mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
update demo, readme
This commit is contained in:
parent
948b68774c
commit
b7cb19b01a
24
README.md
24
README.md
@ -95,9 +95,9 @@ model = AutoModel(model="paraformer-zh", model_revision="v2.0.2", \
|
|||||||
vad_model="fsmn-vad", vad_model_revision="v2.0.2", \
|
vad_model="fsmn-vad", vad_model_revision="v2.0.2", \
|
||||||
punc_model="ct-punc-c", punc_model_revision="v2.0.2", \
|
punc_model="ct-punc-c", punc_model_revision="v2.0.2", \
|
||||||
spk_model="cam++", spk_model_revision="v2.0.2")
|
spk_model="cam++", spk_model_revision="v2.0.2")
|
||||||
res = model(input=f"{model.model_path}/example/asr_example.wav",
|
res = model.generate(input=f"{model.model_path}/example/asr_example.wav",
|
||||||
batch_size=64,
|
batch_size=64,
|
||||||
hotword='魔搭')
|
hotword='魔搭')
|
||||||
print(res)
|
print(res)
|
||||||
```
|
```
|
||||||
Note: `model_hub`: represents the model repository, `ms` stands for selecting ModelScope download, `hf` stands for selecting Huggingface download.
|
Note: `model_hub`: represents the model repository, `ms` stands for selecting ModelScope download, `hf` stands for selecting Huggingface download.
|
||||||
@ -124,7 +124,7 @@ total_chunk_num = int(len((speech)-1)/chunk_stride+1)
|
|||||||
for i in range(total_chunk_num):
|
for i in range(total_chunk_num):
|
||||||
speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride]
|
speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride]
|
||||||
is_final = i == total_chunk_num - 1
|
is_final = i == total_chunk_num - 1
|
||||||
res = model(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size, encoder_chunk_look_back=encoder_chunk_look_back, decoder_chunk_look_back=decoder_chunk_look_back)
|
res = model.generate(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size, encoder_chunk_look_back=encoder_chunk_look_back, decoder_chunk_look_back=decoder_chunk_look_back)
|
||||||
print(res)
|
print(res)
|
||||||
```
|
```
|
||||||
Note: `chunk_size` is the configuration for streaming latency.` [0,10,5]` indicates that the real-time display granularity is `10*60=600ms`, and the lookahead information is `5*60=300ms`. Each inference input is `600ms` (sample points are `16000*0.6=960`), and the output is the corresponding text. For the last speech segment input, `is_final=True` needs to be set to force the output of the last word.
|
Note: `chunk_size` is the configuration for streaming latency.` [0,10,5]` indicates that the real-time display granularity is `10*60=600ms`, and the lookahead information is `5*60=300ms`. Each inference input is `600ms` (sample points are `16000*0.6=960`), and the output is the corresponding text. For the last speech segment input, `is_final=True` needs to be set to force the output of the last word.
|
||||||
@ -135,7 +135,7 @@ from funasr import AutoModel
|
|||||||
|
|
||||||
model = AutoModel(model="fsmn-vad", model_revision="v2.0.2")
|
model = AutoModel(model="fsmn-vad", model_revision="v2.0.2")
|
||||||
wav_file = f"{model.model_path}/example/asr_example.wav"
|
wav_file = f"{model.model_path}/example/asr_example.wav"
|
||||||
res = model(input=wav_file)
|
res = model.generate(input=wav_file)
|
||||||
print(res)
|
print(res)
|
||||||
```
|
```
|
||||||
### Voice Activity Detection (Non-streaming)
|
### Voice Activity Detection (Non-streaming)
|
||||||
@ -156,7 +156,7 @@ total_chunk_num = int(len((speech)-1)/chunk_stride+1)
|
|||||||
for i in range(total_chunk_num):
|
for i in range(total_chunk_num):
|
||||||
speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride]
|
speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride]
|
||||||
is_final = i == total_chunk_num - 1
|
is_final = i == total_chunk_num - 1
|
||||||
res = model(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size)
|
res = model.generate(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size)
|
||||||
if len(res[0]["value"]):
|
if len(res[0]["value"]):
|
||||||
print(res)
|
print(res)
|
||||||
```
|
```
|
||||||
@ -165,7 +165,7 @@ for i in range(total_chunk_num):
|
|||||||
from funasr import AutoModel
|
from funasr import AutoModel
|
||||||
|
|
||||||
model = AutoModel(model="ct-punc", model_revision="v2.0.2")
|
model = AutoModel(model="ct-punc", model_revision="v2.0.2")
|
||||||
res = model(input="那今天的会就到这里吧 happy new year 明年见")
|
res = model.generate(input="那今天的会就到这里吧 happy new year 明年见")
|
||||||
print(res)
|
print(res)
|
||||||
```
|
```
|
||||||
### Timestamp Prediction
|
### Timestamp Prediction
|
||||||
@ -175,7 +175,7 @@ from funasr import AutoModel
|
|||||||
model = AutoModel(model="fa-zh", model_revision="v2.0.2")
|
model = AutoModel(model="fa-zh", model_revision="v2.0.2")
|
||||||
wav_file = f"{model.model_path}/example/asr_example.wav"
|
wav_file = f"{model.model_path}/example/asr_example.wav"
|
||||||
text_file = f"{model.model_path}/example/text.txt"
|
text_file = f"{model.model_path}/example/text.txt"
|
||||||
res = model(input=(wav_file, text_file), data_type=("sound", "text"))
|
res = model.generate(input=(wav_file, text_file), data_type=("sound", "text"))
|
||||||
print(res)
|
print(res)
|
||||||
```
|
```
|
||||||
[//]: # (FunASR supports inference and fine-tuning of models trained on industrial datasets of tens of thousands of hours. For more details, please refer to ([modelscope_egs](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_pipeline/quick_start.html)). It also supports training and fine-tuning of models on academic standard datasets. For more details, please refer to([egs](https://alibaba-damo-academy.github.io/FunASR/en/academic_recipe/asr_recipe.html)). The models include speech recognition (ASR), speech activity detection (VAD), punctuation recovery, language model, speaker verification, speaker separation, and multi-party conversation speech recognition. For a detailed list of models, please refer to the [Model Zoo](https://github.com/alibaba-damo-academy/FunASR/blob/main/docs/model_zoo/modelscope_models.md):)
|
[//]: # (FunASR supports inference and fine-tuning of models trained on industrial datasets of tens of thousands of hours. For more details, please refer to ([modelscope_egs](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_pipeline/quick_start.html)). It also supports training and fine-tuning of models on academic standard datasets. For more details, please refer to([egs](https://alibaba-damo-academy.github.io/FunASR/en/academic_recipe/asr_recipe.html)). The models include speech recognition (ASR), speech activity detection (VAD), punctuation recovery, language model, speaker verification, speaker separation, and multi-party conversation speech recognition. For a detailed list of models, please refer to the [Model Zoo](https://github.com/alibaba-damo-academy/FunASR/blob/main/docs/model_zoo/modelscope_models.md):)
|
||||||
@ -229,10 +229,16 @@ The use of pretraining model is subject to [model license](./MODEL_LICENSE)
|
|||||||
}
|
}
|
||||||
@inproceedings{gao22b_interspeech,
|
@inproceedings{gao22b_interspeech,
|
||||||
author={Zhifu Gao and ShiLiang Zhang and Ian McLoughlin and Zhijie Yan},
|
author={Zhifu Gao and ShiLiang Zhang and Ian McLoughlin and Zhijie Yan},
|
||||||
title={{Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition}},
|
title={Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition},
|
||||||
year=2022,
|
year=2022,
|
||||||
booktitle={Proc. Interspeech 2022},
|
booktitle={Proc. Interspeech 2022},
|
||||||
pages={2063--2067},
|
pages={2063--2067},
|
||||||
doi={10.21437/Interspeech.2022-9996}
|
doi={10.21437/Interspeech.2022-9996}
|
||||||
}
|
}
|
||||||
|
@inproceedings{shi2023seaco,
|
||||||
|
author={Xian Shi and Yexin Yang and Zerui Li and Yanni Chen and Zhifu Gao and Shiliang Zhang},
|
||||||
|
title={SeACo-Paraformer: A Non-Autoregressive ASR System with Flexible and Effective Hotword Customization Ability},
|
||||||
|
year={2023},
|
||||||
|
booktitle={ICASSP2024}
|
||||||
|
}
|
||||||
```
|
```
|
||||||
|
|||||||
18
README_zh.md
18
README_zh.md
@ -91,7 +91,7 @@ model = AutoModel(model="paraformer-zh", model_revision="v2.0.2", \
|
|||||||
vad_model="fsmn-vad", vad_model_revision="v2.0.2", \
|
vad_model="fsmn-vad", vad_model_revision="v2.0.2", \
|
||||||
punc_model="ct-punc-c", punc_model_revision="v2.0.2", \
|
punc_model="ct-punc-c", punc_model_revision="v2.0.2", \
|
||||||
spk_model="cam++", spk_model_revision="v2.0.2")
|
spk_model="cam++", spk_model_revision="v2.0.2")
|
||||||
res = model(input=f"{model.model_path}/example/asr_example.wav",
|
res = model.generate(input=f"{model.model_path}/example/asr_example.wav",
|
||||||
batch_size=64,
|
batch_size=64,
|
||||||
hotword='魔搭')
|
hotword='魔搭')
|
||||||
print(res)
|
print(res)
|
||||||
@ -121,7 +121,7 @@ total_chunk_num = int(len((speech)-1)/chunk_stride+1)
|
|||||||
for i in range(total_chunk_num):
|
for i in range(total_chunk_num):
|
||||||
speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride]
|
speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride]
|
||||||
is_final = i == total_chunk_num - 1
|
is_final = i == total_chunk_num - 1
|
||||||
res = model(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size, encoder_chunk_look_back=encoder_chunk_look_back, decoder_chunk_look_back=decoder_chunk_look_back)
|
res = model.generate(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size, encoder_chunk_look_back=encoder_chunk_look_back, decoder_chunk_look_back=decoder_chunk_look_back)
|
||||||
print(res)
|
print(res)
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -134,7 +134,7 @@ from funasr import AutoModel
|
|||||||
model = AutoModel(model="fsmn-vad", model_revision="v2.0.2")
|
model = AutoModel(model="fsmn-vad", model_revision="v2.0.2")
|
||||||
|
|
||||||
wav_file = f"{model.model_path}/example/asr_example.wav"
|
wav_file = f"{model.model_path}/example/asr_example.wav"
|
||||||
res = model(input=wav_file)
|
res = model.generate(input=wav_file)
|
||||||
print(res)
|
print(res)
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -156,7 +156,7 @@ total_chunk_num = int(len((speech)-1)/chunk_stride+1)
|
|||||||
for i in range(total_chunk_num):
|
for i in range(total_chunk_num):
|
||||||
speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride]
|
speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride]
|
||||||
is_final = i == total_chunk_num - 1
|
is_final = i == total_chunk_num - 1
|
||||||
res = model(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size)
|
res = model.generate(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size)
|
||||||
if len(res[0]["value"]):
|
if len(res[0]["value"]):
|
||||||
print(res)
|
print(res)
|
||||||
```
|
```
|
||||||
@ -167,7 +167,7 @@ from funasr import AutoModel
|
|||||||
|
|
||||||
model = AutoModel(model="ct-punc", model_revision="v2.0.2")
|
model = AutoModel(model="ct-punc", model_revision="v2.0.2")
|
||||||
|
|
||||||
res = model(input="那今天的会就到这里吧 happy new year 明年见")
|
res = model.generate(input="那今天的会就到这里吧 happy new year 明年见")
|
||||||
print(res)
|
print(res)
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -179,7 +179,7 @@ model = AutoModel(model="fa-zh", model_revision="v2.0.0")
|
|||||||
|
|
||||||
wav_file = f"{model.model_path}/example/asr_example.wav"
|
wav_file = f"{model.model_path}/example/asr_example.wav"
|
||||||
text_file = f"{model.model_path}/example/text.txt"
|
text_file = f"{model.model_path}/example/text.txt"
|
||||||
res = model(input=(wav_file, text_file), data_type=("sound", "text"))
|
res = model.generate(input=(wav_file, text_file), data_type=("sound", "text"))
|
||||||
print(res)
|
print(res)
|
||||||
```
|
```
|
||||||
更多详细用法([示例](examples/industrial_data_pretraining))
|
更多详细用法([示例](examples/industrial_data_pretraining))
|
||||||
@ -242,4 +242,10 @@ FunASR支持预训练或者进一步微调的模型进行服务部署。目前
|
|||||||
pages={2063--2067},
|
pages={2063--2067},
|
||||||
doi={10.21437/Interspeech.2022-9996}
|
doi={10.21437/Interspeech.2022-9996}
|
||||||
}
|
}
|
||||||
|
@article{shi2023seaco,
|
||||||
|
author={Xian Shi and Yexin Yang and Zerui Li and Yanni Chen and Zhifu Gao and Shiliang Zhang},
|
||||||
|
title={{SeACo-Paraformer: A Non-Autoregressive ASR System with Flexible and Effective Hotword Customization Ability}},
|
||||||
|
year=2023,
|
||||||
|
journal={arXiv preprint arXiv:2308.03266(accepted by ICASSP2024)},
|
||||||
|
}
|
||||||
```
|
```
|
||||||
|
|||||||
@ -6,14 +6,14 @@
|
|||||||
from funasr import AutoModel
|
from funasr import AutoModel
|
||||||
|
|
||||||
model = AutoModel(model="damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
|
model = AutoModel(model="damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
|
||||||
model_revision="v2.0.2",
|
model_revision="v2.0.2",
|
||||||
vad_model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch",
|
vad_model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch",
|
||||||
vad_model_revision="v2.0.2",
|
vad_model_revision="v2.0.2",
|
||||||
punc_model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch",
|
punc_model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch",
|
||||||
punc_model_revision="v2.0.2",
|
punc_model_revision="v2.0.2",
|
||||||
spk_model="damo/speech_campplus_sv_zh-cn_16k-common",
|
spk_model="damo/speech_campplus_sv_zh-cn_16k-common",
|
||||||
spk_model_revision="v2.0.2",
|
spk_model_revision="v2.0.2",
|
||||||
)
|
)
|
||||||
|
|
||||||
res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_vad_punc_example.wav", batch_size_s=300, batch_size_threshold_s=60)
|
res = model.generate(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_vad_punc_example.wav", batch_size_s=300, batch_size_threshold_s=60)
|
||||||
print(res)
|
print(res)
|
||||||
|
|||||||
@ -9,5 +9,5 @@ model = AutoModel(model="damo/speech_campplus_sv_zh-cn_16k-common",
|
|||||||
model_revision="v2.0.2",
|
model_revision="v2.0.2",
|
||||||
)
|
)
|
||||||
|
|
||||||
res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav")
|
res = model.generate(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav")
|
||||||
print(res)
|
print(res)
|
||||||
@ -7,6 +7,6 @@ from funasr import AutoModel
|
|||||||
|
|
||||||
model = AutoModel(model="damo/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404", model_revision="v2.0.2")
|
model = AutoModel(model="damo/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404", model_revision="v2.0.2")
|
||||||
|
|
||||||
res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav",
|
res = model.generate(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav",
|
||||||
hotword='达摩院 魔搭')
|
hotword='达摩院 魔搭')
|
||||||
print(res)
|
print(res)
|
||||||
@ -7,7 +7,7 @@ from funasr import AutoModel
|
|||||||
|
|
||||||
model = AutoModel(model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch", model_revision="v2.0.2")
|
model = AutoModel(model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch", model_revision="v2.0.2")
|
||||||
|
|
||||||
res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/punc_example.txt")
|
res = model.generate(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/punc_example.txt")
|
||||||
print(res)
|
print(res)
|
||||||
|
|
||||||
|
|
||||||
@ -15,5 +15,5 @@ from funasr import AutoModel
|
|||||||
|
|
||||||
model = AutoModel(model="damo/punc_ct-transformer_cn-en-common-vocab471067-large", model_revision="v2.0.2")
|
model = AutoModel(model="damo/punc_ct-transformer_cn-en-common-vocab471067-large", model_revision="v2.0.2")
|
||||||
|
|
||||||
res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/punc_example.txt")
|
res = model.generate(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/punc_example.txt")
|
||||||
print(res)
|
print(res)
|
||||||
@ -12,7 +12,7 @@ vads = inputs.split("|")
|
|||||||
rec_result_all = "outputs: "
|
rec_result_all = "outputs: "
|
||||||
cache = {}
|
cache = {}
|
||||||
for vad in vads:
|
for vad in vads:
|
||||||
rec_result = model(input=vad, cache=cache)
|
rec_result = model.generate(input=vad, cache=cache)
|
||||||
print(rec_result)
|
print(rec_result)
|
||||||
rec_result_all += rec_result[0]['text']
|
rec_result_all += rec_result[0]['text']
|
||||||
|
|
||||||
|
|||||||
@ -7,5 +7,5 @@ from funasr import AutoModel
|
|||||||
|
|
||||||
model = AutoModel(model="damo/emotion2vec_base", model_revision="v2.0.1")
|
model = AutoModel(model="damo/emotion2vec_base", model_revision="v2.0.1")
|
||||||
|
|
||||||
res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav", output_dir="./outputs")
|
res = model.generate(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav", output_dir="./outputs")
|
||||||
print(res)
|
print(res)
|
||||||
@ -9,7 +9,7 @@ wav_file = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audi
|
|||||||
chunk_size = 60000 # ms
|
chunk_size = 60000 # ms
|
||||||
model = AutoModel(model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch", model_revision="v2.0.2")
|
model = AutoModel(model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch", model_revision="v2.0.2")
|
||||||
|
|
||||||
res = model(input=wav_file, chunk_size=chunk_size, )
|
res = model.generate(input=wav_file, chunk_size=chunk_size, )
|
||||||
print(res)
|
print(res)
|
||||||
|
|
||||||
|
|
||||||
@ -28,7 +28,7 @@ total_chunk_num = int(len((speech)-1)/chunk_stride+1)
|
|||||||
for i in range(total_chunk_num):
|
for i in range(total_chunk_num):
|
||||||
speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride]
|
speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride]
|
||||||
is_final = i == total_chunk_num - 1
|
is_final = i == total_chunk_num - 1
|
||||||
res = model(input=speech_chunk,
|
res = model.generate(input=speech_chunk,
|
||||||
cache=cache,
|
cache=cache,
|
||||||
is_final=is_final,
|
is_final=is_final,
|
||||||
chunk_size=chunk_size,
|
chunk_size=chunk_size,
|
||||||
|
|||||||
@ -7,7 +7,7 @@ from funasr import AutoModel
|
|||||||
|
|
||||||
model = AutoModel(model="damo/speech_timestamp_prediction-v1-16k-offline", model_revision="v2.0.2")
|
model = AutoModel(model="damo/speech_timestamp_prediction-v1-16k-offline", model_revision="v2.0.2")
|
||||||
|
|
||||||
res = model(input=("https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav",
|
res = model.generate(input=("https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav",
|
||||||
"欢迎大家来到魔搭社区进行体验"),
|
"欢迎大家来到魔搭社区进行体验"),
|
||||||
data_type=("sound", "text"),
|
data_type=("sound", "text"),
|
||||||
batch_size=2,
|
batch_size=2,
|
||||||
|
|||||||
@ -15,6 +15,6 @@ model = AutoModel(model="damo/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-co
|
|||||||
spk_model_revision="v2.0.2"
|
spk_model_revision="v2.0.2"
|
||||||
)
|
)
|
||||||
|
|
||||||
res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav",
|
res = model.generate(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav",
|
||||||
hotword='达摩院 磨搭')
|
hotword='达摩院 磨搭')
|
||||||
print(res)
|
print(res)
|
||||||
@ -7,7 +7,7 @@ from funasr import AutoModel
|
|||||||
|
|
||||||
model = AutoModel(model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch", model_revision="v2.0.2")
|
model = AutoModel(model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch", model_revision="v2.0.2")
|
||||||
|
|
||||||
res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav")
|
res = model.generate(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav")
|
||||||
print(res)
|
print(res)
|
||||||
|
|
||||||
|
|
||||||
@ -18,5 +18,5 @@ frontend = AutoFrontend(model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-co
|
|||||||
fbanks = frontend(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav", batch_size=2)
|
fbanks = frontend(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav", batch_size=2)
|
||||||
|
|
||||||
for batch_idx, fbank_dict in enumerate(fbanks):
|
for batch_idx, fbank_dict in enumerate(fbanks):
|
||||||
res = model(**fbank_dict)
|
res = model.generate(**fbank_dict)
|
||||||
print(res)
|
print(res)
|
||||||
@ -11,7 +11,7 @@ decoder_chunk_look_back = 1 #number of encoder chunks to lookback for decoder cr
|
|||||||
|
|
||||||
model = AutoModel(model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online", model_revision="v2.0.2")
|
model = AutoModel(model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online", model_revision="v2.0.2")
|
||||||
cache = {}
|
cache = {}
|
||||||
res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav",
|
res = model.generate(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav",
|
||||||
chunk_size=chunk_size,
|
chunk_size=chunk_size,
|
||||||
encoder_chunk_look_back=encoder_chunk_look_back,
|
encoder_chunk_look_back=encoder_chunk_look_back,
|
||||||
decoder_chunk_look_back=decoder_chunk_look_back,
|
decoder_chunk_look_back=decoder_chunk_look_back,
|
||||||
@ -32,11 +32,11 @@ total_chunk_num = int(len((speech)-1)/chunk_stride+1)
|
|||||||
for i in range(total_chunk_num):
|
for i in range(total_chunk_num):
|
||||||
speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride]
|
speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride]
|
||||||
is_final = i == total_chunk_num - 1
|
is_final = i == total_chunk_num - 1
|
||||||
res = model(input=speech_chunk,
|
res = model.generate(input=speech_chunk,
|
||||||
cache=cache,
|
cache=cache,
|
||||||
is_final=is_final,
|
is_final=is_final,
|
||||||
chunk_size=chunk_size,
|
chunk_size=chunk_size,
|
||||||
encoder_chunk_look_back=encoder_chunk_look_back,
|
encoder_chunk_look_back=encoder_chunk_look_back,
|
||||||
decoder_chunk_look_back=decoder_chunk_look_back,
|
decoder_chunk_look_back=decoder_chunk_look_back,
|
||||||
)
|
)
|
||||||
print(res)
|
print(res)
|
||||||
|
|||||||
@ -15,6 +15,6 @@ model = AutoModel(model="damo/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-co
|
|||||||
spk_model_revision="v2.0.2",
|
spk_model_revision="v2.0.2",
|
||||||
)
|
)
|
||||||
|
|
||||||
res = model(input=f"{model.model_path}/example/asr_example.wav",
|
res = model.generate(input=f"{model.model_path}/example/asr_example.wav",
|
||||||
hotword='达摩院 魔搭')
|
hotword='达摩院 魔搭')
|
||||||
print(res)
|
print(res)
|
||||||
@ -264,7 +264,7 @@ class AutoModel:
|
|||||||
# step.1: compute the vad model
|
# step.1: compute the vad model
|
||||||
self.vad_kwargs.update(cfg)
|
self.vad_kwargs.update(cfg)
|
||||||
beg_vad = time.time()
|
beg_vad = time.time()
|
||||||
res = self.generate(input, input_len=input_len, model=self.vad_model, kwargs=self.vad_kwargs, **cfg)
|
res = self.inference(input, input_len=input_len, model=self.vad_model, kwargs=self.vad_kwargs, **cfg)
|
||||||
end_vad = time.time()
|
end_vad = time.time()
|
||||||
print(f"time cost vad: {end_vad - beg_vad:0.3f}")
|
print(f"time cost vad: {end_vad - beg_vad:0.3f}")
|
||||||
|
|
||||||
@ -316,7 +316,7 @@ class AutoModel:
|
|||||||
batch_size_ms_cum = 0
|
batch_size_ms_cum = 0
|
||||||
end_idx = j + 1
|
end_idx = j + 1
|
||||||
speech_j, speech_lengths_j = slice_padding_audio_samples(speech, speech_lengths, sorted_data[beg_idx:end_idx])
|
speech_j, speech_lengths_j = slice_padding_audio_samples(speech, speech_lengths, sorted_data[beg_idx:end_idx])
|
||||||
results = self.generate(speech_j, input_len=None, model=model, kwargs=kwargs, **cfg)
|
results = self.inference(speech_j, input_len=None, model=model, kwargs=kwargs, **cfg)
|
||||||
if self.spk_model is not None:
|
if self.spk_model is not None:
|
||||||
all_segments = []
|
all_segments = []
|
||||||
# compose vad segments: [[start_time_sec, end_time_sec, speech], [...]]
|
# compose vad segments: [[start_time_sec, end_time_sec, speech], [...]]
|
||||||
@ -327,7 +327,7 @@ class AutoModel:
|
|||||||
segments = sv_chunk(vad_segments)
|
segments = sv_chunk(vad_segments)
|
||||||
all_segments.extend(segments)
|
all_segments.extend(segments)
|
||||||
speech_b = [i[2] for i in segments]
|
speech_b = [i[2] for i in segments]
|
||||||
spk_res = self.generate(speech_b, input_len=None, model=self.spk_model, kwargs=kwargs, **cfg)
|
spk_res = self.inference(speech_b, input_len=None, model=self.spk_model, kwargs=kwargs, **cfg)
|
||||||
results[_b]['spk_embedding'] = spk_res[0]['spk_embedding']
|
results[_b]['spk_embedding'] = spk_res[0]['spk_embedding']
|
||||||
beg_idx = end_idx
|
beg_idx = end_idx
|
||||||
if len(results) < 1:
|
if len(results) < 1:
|
||||||
@ -378,7 +378,7 @@ class AutoModel:
|
|||||||
# step.3 compute punc model
|
# step.3 compute punc model
|
||||||
if self.punc_model is not None:
|
if self.punc_model is not None:
|
||||||
self.punc_kwargs.update(cfg)
|
self.punc_kwargs.update(cfg)
|
||||||
punc_res = self.generate(result["text"], model=self.punc_model, kwargs=self.punc_kwargs, **cfg)
|
punc_res = self.inference(result["text"], model=self.punc_model, kwargs=self.punc_kwargs, **cfg)
|
||||||
result["text_with_punc"] = punc_res[0]["text"]
|
result["text_with_punc"] = punc_res[0]["text"]
|
||||||
|
|
||||||
# speaker embedding cluster after resorted
|
# speaker embedding cluster after resorted
|
||||||
|
|||||||
@ -1,25 +1,7 @@
|
|||||||
import json
|
|
||||||
import time
|
|
||||||
import torch
|
|
||||||
import hydra
|
import hydra
|
||||||
import random
|
|
||||||
import string
|
|
||||||
import logging
|
import logging
|
||||||
import os.path
|
|
||||||
from tqdm import tqdm
|
|
||||||
from omegaconf import DictConfig, OmegaConf, ListConfig
|
from omegaconf import DictConfig, OmegaConf, ListConfig
|
||||||
|
|
||||||
from funasr.register import tables
|
|
||||||
from funasr.utils.load_utils import load_bytes
|
|
||||||
from funasr.download.file import download_from_url
|
|
||||||
from funasr.download.download_from_hub import download_model
|
|
||||||
from funasr.utils.vad_utils import slice_padding_audio_samples
|
|
||||||
from funasr.train_utils.set_all_random_seed import set_all_random_seed
|
|
||||||
from funasr.train_utils.load_pretrained_model import load_pretrained_model
|
|
||||||
from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank
|
|
||||||
from funasr.utils.timestamp_tools import timestamp_sentence
|
|
||||||
from funasr.models.campplus.utils import sv_chunk, postprocess, distribute_spk
|
|
||||||
from funasr.models.campplus.cluster_backend import ClusterBackend
|
|
||||||
from funasr.auto.auto_model import AutoModel
|
from funasr.auto.auto_model import AutoModel
|
||||||
|
|
||||||
|
|
||||||
@ -41,10 +23,9 @@ def main_hydra(cfg: DictConfig):
|
|||||||
if kwargs.get("debug", False):
|
if kwargs.get("debug", False):
|
||||||
import pdb; pdb.set_trace()
|
import pdb; pdb.set_trace()
|
||||||
model = AutoModel(**kwargs)
|
model = AutoModel(**kwargs)
|
||||||
res = model(input=kwargs["input"])
|
res = model.generate(input=kwargs["input"])
|
||||||
print(res)
|
print(res)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
main_hydra()
|
main_hydra()
|
||||||
Loading…
Reference in New Issue
Block a user