
||||
output_dir=output_dir_job,
|
||||
batch_size=64
|
||||
batch_size=batch_size,
|
||||
ngpu=use_gpu,
|
||||
)
|
||||
audio_in = os.path.join(split_dir, "wav.{}.scp".format(idx))
|
||||
inference_pipline(audio_in=audio_in)
|
||||
@ -30,13 +36,18 @@ def modelscope_infer(params):
|
||||
# prepare for multi-GPU decoding
|
||||
ngpu = params["ngpu"]
|
||||
njob = params["njob"]
|
||||
batch_size = params["batch_size"]
|
||||
output_dir = params["output_dir"]
|
||||
model = params["model"]
|
||||
if os.path.exists(output_dir):
|
||||
shutil.rmtree(output_dir)
|
||||
os.mkdir(output_dir)
|
||||
split_dir = os.path.join(output_dir, "split")
|
||||
os.mkdir(split_dir)
|
||||
nj = ngpu * njob
|
||||
if ngpu > 0:
|
||||
nj = ngpu
|
||||
elif ngpu == 0:
|
||||
nj = njob
|
||||
wav_scp_file = os.path.join(params["data_dir"], "wav.scp")
|
||||
with open(wav_scp_file) as f:
|
||||
lines = f.readlines()
|
||||
@ -56,7 +67,7 @@ def modelscope_infer(params):
|
||||
p = Pool(nj)
|
||||
for i in range(nj):
|
||||
p.apply_async(modelscope_infer_core,
|
||||
args=(output_dir, split_dir, njob, str(i + 1)))
|
||||
args=(output_dir, split_dir, njob, str(i + 1), batch_size, ngpu, model))
|
||||
p.close()
|
||||
p.join()
|
||||
|
||||
@ -81,8 +92,10 @@ def modelscope_infer(params):
|
||||
|
||||
if __name__ == "__main__":
|
||||
params = {}
|
||||
params["model"] = "damo/speech_paraformer-large_asr_nat-zh-cn-16k-aishell2-vocab8404-pytorch"
|
||||
params["data_dir"] = "./data/test"
|
||||
params["output_dir"] = "./results"
|
||||
params["ngpu"] = 1
|
||||
params["njob"] = 1
|
||||
modelscope_infer(params)
|
||||
params["ngpu"] = 1 # if ngpu > 0, will use gpu decoding
|
||||
params["njob"] = 1 # if ngpu = 0, will use cpu decoding
|
||||
params["batch_size"] = 64
|
||||
modelscope_infer(params)
|
||||
@ -4,23 +4,18 @@ import shutil
|
||||
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
from modelscope.hub.snapshot_download import snapshot_download
|
||||
|
||||
from funasr.utils.compute_wer import compute_wer
|
||||
|
||||
|
||||
def modelscope_infer_after_finetune(params):
|
||||
# prepare for decoding
|
||||
pretrained_model_path = os.path.join(os.environ["HOME"], ".cache/modelscope/hub", params["modelscope_model_name"])
|
||||
for file_name in params["required_files"]:
|
||||
if file_name == "configuration.json":
|
||||
with open(os.path.join(pretrained_model_path, file_name)) as f:
|
||||
config_dict = json.load(f)
|
||||
config_dict["model"]["am_model_name"] = params["decoding_model_name"]
|
||||
with open(os.path.join(params["output_dir"], "configuration.json"), "w") as f:
|
||||
json.dump(config_dict, f, indent=4, separators=(',', ': '))
|
||||
else:
|
||||
shutil.copy(os.path.join(pretrained_model_path, file_name),
|
||||
os.path.join(params["output_dir"], file_name))
|
||||
|
||||
try:
|
||||
pretrained_model_path = snapshot_download(params["modelscope_model_name"], cache_dir=params["output_dir"])
|
||||
except BaseException:
|
||||
raise BaseException(f"Please download pretrain model from ModelScope firstly.")
|
||||
shutil.copy(os.path.join(params["output_dir"], params["decoding_model_name"]), os.path.join(pretrained_model_path, "model.pb"))
|
||||
decoding_path = os.path.join(params["output_dir"], "decode_results")
|
||||
if os.path.exists(decoding_path):
|
||||
shutil.rmtree(decoding_path)
|
||||
@ -29,9 +24,9 @@ def modelscope_infer_after_finetune(params):
|
||||
# decoding
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model=params["output_dir"],
|
||||
model=pretrained_model_path,
|
||||
output_dir=decoding_path,
|
||||
batch_size=64
|
||||
batch_size=params["batch_size"]
|
||||
)
|
||||
audio_in = os.path.join(params["data_dir"], "wav.scp")
|
||||
inference_pipeline(audio_in=audio_in)
|
||||
@ -46,8 +41,8 @@ def modelscope_infer_after_finetune(params):
|
||||
if __name__ == '__main__':
|
||||
params = {}
|
||||
params["modelscope_model_name"] = "damo/speech_paraformer-large_asr_nat-zh-cn-16k-aishell2-vocab8404-pytorch"
|
||||
params["required_files"] = ["am.mvn", "decoding.yaml", "configuration.json"]
|
||||
params["output_dir"] = "./checkpoint"
|
||||
params["data_dir"] = "./data/test"
|
||||
params["decoding_model_name"] = "valid.acc.ave_10best.pb"
|
||||
modelscope_infer_after_finetune(params)
|
||||
params["batch_size"] = 64
|
||||
modelscope_infer_after_finetune(params)
|
||||
@ -22,10 +22,12 @@
|
||||
Or you can use the finetuned model for inference directly.
|
||||
|
||||
- Setting parameters in `infer.py`
|
||||
- <strong>model:</strong> # model name on ModelScope
|
||||
- <strong>data_dir:</strong> # the dataset dir needs to include `test/wav.scp`. If `test/text` is also exists, CER will be computed
|
||||
- <strong>output_dir:</strong> # result dir
|
||||
- <strong>ngpu:</strong> # the number of GPUs for decoding
|
||||
- <strong>njob:</strong> # the number of jobs for each GPU
|
||||
- <strong>ngpu:</strong> # the number of GPUs for decoding, if `ngpu` > 0, use GPU decoding
|
||||
- <strong>njob:</strong> # the number of jobs for CPU decoding, if `ngpu` = 0, use CPU decoding, please set `njob`
|
||||
- <strong>batch_size:</strong> # batchsize of inference
|
||||
|
||||
- Then you can run the pipeline to infer with:
|
||||
```python
|
||||
@ -39,9 +41,11 @@ The decoding results can be found in `$output_dir/1best_recog/text.cer`, which i
|
||||
### Inference using local finetuned model
|
||||
|
||||
- Modify inference related parameters in `infer_after_finetune.py`
|
||||
- <strong>modelscope_model_name: </strong> # model name on ModelScope
|
||||
- <strong>output_dir:</strong> # result dir
|
||||
- <strong>data_dir:</strong> # the dataset dir needs to include `test/wav.scp`. If `test/text` is also exists, CER will be computed
|
||||
- <strong>decoding_model_name:</strong> # set the checkpoint name for decoding, e.g., `valid.cer_ctc.ave.pb`
|
||||
- <strong>batch_size:</strong> # batchsize of inference
|
||||
|
||||
- Then you can run the pipeline to finetune with:
|
||||
```python
|
||||
|
||||
@ -8,9 +8,14 @@ from modelscope.utils.constant import Tasks
|
||||
from funasr.utils.compute_wer import compute_wer
|
||||
|
||||
|
||||
def modelscope_infer_core(output_dir, split_dir, njob, idx):
|
||||
def modelscope_infer_core(output_dir, split_dir, njob, idx, batch_size, ngpu, model):
|
||||
output_dir_job = os.path.join(output_dir, "output.{}".format(idx))
|
||||
gpu_id = (int(idx) - 1) // njob
|
||||
if ngpu > 0:
|
||||
use_gpu = 1
|
||||
gpu_id = int(idx) - 1
|
||||
else:
|
||||
use_gpu = 0
|
||||
gpu_id = -1
|
||||
if "CUDA_VISIBLE_DEVICES" in os.environ.keys():
|
||||
gpu_list = os.environ['CUDA_VISIBLE_DEVICES'].split(",")
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_list[gpu_id])
|
||||
@ -18,9 +23,10 @@ def modelscope_infer_core(output_dir, split_dir, njob, idx):
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id)
|
||||
inference_pipline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
|
||||
model=model,
|
||||
output_dir=output_dir_job,
|
||||
batch_size=64
|
||||
batch_size=batch_size,
|
||||
ngpu=use_gpu,
|
||||
)
|
||||
audio_in = os.path.join(split_dir, "wav.{}.scp".format(idx))
|
||||
inference_pipline(audio_in=audio_in)
|
||||
@ -30,13 +36,18 @@ def modelscope_infer(params):
|
||||
# prepare for multi-GPU decoding
|
||||
ngpu = params["ngpu"]
|
||||
njob = params["njob"]
|
||||
batch_size = params["batch_size"]
|
||||
output_dir = params["output_dir"]
|
||||
model = params["model"]
|
||||
if os.path.exists(output_dir):
|
||||
shutil.rmtree(output_dir)
|
||||
os.mkdir(output_dir)
|
||||
split_dir = os.path.join(output_dir, "split")
|
||||
os.mkdir(split_dir)
|
||||
nj = ngpu * njob
|
||||
if ngpu > 0:
|
||||
nj = ngpu
|
||||
elif ngpu == 0:
|
||||
nj = njob
|
||||
wav_scp_file = os.path.join(params["data_dir"], "wav.scp")
|
||||
with open(wav_scp_file) as f:
|
||||
lines = f.readlines()
|
||||
@ -56,7 +67,7 @@ def modelscope_infer(params):
|
||||
p = Pool(nj)
|
||||
for i in range(nj):
|
||||
p.apply_async(modelscope_infer_core,
|
||||
args=(output_dir, split_dir, njob, str(i + 1)))
|
||||
args=(output_dir, split_dir, njob, str(i + 1), batch_size, ngpu, model))
|
||||
p.close()
|
||||
p.join()
|
||||
|
||||
@ -81,8 +92,10 @@ def modelscope_infer(params):
|
||||
|
||||
if __name__ == "__main__":
|
||||
params = {}
|
||||
params["model"] = "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
|
||||
params["data_dir"] = "./data/test"
|
||||
params["output_dir"] = "./results"
|
||||
params["ngpu"] = 1
|
||||
params["njob"] = 1
|
||||
modelscope_infer(params)
|
||||
params["ngpu"] = 1 # if ngpu > 0, will use gpu decoding
|
||||
params["njob"] = 1 # if ngpu = 0, will use cpu decoding
|
||||
params["batch_size"] = 64
|
||||
modelscope_infer(params)
|
||||
@ -4,23 +4,18 @@ import shutil
|
||||
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
from modelscope.hub.snapshot_download import snapshot_download
|
||||
|
||||
from funasr.utils.compute_wer import compute_wer
|
||||
|
||||
|
||||
def modelscope_infer_after_finetune(params):
|
||||
# prepare for decoding
|
||||
pretrained_model_path = os.path.join(os.environ["HOME"], ".cache/modelscope/hub", params["modelscope_model_name"])
|
||||
for file_name in params["required_files"]:
|
||||
if file_name == "configuration.json":
|
||||
with open(os.path.join(pretrained_model_path, file_name)) as f:
|
||||
config_dict = json.load(f)
|
||||
config_dict["model"]["am_model_name"] = params["decoding_model_name"]
|
||||
with open(os.path.join(params["output_dir"], "configuration.json"), "w") as f:
|
||||
json.dump(config_dict, f, indent=4, separators=(',', ': '))
|
||||
else:
|
||||
shutil.copy(os.path.join(pretrained_model_path, file_name),
|
||||
os.path.join(params["output_dir"], file_name))
|
||||
|
||||
try:
|
||||
pretrained_model_path = snapshot_download(params["modelscope_model_name"], cache_dir=params["output_dir"])
|
||||
except BaseException:
|
||||
raise BaseException(f"Please download pretrain model from ModelScope firstly.")
|
||||
shutil.copy(os.path.join(params["output_dir"], params["decoding_model_name"]), os.path.join(pretrained_model_path, "model.pb"))
|
||||
decoding_path = os.path.join(params["output_dir"], "decode_results")
|
||||
if os.path.exists(decoding_path):
|
||||
shutil.rmtree(decoding_path)
|
||||
@ -29,9 +24,9 @@ def modelscope_infer_after_finetune(params):
|
||||
# decoding
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model=params["output_dir"],
|
||||
model=pretrained_model_path,
|
||||
output_dir=decoding_path,
|
||||
batch_size=64
|
||||
batch_size=params["batch_size"]
|
||||
)
|
||||
audio_in = os.path.join(params["data_dir"], "wav.scp")
|
||||
inference_pipeline(audio_in=audio_in)
|
||||
@ -46,8 +41,8 @@ def modelscope_infer_after_finetune(params):
|
||||
if __name__ == '__main__':
|
||||
params = {}
|
||||
params["modelscope_model_name"] = "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
|
||||
params["required_files"] = ["am.mvn", "decoding.yaml", "configuration.json"]
|
||||
params["output_dir"] = "./checkpoint"
|
||||
params["data_dir"] = "./data/test"
|
||||
params["decoding_model_name"] = "valid.acc.ave_10best.pb"
|
||||
modelscope_infer_after_finetune(params)
|
||||
params["batch_size"] = 64
|
||||
modelscope_infer_after_finetune(params)
|
||||
@ -8,9 +8,14 @@ from modelscope.utils.constant import Tasks
|
||||
from funasr.utils.compute_wer import compute_wer
|
||||
|
||||
|
||||
def modelscope_infer_core(output_dir, split_dir, njob, idx):
|
||||
def modelscope_infer_core(output_dir, split_dir, njob, idx, batch_size, ngpu, model):
|
||||
output_dir_job = os.path.join(output_dir, "output.{}".format(idx))
|
||||
gpu_id = (int(idx) - 1) // njob
|
||||
if ngpu > 0:
|
||||
use_gpu = 1
|
||||
gpu_id = int(idx) - 1
|
||||
else:
|
||||
use_gpu = 0
|
||||
gpu_id = -1
|
||||
if "CUDA_VISIBLE_DEVICES" in os.environ.keys():
|
||||
gpu_list = os.environ['CUDA_VISIBLE_DEVICES'].split(",")
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_list[gpu_id])
|
||||
@ -18,9 +23,10 @@ def modelscope_infer_core(output_dir, split_dir, njob, idx):
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id)
|
||||
inference_pipline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model="damo/speech_paraformer_asr_nat-zh-cn-8k-common-vocab8358-tensorflow1",
|
||||
model=model,
|
||||
output_dir=output_dir_job,
|
||||
batch_size=64
|
||||
batch_size=batch_size,
|
||||
ngpu=use_gpu,
|
||||
)
|
||||
audio_in = os.path.join(split_dir, "wav.{}.scp".format(idx))
|
||||
inference_pipline(audio_in=audio_in)
|
||||
@ -30,13 +36,18 @@ def modelscope_infer(params):
|
||||
# prepare for multi-GPU decoding
|
||||
ngpu = params["ngpu"]
|
||||
njob = params["njob"]
|
||||
batch_size = params["batch_size"]
|
||||
output_dir = params["output_dir"]
|
||||
model = params["model"]
|
||||
if os.path.exists(output_dir):
|
||||
shutil.rmtree(output_dir)
|
||||
os.mkdir(output_dir)
|
||||
split_dir = os.path.join(output_dir, "split")
|
||||
os.mkdir(split_dir)
|
||||
nj = ngpu * njob
|
||||
if ngpu > 0:
|
||||
nj = ngpu
|
||||
elif ngpu == 0:
|
||||
nj = njob
|
||||
wav_scp_file = os.path.join(params["data_dir"], "wav.scp")
|
||||
with open(wav_scp_file) as f:
|
||||
lines = f.readlines()
|
||||
@ -56,7 +67,7 @@ def modelscope_infer(params):
|
||||
p = Pool(nj)
|
||||
for i in range(nj):
|
||||
p.apply_async(modelscope_infer_core,
|
||||
args=(output_dir, split_dir, njob, str(i + 1)))
|
||||
args=(output_dir, split_dir, njob, str(i + 1), batch_size, ngpu, model))
|
||||
p.close()
|
||||
p.join()
|
||||
|
||||
@ -81,8 +92,10 @@ def modelscope_infer(params):
|
||||
|
||||
if __name__ == "__main__":
|
||||
params = {}
|
||||
params["model"] = "damo/speech_paraformer_asr_nat-zh-cn-8k-common-vocab8358-tensorflow1"
|
||||
params["data_dir"] = "./data/test"
|
||||
params["output_dir"] = "./results"
|
||||
params["ngpu"] = 1
|
||||
params["njob"] = 1
|
||||
modelscope_infer(params)
|
||||
params["ngpu"] = 1 # if ngpu > 0, will use gpu decoding
|
||||
params["njob"] = 1 # if ngpu = 0, will use cpu decoding
|
||||
params["batch_size"] = 64
|
||||
modelscope_infer(params)
|
||||
@ -4,23 +4,18 @@ import shutil
|
||||
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
from modelscope.hub.snapshot_download import snapshot_download
|
||||
|
||||
from funasr.utils.compute_wer import compute_wer
|
||||
|
||||
|
||||
def modelscope_infer_after_finetune(params):
|
||||
# prepare for decoding
|
||||
pretrained_model_path = os.path.join(os.environ["HOME"], ".cache/modelscope/hub", params["modelscope_model_name"])
|
||||
for file_name in params["required_files"]:
|
||||
if file_name == "configuration.json":
|
||||
with open(os.path.join(pretrained_model_path, file_name)) as f:
|
||||
config_dict = json.load(f)
|
||||
config_dict["model"]["am_model_name"] = params["decoding_model_name"]
|
||||
with open(os.path.join(params["output_dir"], "configuration.json"), "w") as f:
|
||||
json.dump(config_dict, f, indent=4, separators=(',', ': '))
|
||||
else:
|
||||
shutil.copy(os.path.join(pretrained_model_path, file_name),
|
||||
os.path.join(params["output_dir"], file_name))
|
||||
|
||||
try:
|
||||
pretrained_model_path = snapshot_download(params["modelscope_model_name"], cache_dir=params["output_dir"])
|
||||
except BaseException:
|
||||
raise BaseException(f"Please download pretrain model from ModelScope firstly.")
|
||||
shutil.copy(os.path.join(params["output_dir"], params["decoding_model_name"]), os.path.join(pretrained_model_path, "model.pb"))
|
||||
decoding_path = os.path.join(params["output_dir"], "decode_results")
|
||||
if os.path.exists(decoding_path):
|
||||
shutil.rmtree(decoding_path)
|
||||
@ -29,9 +24,9 @@ def modelscope_infer_after_finetune(params):
|
||||
# decoding
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model=params["output_dir"],
|
||||
model=pretrained_model_path,
|
||||
output_dir=decoding_path,
|
||||
batch_size=64
|
||||
batch_size=params["batch_size"]
|
||||
)
|
||||
audio_in = os.path.join(params["data_dir"], "wav.scp")
|
||||
inference_pipeline(audio_in=audio_in)
|
||||
@ -46,8 +41,8 @@ def modelscope_infer_after_finetune(params):
|
||||
if __name__ == '__main__':
|
||||
params = {}
|
||||
params["modelscope_model_name"] = "damo/speech_paraformer_asr_nat-zh-cn-8k-common-vocab8358-tensorflow1"
|
||||
params["required_files"] = ["am.mvn", "decoding.yaml", "configuration.json"]
|
||||
params["output_dir"] = "./checkpoint"
|
||||
params["data_dir"] = "./data/test"
|
||||
params["decoding_model_name"] = "valid.acc.ave_10best.pb"
|
||||
modelscope_infer_after_finetune(params)
|
||||
params["batch_size"] = 64
|
||||
modelscope_infer_after_finetune(params)
|
||||
@ -4,27 +4,17 @@ import shutil
|
||||
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
from modelscope.hub.snapshot_download import snapshot_download
|
||||
|
||||
from funasr.utils.compute_wer import compute_wer
|
||||
|
||||
|
||||
def modelscope_infer_after_finetune(params):
|
||||
# prepare for decoding
|
||||
if not os.path.exists(os.path.join(params["output_dir"], "punc")):
|
||||
os.makedirs(os.path.join(params["output_dir"], "punc"))
|
||||
if not os.path.exists(os.path.join(params["output_dir"], "vad")):
|
||||
os.makedirs(os.path.join(params["output_dir"], "vad"))
|
||||
pretrained_model_path = os.path.join(os.environ["HOME"], ".cache/modelscope/hub", params["modelscope_model_name"])
|
||||
for file_name in params["required_files"]:
|
||||
if file_name == "configuration.json":
|
||||
with open(os.path.join(pretrained_model_path, file_name)) as f:
|
||||
config_dict = json.load(f)
|
||||
config_dict["model"]["am_model_name"] = params["decoding_model_name"]
|
||||
with open(os.path.join(params["output_dir"], "configuration.json"), "w") as f:
|
||||
json.dump(config_dict, f, indent=4, separators=(',', ': '))
|
||||
else:
|
||||
shutil.copy(os.path.join(pretrained_model_path, file_name),
|
||||
os.path.join(params["output_dir"], file_name))
|
||||
|
||||
try:
|
||||
pretrained_model_path = snapshot_download(params["modelscope_model_name"], cache_dir=params["output_dir"])
|
||||
except BaseException:
|
||||
raise BaseException(f"Please download pretrain model from ModelScope firstly.")shutil.copy(os.path.join(params["output_dir"], params["decoding_model_name"]), os.path.join(pretrained_model_path, "model.pb"))
|
||||
decoding_path = os.path.join(params["output_dir"], "decode_results")
|
||||
if os.path.exists(decoding_path):
|
||||
shutil.rmtree(decoding_path)
|
||||
@ -33,16 +23,16 @@ def modelscope_infer_after_finetune(params):
|
||||
# decoding
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model=params["output_dir"],
|
||||
model=pretrained_model_path,
|
||||
output_dir=decoding_path,
|
||||
batch_size=64
|
||||
batch_size=params["batch_size"]
|
||||
)
|
||||
audio_in = os.path.join(params["data_dir"], "wav.scp")
|
||||
inference_pipeline(audio_in=audio_in)
|
||||
|
||||
# computer CER if GT text is set
|
||||
text_in = os.path.join(params["data_dir"], "text")
|
||||
if text_in is not None:
|
||||
if os.path.exists(text_in):
|
||||
text_proc_file = os.path.join(decoding_path, "1best_recog/token")
|
||||
compute_wer(text_in, text_proc_file, os.path.join(decoding_path, "text.cer"))
|
||||
|
||||
@ -50,8 +40,8 @@ def modelscope_infer_after_finetune(params):
|
||||
if __name__ == '__main__':
|
||||
params = {}
|
||||
params["modelscope_model_name"] = "damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
|
||||
params["required_files"] = ["am.mvn", "decoding.yaml", "configuration.json", "punc/punc.pb", "punc/punc.yaml", "vad/vad.mvn", "vad/vad.pb", "vad/vad.yaml"]
|
||||
params["output_dir"] = "./checkpoint"
|
||||
params["data_dir"] = "./data/test"
|
||||
params["decoding_model_name"] = "valid.acc.ave_10best.pb"
|
||||
modelscope_infer_after_finetune(params)
|
||||
params["batch_size"] = 64
|
||||
modelscope_infer_after_finetune(params)
|
||||
Loading…
Reference in New Issue
Block a user