mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
cer
This commit is contained in:
parent
d0f3532052
commit
b5ea9c7a6a
@ -1,10 +1,13 @@
|
||||
import os
|
||||
import numpy as np
|
||||
import sys
|
||||
import hydra
|
||||
|
||||
def compute_wer(ref_file,
|
||||
hyp_file,
|
||||
cer_detail_file):
|
||||
cer_file,
|
||||
cn_postprocess=False,
|
||||
):
|
||||
rst = {
|
||||
'Wrd': 0,
|
||||
'Corr': 0,
|
||||
@ -24,14 +27,22 @@ def compute_wer(ref_file,
|
||||
for line in hyp_reader:
|
||||
key = line.strip().split()[0]
|
||||
value = line.strip().split()[1:]
|
||||
if cn_postprocess:
|
||||
value = value.replace(" ", "")
|
||||
value = [x for x in value]
|
||||
value = " ".join(value)
|
||||
hyp_dict[key] = value
|
||||
with open(ref_file, 'r') as ref_reader:
|
||||
for line in ref_reader:
|
||||
key = line.strip().split()[0]
|
||||
value = line.strip().split()[1:]
|
||||
if cn_postprocess:
|
||||
value = value.replace(" ", "")
|
||||
value = [x for x in value]
|
||||
value = " ".join(value)
|
||||
ref_dict[key] = value
|
||||
|
||||
cer_detail_writer = open(cer_detail_file, 'w')
|
||||
cer_detail_writer = open(cer_file, 'w')
|
||||
for hyp_key in hyp_dict:
|
||||
if hyp_key in ref_dict:
|
||||
out_item = compute_wer_by_line(hyp_dict[hyp_key], ref_dict[hyp_key])
|
||||
@ -47,6 +58,7 @@ def compute_wer(ref_file,
|
||||
cer_detail_writer.write(hyp_key + print_cer_detail(out_item) + '\n')
|
||||
cer_detail_writer.write("ref:" + '\t' + " ".join(list(map(lambda x: x.lower(), ref_dict[hyp_key]))) + '\n')
|
||||
cer_detail_writer.write("hyp:" + '\t' + " ".join(list(map(lambda x: x.lower(), hyp_dict[hyp_key]))) + '\n')
|
||||
cer_detail_writer.flush()
|
||||
|
||||
if rst['Wrd'] > 0:
|
||||
rst['Err'] = round(rst['wrong_words'] * 100 / rst['Wrd'], 2)
|
||||
@ -59,6 +71,7 @@ def compute_wer(ref_file,
|
||||
cer_detail_writer.write("%SER " + str(rst['S.Err']) + " [ " + str(rst['wrong_sentences']) + " / " + str(rst['Snt']) + " ]" + '\n')
|
||||
cer_detail_writer.write("Scored " + str(len(hyp_dict)) + " sentences, " + str(len(hyp_dict) - rst['Snt']) + " not present in hyp." + '\n')
|
||||
|
||||
cer_detail_writer.close()
|
||||
|
||||
def compute_wer_by_line(hyp,
|
||||
ref):
|
||||
@ -146,12 +159,21 @@ def print_cer_detail(rst):
|
||||
+ str(rst['sub']) + ") corr:" + '{:.2%}'.format(rst['cor']/rst['nwords'])
|
||||
+ ",cer:" + '{:.2%}'.format(rst['wrong']/rst['nwords']))
|
||||
|
||||
if __name__ == '__main__':
|
||||
if len(sys.argv) != 4:
|
||||
print("usage : python compute-wer.py test.ref test.hyp test.wer")
|
||||
sys.exit(0)
|
||||
|
||||
ref_file = sys.argv[1]
|
||||
hyp_file = sys.argv[2]
|
||||
cer_detail_file = sys.argv[3]
|
||||
compute_wer(ref_file, hyp_file, cer_detail_file)
|
||||
@hydra.main(config_name=None, version_base=None)
|
||||
def main_hydra(cfg: DictConfig):
|
||||
ref_file = cfg.get("ref_file", None)
|
||||
hyp_file = cfg.get("hyp_file", None)
|
||||
cer_file = cfg.get("cer_file", None)
|
||||
cn_postprocess = cfg.get("cn_postprocess", False)
|
||||
if ref_file is None or hyp_file is None or cer_file is None:
|
||||
print("usage : python -m funasr.metrics.wer ++ref_file=test.ref ++hyp_file=test.hyp ++cer_file=test.wer ++cn_postprocess=false")
|
||||
sys.exit(0)
|
||||
|
||||
compute_wer(ref_file, hyp_file, cer_file, cn_postprocess)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main_hydra()
|
||||
|
||||
|
||||
|
||||
@ -315,7 +315,8 @@ class LLMASRNAR(nn.Module):
|
||||
model_outputs = self.llm(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=None)
|
||||
preds = torch.argmax(model_outputs.logits, -1)
|
||||
text = tokenizer.batch_decode(preds, add_special_tokens=False, skip_special_tokens=True)
|
||||
text = text[0].split(': \n')[-1]
|
||||
text = text[0].split(': ')[-1]
|
||||
text = text.strip()
|
||||
# preds = torch.argmax(model_outputs.logits, -1)
|
||||
|
||||
ibest_writer = None
|
||||
|
||||
Loading…
Reference in New Issue
Block a user