Merge pull request #50 from alibaba-damo-academy/dev

egs for paraformer-tiny
This commit is contained in:
Xian Shi 2023-01-31 15:45:17 +08:00 committed by GitHub
commit b5b540d455
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 118 additions and 0 deletions

View File

@ -0,0 +1,30 @@
# ModelScope Model
## How to finetune and infer using a pretrained Paraformer-large Model
### Finetune
- Modify finetune training related parameters in `finetune.py`
- <strong>output_dir:</strong> # result dir
- <strong>data_dir:</strong> # the dataset dir needs to include files: train/wav.scp, train/text; validation/wav.scp, validation/text.
- <strong>batch_bins:</strong> # batch size
- <strong>max_epoch:</strong> # number of training epoch
- <strong>lr:</strong> # learning rate
- Then you can run the pipeline to finetune with:
```python
python finetune.py
```
### Inference
Or you can use the finetuned model for inference directly.
- Setting parameters in `infer.py`
- <strong>data_dir:</strong> # the dataset dir
- <strong>output_dir:</strong> # result dir
- Then you can run the pipeline to infer with:
```python
python infer.py
```

View File

@ -0,0 +1,88 @@
import os
import shutil
from multiprocessing import Pool
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from funasr.utils.compute_wer import compute_wer
def modelscope_infer_core(output_dir, split_dir, njob, idx):
output_dir_job = os.path.join(output_dir, "output.{}".format(idx))
gpu_id = (int(idx) - 1) // njob
if "CUDA_VISIBLE_DEVICES" in os.environ.keys():
gpu_list = os.environ['CUDA_VISIBLE_DEVICES'].split(",")
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_list[gpu_id])
else:
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id)
inference_pipline = pipeline(
task=Tasks.auto_speech_recognition,
model="damo/speech_paraformer-tiny-commandword_asr_nat-zh-cn-16k-vocab544-pytorch",
output_dir=output_dir_job,
batch_size=64
)
audio_in = os.path.join(split_dir, "wav.{}.scp".format(idx))
inference_pipline(audio_in=audio_in)
def modelscope_infer(params):
# prepare for multi-GPU decoding
ngpu = params["ngpu"]
njob = params["njob"]
output_dir = params["output_dir"]
if os.path.exists(output_dir):
shutil.rmtree(output_dir)
os.mkdir(output_dir)
split_dir = os.path.join(output_dir, "split")
os.mkdir(split_dir)
nj = ngpu * njob
wav_scp_file = os.path.join(params["data_dir"], "wav.scp")
with open(wav_scp_file) as f:
lines = f.readlines()
num_lines = len(lines)
num_job_lines = num_lines // nj
start = 0
for i in range(nj):
end = start + num_job_lines
file = os.path.join(split_dir, "wav.{}.scp".format(str(i + 1)))
with open(file, "w") as f:
if i == nj - 1:
f.writelines(lines[start:])
else:
f.writelines(lines[start:end])
start = end
p = Pool(nj)
for i in range(nj):
p.apply_async(modelscope_infer_core,
args=(output_dir, split_dir, njob, str(i + 1)))
p.close()
p.join()
# combine decoding results
best_recog_path = os.path.join(output_dir, "1best_recog")
os.mkdir(best_recog_path)
files = ["text", "token", "score"]
for file in files:
with open(os.path.join(best_recog_path, file), "w") as f:
for i in range(nj):
job_file = os.path.join(output_dir, "output.{}/1best_recog".format(str(i + 1)), file)
with open(job_file) as f_job:
lines = f_job.readlines()
f.writelines(lines)
# If text exists, compute CER
text_in = os.path.join(params["data_dir"], "text")
if os.path.exists(text_in):
text_proc_file = os.path.join(best_recog_path, "token")
compute_wer(text_in, text_proc_file, os.path.join(best_recog_path, "text.cer"))
if __name__ == "__main__":
params = {}
params["data_dir"] = "./data/test"
params["output_dir"] = "./results"
params["ngpu"] = 1
params["njob"] = 1
modelscope_infer(params)