This commit is contained in:
游雁 2024-02-29 16:07:42 +08:00
parent 1ef8117213
commit ad99b15120

View File

@ -2,178 +2,189 @@ import os
import numpy as np
import sys
import hydra
from omegaconf import DictConfig, OmegaConf, ListConfig
def compute_wer(ref_file,
hyp_file,
cer_file,
cn_postprocess=False,
):
rst = {
'Wrd': 0,
'Corr': 0,
'Ins': 0,
'Del': 0,
'Sub': 0,
'Snt': 0,
'Err': 0.0,
'S.Err': 0.0,
'wrong_words': 0,
'wrong_sentences': 0
}
rst = {
'Wrd': 0,
'Corr': 0,
'Ins': 0,
'Del': 0,
'Sub': 0,
'Snt': 0,
'Err': 0.0,
'S.Err': 0.0,
'wrong_words': 0,
'wrong_sentences': 0
}
hyp_dict = {}
ref_dict = {}
with open(hyp_file, 'r') as hyp_reader:
for line in hyp_reader:
key = line.strip().split()[0]
value = line.strip().split()[1:]
if cn_postprocess:
value = " ".join(value)
value = value.replace(" ", "")
if value[0] == "":
value = value[1:]
value = [x for x in value]
hyp_dict[key] = value
with open(ref_file, 'r') as ref_reader:
for line in ref_reader:
key = line.strip().split()[0]
value = line.strip().split()[1:]
if cn_postprocess:
value = " ".join(value)
value = value.replace(" ", "")
value = [x for x in value]
ref_dict[key] = value
cer_detail_writer = open(cer_file, 'w')
for hyp_key in hyp_dict:
if hyp_key in ref_dict:
out_item = compute_wer_by_line(hyp_dict[hyp_key], ref_dict[hyp_key])
rst['Wrd'] += out_item['nwords']
rst['Corr'] += out_item['cor']
rst['wrong_words'] += out_item['wrong']
rst['Ins'] += out_item['ins']
rst['Del'] += out_item['del']
rst['Sub'] += out_item['sub']
rst['Snt'] += 1
if out_item['wrong'] > 0:
rst['wrong_sentences'] += 1
cer_detail_writer.write(hyp_key + print_cer_detail(out_item) + '\n')
cer_detail_writer.write("ref:" + '\t' + " ".join(list(map(lambda x: x.lower(), ref_dict[hyp_key]))) + '\n')
cer_detail_writer.write("hyp:" + '\t' + " ".join(list(map(lambda x: x.lower(), hyp_dict[hyp_key]))) + '\n')
cer_detail_writer.flush()
if rst['Wrd'] > 0:
rst['Err'] = round(rst['wrong_words'] * 100 / rst['Wrd'], 2)
if rst['Snt'] > 0:
rst['S.Err'] = round(rst['wrong_sentences'] * 100 / rst['Snt'], 2)
cer_detail_writer.write('\n')
cer_detail_writer.write("%WER " + str(rst['Err']) + " [ " + str(rst['wrong_words']) + " / " + str(rst['Wrd']) +
", " + str(rst['Ins']) + " ins, " + str(rst['Del']) + " del, " + str(
rst['Sub']) + " sub ]" + '\n')
cer_detail_writer.write(
"%SER " + str(rst['S.Err']) + " [ " + str(rst['wrong_sentences']) + " / " + str(rst['Snt']) + " ]" + '\n')
cer_detail_writer.write("Scored " + str(len(hyp_dict)) + " sentences, " + str(
len(hyp_dict) - rst['Snt']) + " not present in hyp." + '\n')
cer_detail_writer.close()
hyp_dict = {}
ref_dict = {}
with open(hyp_file, 'r') as hyp_reader:
for line in hyp_reader:
key = line.strip().split()[0]
value = line.strip().split()[1:]
if cn_postprocess:
value = value.replace(" ", "")
value = [x for x in value]
value = " ".join(value)
hyp_dict[key] = value
with open(ref_file, 'r') as ref_reader:
for line in ref_reader:
key = line.strip().split()[0]
value = line.strip().split()[1:]
if cn_postprocess:
value = value.replace(" ", "")
value = [x for x in value]
value = " ".join(value)
ref_dict[key] = value
cer_detail_writer = open(cer_file, 'w')
for hyp_key in hyp_dict:
if hyp_key in ref_dict:
out_item = compute_wer_by_line(hyp_dict[hyp_key], ref_dict[hyp_key])
rst['Wrd'] += out_item['nwords']
rst['Corr'] += out_item['cor']
rst['wrong_words'] += out_item['wrong']
rst['Ins'] += out_item['ins']
rst['Del'] += out_item['del']
rst['Sub'] += out_item['sub']
rst['Snt'] += 1
if out_item['wrong'] > 0:
rst['wrong_sentences'] += 1
cer_detail_writer.write(hyp_key + print_cer_detail(out_item) + '\n')
cer_detail_writer.write("ref:" + '\t' + " ".join(list(map(lambda x: x.lower(), ref_dict[hyp_key]))) + '\n')
cer_detail_writer.write("hyp:" + '\t' + " ".join(list(map(lambda x: x.lower(), hyp_dict[hyp_key]))) + '\n')
cer_detail_writer.flush()
if rst['Wrd'] > 0:
rst['Err'] = round(rst['wrong_words'] * 100 / rst['Wrd'], 2)
if rst['Snt'] > 0:
rst['S.Err'] = round(rst['wrong_sentences'] * 100 / rst['Snt'], 2)
cer_detail_writer.write('\n')
cer_detail_writer.write("%WER " + str(rst['Err']) + " [ " + str(rst['wrong_words'])+ " / " + str(rst['Wrd']) +
", " + str(rst['Ins']) + " ins, " + str(rst['Del']) + " del, " + str(rst['Sub']) + " sub ]" + '\n')
cer_detail_writer.write("%SER " + str(rst['S.Err']) + " [ " + str(rst['wrong_sentences']) + " / " + str(rst['Snt']) + " ]" + '\n')
cer_detail_writer.write("Scored " + str(len(hyp_dict)) + " sentences, " + str(len(hyp_dict) - rst['Snt']) + " not present in hyp." + '\n')
cer_detail_writer.close()
def compute_wer_by_line(hyp,
ref):
hyp = list(map(lambda x: x.lower(), hyp))
ref = list(map(lambda x: x.lower(), ref))
hyp = list(map(lambda x: x.lower(), hyp))
ref = list(map(lambda x: x.lower(), ref))
len_hyp = len(hyp)
len_ref = len(ref)
cost_matrix = np.zeros((len_hyp + 1, len_ref + 1), dtype=np.int16)
ops_matrix = np.zeros((len_hyp + 1, len_ref + 1), dtype=np.int8)
for i in range(len_hyp + 1):
cost_matrix[i][0] = i
for j in range(len_ref + 1):
cost_matrix[0][j] = j
for i in range(1, len_hyp + 1):
for j in range(1, len_ref + 1):
if hyp[i - 1] == ref[j - 1]:
cost_matrix[i][j] = cost_matrix[i - 1][j - 1]
else:
substitution = cost_matrix[i - 1][j - 1] + 1
insertion = cost_matrix[i - 1][j] + 1
deletion = cost_matrix[i][j - 1] + 1
compare_val = [substitution, insertion, deletion]
min_val = min(compare_val)
operation_idx = compare_val.index(min_val) + 1
cost_matrix[i][j] = min_val
ops_matrix[i][j] = operation_idx
match_idx = []
i = len_hyp
j = len_ref
rst = {
'nwords': len_ref,
'cor': 0,
'wrong': 0,
'ins': 0,
'del': 0,
'sub': 0
}
while i >= 0 or j >= 0:
i_idx = max(0, i)
j_idx = max(0, j)
if ops_matrix[i_idx][j_idx] == 0: # correct
if i - 1 >= 0 and j - 1 >= 0:
match_idx.append((j - 1, i - 1))
rst['cor'] += 1
i -= 1
j -= 1
elif ops_matrix[i_idx][j_idx] == 2: # insert
i -= 1
rst['ins'] += 1
elif ops_matrix[i_idx][j_idx] == 3: # delete
j -= 1
rst['del'] += 1
elif ops_matrix[i_idx][j_idx] == 1: # substitute
i -= 1
j -= 1
rst['sub'] += 1
if i < 0 and j >= 0:
rst['del'] += 1
elif j < 0 and i >= 0:
rst['ins'] += 1
match_idx.reverse()
wrong_cnt = cost_matrix[len_hyp][len_ref]
rst['wrong'] = wrong_cnt
return rst
len_hyp = len(hyp)
len_ref = len(ref)
cost_matrix = np.zeros((len_hyp + 1, len_ref + 1), dtype=np.int16)
ops_matrix = np.zeros((len_hyp + 1, len_ref + 1), dtype=np.int8)
for i in range(len_hyp + 1):
cost_matrix[i][0] = i
for j in range(len_ref + 1):
cost_matrix[0][j] = j
for i in range(1, len_hyp + 1):
for j in range(1, len_ref + 1):
if hyp[i - 1] == ref[j - 1]:
cost_matrix[i][j] = cost_matrix[i - 1][j - 1]
else:
substitution = cost_matrix[i - 1][j - 1] + 1
insertion = cost_matrix[i - 1][j] + 1
deletion = cost_matrix[i][j - 1] + 1
compare_val = [substitution, insertion, deletion]
min_val = min(compare_val)
operation_idx = compare_val.index(min_val) + 1
cost_matrix[i][j] = min_val
ops_matrix[i][j] = operation_idx
match_idx = []
i = len_hyp
j = len_ref
rst = {
'nwords': len_ref,
'cor': 0,
'wrong': 0,
'ins': 0,
'del': 0,
'sub': 0
}
while i >= 0 or j >= 0:
i_idx = max(0, i)
j_idx = max(0, j)
if ops_matrix[i_idx][j_idx] == 0: # correct
if i - 1 >= 0 and j - 1 >= 0:
match_idx.append((j - 1, i - 1))
rst['cor'] += 1
i -= 1
j -= 1
elif ops_matrix[i_idx][j_idx] == 2: # insert
i -= 1
rst['ins'] += 1
elif ops_matrix[i_idx][j_idx] == 3: # delete
j -= 1
rst['del'] += 1
elif ops_matrix[i_idx][j_idx] == 1: # substitute
i -= 1
j -= 1
rst['sub'] += 1
if i < 0 and j >= 0:
rst['del'] += 1
elif j < 0 and i >= 0:
rst['ins'] += 1
match_idx.reverse()
wrong_cnt = cost_matrix[len_hyp][len_ref]
rst['wrong'] = wrong_cnt
return rst
def print_cer_detail(rst):
return ("(" + "nwords=" + str(rst['nwords']) + ",cor=" + str(rst['cor'])
+ ",ins=" + str(rst['ins']) + ",del=" + str(rst['del']) + ",sub="
+ str(rst['sub']) + ") corr:" + '{:.2%}'.format(rst['cor']/rst['nwords'])
+ ",cer:" + '{:.2%}'.format(rst['wrong']/rst['nwords']))
return ("(" + "nwords=" + str(rst['nwords']) + ",cor=" + str(rst['cor'])
+ ",ins=" + str(rst['ins']) + ",del=" + str(rst['del']) + ",sub="
+ str(rst['sub']) + ") corr:" + '{:.2%}'.format(rst['cor'] / rst['nwords'])
+ ",cer:" + '{:.2%}'.format(rst['wrong'] / rst['nwords']))
@hydra.main(config_name=None, version_base=None)
def main_hydra(cfg: DictConfig):
ref_file = cfg.get("ref_file", None)
hyp_file = cfg.get("hyp_file", None)
cer_file = cfg.get("cer_file", None)
cn_postprocess = cfg.get("cn_postprocess", False)
if ref_file is None or hyp_file is None or cer_file is None:
print("usage : python -m funasr.metrics.wer ++ref_file=test.ref ++hyp_file=test.hyp ++cer_file=test.wer ++cn_postprocess=false")
sys.exit(0)
compute_wer(ref_file, hyp_file, cer_file, cn_postprocess)
ref_file = cfg.get("ref_file", None)
hyp_file = cfg.get("hyp_file", None)
cer_file = cfg.get("cer_file", None)
cn_postprocess = cfg.get("cn_postprocess", False)
if ref_file is None or hyp_file is None or cer_file is None:
print(
"usage : python -m funasr.metrics.wer ++ref_file=test.ref ++hyp_file=test.hyp ++cer_file=test.wer ++cn_postprocess=false")
sys.exit(0)
compute_wer(ref_file, hyp_file, cer_file, cn_postprocess)
if __name__ == '__main__':
main_hydra()
main_hydra()