From b5ea9c7a6a7cf0816fd59d7b3377752390d3a775 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E6=B8=B8=E9=9B=81?= Date: Thu, 29 Feb 2024 14:33:10 +0800 Subject: [PATCH] cer --- funasr/metrics/{compute_wer.py => wer.py} | 42 +++++++++++++++++------ funasr/models/llm_asr_nar/model.py | 3 +- 2 files changed, 34 insertions(+), 11 deletions(-) rename funasr/metrics/{compute_wer.py => wer.py} (81%) diff --git a/funasr/metrics/compute_wer.py b/funasr/metrics/wer.py similarity index 81% rename from funasr/metrics/compute_wer.py rename to funasr/metrics/wer.py index 26a9f491f..77abbbde7 100755 --- a/funasr/metrics/compute_wer.py +++ b/funasr/metrics/wer.py @@ -1,10 +1,13 @@ import os import numpy as np import sys +import hydra def compute_wer(ref_file, hyp_file, - cer_detail_file): + cer_file, + cn_postprocess=False, + ): rst = { 'Wrd': 0, 'Corr': 0, @@ -24,14 +27,22 @@ def compute_wer(ref_file, for line in hyp_reader: key = line.strip().split()[0] value = line.strip().split()[1:] + if cn_postprocess: + value = value.replace(" ", "") + value = [x for x in value] + value = " ".join(value) hyp_dict[key] = value with open(ref_file, 'r') as ref_reader: for line in ref_reader: key = line.strip().split()[0] value = line.strip().split()[1:] + if cn_postprocess: + value = value.replace(" ", "") + value = [x for x in value] + value = " ".join(value) ref_dict[key] = value - cer_detail_writer = open(cer_detail_file, 'w') + cer_detail_writer = open(cer_file, 'w') for hyp_key in hyp_dict: if hyp_key in ref_dict: out_item = compute_wer_by_line(hyp_dict[hyp_key], ref_dict[hyp_key]) @@ -47,6 +58,7 @@ def compute_wer(ref_file, cer_detail_writer.write(hyp_key + print_cer_detail(out_item) + '\n') cer_detail_writer.write("ref:" + '\t' + " ".join(list(map(lambda x: x.lower(), ref_dict[hyp_key]))) + '\n') cer_detail_writer.write("hyp:" + '\t' + " ".join(list(map(lambda x: x.lower(), hyp_dict[hyp_key]))) + '\n') + cer_detail_writer.flush() if rst['Wrd'] > 0: rst['Err'] = round(rst['wrong_words'] * 100 / rst['Wrd'], 2) @@ -59,6 +71,7 @@ def compute_wer(ref_file, cer_detail_writer.write("%SER " + str(rst['S.Err']) + " [ " + str(rst['wrong_sentences']) + " / " + str(rst['Snt']) + " ]" + '\n') cer_detail_writer.write("Scored " + str(len(hyp_dict)) + " sentences, " + str(len(hyp_dict) - rst['Snt']) + " not present in hyp." + '\n') + cer_detail_writer.close() def compute_wer_by_line(hyp, ref): @@ -146,12 +159,21 @@ def print_cer_detail(rst): + str(rst['sub']) + ") corr:" + '{:.2%}'.format(rst['cor']/rst['nwords']) + ",cer:" + '{:.2%}'.format(rst['wrong']/rst['nwords'])) -if __name__ == '__main__': - if len(sys.argv) != 4: - print("usage : python compute-wer.py test.ref test.hyp test.wer") - sys.exit(0) - ref_file = sys.argv[1] - hyp_file = sys.argv[2] - cer_detail_file = sys.argv[3] - compute_wer(ref_file, hyp_file, cer_detail_file) +@hydra.main(config_name=None, version_base=None) +def main_hydra(cfg: DictConfig): + ref_file = cfg.get("ref_file", None) + hyp_file = cfg.get("hyp_file", None) + cer_file = cfg.get("cer_file", None) + cn_postprocess = cfg.get("cn_postprocess", False) + if ref_file is None or hyp_file is None or cer_file is None: + print("usage : python -m funasr.metrics.wer ++ref_file=test.ref ++hyp_file=test.hyp ++cer_file=test.wer ++cn_postprocess=false") + sys.exit(0) + + compute_wer(ref_file, hyp_file, cer_file, cn_postprocess) + +if __name__ == '__main__': + main_hydra() + + + diff --git a/funasr/models/llm_asr_nar/model.py b/funasr/models/llm_asr_nar/model.py index 6a4eccefe..f17034930 100644 --- a/funasr/models/llm_asr_nar/model.py +++ b/funasr/models/llm_asr_nar/model.py @@ -315,7 +315,8 @@ class LLMASRNAR(nn.Module): model_outputs = self.llm(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=None) preds = torch.argmax(model_outputs.logits, -1) text = tokenizer.batch_decode(preds, add_special_tokens=False, skip_special_tokens=True) - text = text[0].split(': \n')[-1] + text = text[0].split(': ')[-1] + text = text.strip() # preds = torch.argmax(model_outputs.logits, -1) ibest_writer = None