This commit is contained in:
游雁 2023-04-27 19:10:35 +08:00
parent 56508c42af
commit ad128cbe0c
58 changed files with 599 additions and 872 deletions

View File

@ -1,30 +0,0 @@
# ModelScope Model
## How to finetune and infer using a pretrained Paraformer-large Model
### Finetune
- Modify finetune training related parameters in `finetune.py`
- <strong>output_dir:</strong> # result dir
- <strong>data_dir:</strong> # the dataset dir needs to include files: train/wav.scp, train/text; validation/wav.scp, validation/text.
- <strong>batch_bins:</strong> # batch size
- <strong>max_epoch:</strong> # number of training epoch
- <strong>lr:</strong> # learning rate
- Then you can run the pipeline to finetune with:
```python
python finetune.py
```
### Inference
Or you can use the finetuned model for inference directly.
- Setting parameters in `infer.py`
- <strong>audio_in:</strong> # support wav, url, bytes, and parsed audio format.
- <strong>output_dir:</strong> # If the input format is wav.scp, it needs to be set.
- Then you can run the pipeline to infer with:
```python
python infer.py
```

View File

@ -0,0 +1 @@
../../TEMPLATE/README.md

View File

@ -0,0 +1,14 @@
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
if __name__ == '__main__':
audio_in = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav'
output_dir = None
inference_pipline = pipeline(
task=Tasks.auto_speech_recognition,
model="damo/speech_conformer_asr_nat-zh-cn-16k-aishell1-vocab4234-pytorch",
output_dir=output_dir,
)
rec_result = inference_pipline(audio_in=audio_in)
print(rec_result)

View File

@ -1,14 +0,0 @@
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
if __name__ == '__main__':
audio_in = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav'
output_dir = None
inference_pipline = pipeline(
task=Tasks.auto_speech_recognition,
model="damo/speech_conformer_asr_nat-zh-cn-16k-aishell1-vocab4234-pytorch",
output_dir=output_dir,
)
rec_result = inference_pipline(audio_in=audio_in)
print(rec_result)

View File

@ -0,0 +1 @@
../../TEMPLATE/infer.py

View File

@ -0,0 +1 @@
../../TEMPLATE/infer.sh

View File

@ -0,0 +1 @@
../../TEMPLATE/README.md

View File

@ -0,0 +1,13 @@
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
if __name__ == "__main__":
audio_in = "https://modelscope.oss-cn-beijing.aliyuncs.com/test/audios/asr_example.wav"
output_dir = "./results"
inference_pipline = pipeline(
task=Tasks.auto_speech_recognition,
model="damo/speech_conformer_asr_nat-zh-cn-16k-aishell2-vocab5212-pytorch",
output_dir=output_dir,
)
rec_result = inference_pipline(audio_in=audio_in)
print(rec_result)

View File

@ -1,13 +0,0 @@
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
if __name__ == "__main__":
audio_in = "https://modelscope.oss-cn-beijing.aliyuncs.com/test/audios/asr_example.wav"
output_dir = "./results"
inference_pipline = pipeline(
task=Tasks.auto_speech_recognition,
model="damo/speech_conformer_asr_nat-zh-cn-16k-aishell2-vocab5212-pytorch",
output_dir=output_dir,
)
rec_result = inference_pipline(audio_in=audio_in)
print(rec_result)

View File

@ -0,0 +1 @@
../../TEMPLATE/infer.py

View File

@ -0,0 +1 @@
../../TEMPLATE/infer.sh

View File

@ -0,0 +1,11 @@
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='NPU-ASLP/speech_mfcca_asr-zh-cn-16k-alimeeting-vocab4950',
model_revision='v3.0.0'
)
rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav')
print(rec_result)

View File

@ -1,67 +0,0 @@
import json
import os
import shutil
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from funasr.utils.compute_wer import compute_wer
def modelscope_infer_after_finetune(params):
# prepare for decoding
pretrained_model_path = os.path.join(os.environ["HOME"], ".cache/modelscope/hub", params["modelscope_model_name"])
for file_name in params["required_files"]:
if file_name == "configuration.json":
with open(os.path.join(pretrained_model_path, file_name)) as f:
config_dict = json.load(f)
config_dict["model"]["am_model_name"] = params["decoding_model_name"]
with open(os.path.join(params["output_dir"], "configuration.json"), "w") as f:
json.dump(config_dict, f, indent=4, separators=(',', ': '))
else:
shutil.copy(os.path.join(pretrained_model_path, file_name),
os.path.join(params["output_dir"], file_name))
decoding_path = os.path.join(params["output_dir"], "decode_results")
if os.path.exists(decoding_path):
shutil.rmtree(decoding_path)
os.mkdir(decoding_path)
# decoding
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model=params["output_dir"],
output_dir=decoding_path,
batch_size=1
)
audio_in = os.path.join(params["data_dir"], "wav.scp")
inference_pipeline(audio_in=audio_in)
# computer CER if GT text is set
text_in = os.path.join(params["data_dir"], "text")
if text_in is not None:
text_proc_file = os.path.join(decoding_path, "1best_recog/token")
text_proc_file2 = os.path.join(decoding_path, "1best_recog/token_nosep")
with open(text_proc_file, 'r') as hyp_reader:
with open(text_proc_file2, 'w') as hyp_writer:
for line in hyp_reader:
new_context = line.strip().replace("src","").replace(" "," ").replace(" "," ").strip()
hyp_writer.write(new_context+'\n')
text_in2 = os.path.join(decoding_path, "1best_recog/ref_text_nosep")
with open(text_in, 'r') as ref_reader:
with open(text_in2, 'w') as ref_writer:
for line in ref_reader:
new_context = line.strip().replace("src","").replace(" "," ").replace(" "," ").strip()
ref_writer.write(new_context+'\n')
compute_wer(text_in, text_proc_file, os.path.join(decoding_path, "text.sp.cer"))
compute_wer(text_in2, text_proc_file2, os.path.join(decoding_path, "text.nosp.cer"))
if __name__ == '__main__':
params = {}
params["modelscope_model_name"] = "NPU-ASLP/speech_mfcca_asr-zh-cn-16k-alimeeting-vocab4950"
params["required_files"] = ["feats_stats.npz", "decoding.yaml", "configuration.json"]
params["output_dir"] = "./checkpoint"
params["data_dir"] = "./example_data/validation"
params["decoding_model_name"] = "valid.acc.ave.pb"
modelscope_infer_after_finetune(params)

View File

@ -1,19 +0,0 @@
# ModelScope Model
## How to infer using a pretrained Paraformer-large Model
### Inference
You can use the pretrain model for inference directly.
- Setting parameters in `infer.py`
- <strong>audio_in:</strong> # Support wav, url, bytes, and parsed audio format.
- <strong>output_dir:</strong> # If the input format is wav.scp, it needs to be set.
- <strong>batch_size:</strong> # Set batch size in inference.
- <strong>param_dict:</strong> # Set the hotword list in inference.
- Then you can run the pipeline to infer with:
```python
python infer.py
```

View File

@ -1,105 +0,0 @@
#!/usr/bin/env bash
set -e
set -u
set -o pipefail
stage=1
stop_stage=2
model="damo/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404"
data_dir="./data/test"
output_dir="./results"
batch_size=64
gpu_inference=true # whether to perform gpu decoding
gpuid_list="0,1" # set gpus, e.g., gpuid_list="0,1"
njob=64 # the number of jobs for CPU decoding, if gpu_inference=false, use CPU decoding, please set njob
checkpoint_dir=
checkpoint_name="valid.cer_ctc.ave.pb"
hotword_txt=None
. utils/parse_options.sh || exit 1;
if ${gpu_inference} == "true"; then
nj=$(echo $gpuid_list | awk -F "," '{print NF}')
else
nj=$njob
batch_size=1
gpuid_list=""
for JOB in $(seq ${nj}); do
gpuid_list=$gpuid_list"-1,"
done
fi
mkdir -p $output_dir/split
split_scps=""
for JOB in $(seq ${nj}); do
split_scps="$split_scps $output_dir/split/wav.$JOB.scp"
done
perl utils/split_scp.pl ${data_dir}/wav.scp ${split_scps}
if [ -n "${checkpoint_dir}" ]; then
python utils/prepare_checkpoint.py ${model} ${checkpoint_dir} ${checkpoint_name}
model=${checkpoint_dir}/${model}
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ];then
echo "Decoding ..."
gpuid_list_array=(${gpuid_list//,/ })
for JOB in $(seq ${nj}); do
{
id=$((JOB-1))
gpuid=${gpuid_list_array[$id]}
mkdir -p ${output_dir}/output.$JOB
python infer.py \
--model ${model} \
--audio_in ${output_dir}/split/wav.$JOB.scp \
--output_dir ${output_dir}/output.$JOB \
--batch_size ${batch_size} \
--gpuid ${gpuid} \
--hotword_txt ${hotword_txt}
}&
done
wait
mkdir -p ${output_dir}/1best_recog
for f in token score text; do
if [ -f "${output_dir}/output.1/1best_recog/${f}" ]; then
for i in $(seq "${nj}"); do
cat "${output_dir}/output.${i}/1best_recog/${f}"
done | sort -k1 >"${output_dir}/1best_recog/${f}"
fi
done
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ];then
echo "Computing WER ..."
cp ${output_dir}/1best_recog/text ${output_dir}/1best_recog/text.proc
cp ${data_dir}/text ${output_dir}/1best_recog/text.ref
python utils/compute_wer.py ${output_dir}/1best_recog/text.ref ${output_dir}/1best_recog/text.proc ${output_dir}/1best_recog/text.cer
tail -n 3 ${output_dir}/1best_recog/text.cer
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ];then
echo "SpeechIO TIOBE textnorm"
echo "$0 --> Normalizing REF text ..."
./utils/textnorm_zh.py \
--has_key --to_upper \
${data_dir}/text \
${output_dir}/1best_recog/ref.txt
echo "$0 --> Normalizing HYP text ..."
./utils/textnorm_zh.py \
--has_key --to_upper \
${output_dir}/1best_recog/text.proc \
${output_dir}/1best_recog/rec.txt
grep -v $'\t$' ${output_dir}/1best_recog/rec.txt > ${output_dir}/1best_recog/rec_non_empty.txt
echo "$0 --> computing WER/CER and alignment ..."
./utils/error_rate_zh \
--tokenizer char \
--ref ${output_dir}/1best_recog/ref.txt \
--hyp ${output_dir}/1best_recog/rec_non_empty.txt \
${output_dir}/1best_recog/DETAILS.txt | tee ${output_dir}/1best_recog/RESULTS.txt
rm -rf ${output_dir}/1best_recog/rec.txt ${output_dir}/1best_recog/rec_non_empty.txt
fi

View File

@ -1,36 +0,0 @@
import os
import tempfile
import codecs
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.msdatasets import MsDataset
if __name__ == '__main__':
param_dict = dict()
param_dict['hotword'] = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/hotword.txt"
output_dir = "./output"
batch_size = 1
# dataset split ['test']
ds_dict = MsDataset.load(dataset_name='speech_asr_aishell1_hotwords_testsets', namespace='speech_asr')
work_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(work_dir):
os.makedirs(work_dir)
wav_file_path = os.path.join(work_dir, "wav.scp")
with codecs.open(wav_file_path, 'w') as fin:
for line in ds_dict:
wav = line["Audio:FILE"]
idx = wav.split("/")[-1].split(".")[0]
fin.writelines(idx + " " + wav + "\n")
audio_in = wav_file_path
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model="damo/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404",
output_dir=output_dir,
batch_size=batch_size,
param_dict=param_dict)
rec_result = inference_pipeline(audio_in=audio_in)

View File

@ -1,76 +0,0 @@
# ModelScope Model
## How to finetune and infer using a pretrained Paraformer-large Model
### Finetune
- Modify finetune training related parameters in `finetune.py`
- <strong>output_dir:</strong> # result dir
- <strong>data_dir:</strong> # the dataset dir needs to include files: `train/wav.scp`, `train/text`; `validation/wav.scp`, `validation/text`
- <strong>dataset_type:</strong> # for dataset larger than 1000 hours, set as `large`, otherwise set as `small`
- <strong>batch_bins:</strong> # batch size. For dataset_type is `small`, `batch_bins` indicates the feature frames. For dataset_type is `large`, `batch_bins` indicates the duration in ms
- <strong>max_epoch:</strong> # number of training epoch
- <strong>lr:</strong> # learning rate
- Then you can run the pipeline to finetune with:
```python
python finetune.py
```
### Inference
Or you can use the finetuned model for inference directly.
- Setting parameters in `infer.sh`
- <strong>model:</strong> # model name on ModelScope
- <strong>data_dir:</strong> # the dataset dir needs to include `${data_dir}/wav.scp`. If `${data_dir}/text` is also exists, CER will be computed
- <strong>output_dir:</strong> # result dir
- <strong>batch_size:</strong> # batchsize of inference
- <strong>gpu_inference:</strong> # whether to perform gpu decoding, set false for cpu decoding
- <strong>gpuid_list:</strong> # set gpus, e.g., gpuid_list="0,1"
- <strong>njob:</strong> # the number of jobs for CPU decoding, if `gpu_inference`=false, use CPU decoding, please set `njob`
- Decode with multi GPUs:
```shell
bash infer.sh \
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
--data_dir "./data/test" \
--output_dir "./results" \
--batch_size 64 \
--gpu_inference true \
--gpuid_list "0,1"
```
- Decode with multi-thread CPUs:
```shell
bash infer.sh \
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
--data_dir "./data/test" \
--output_dir "./results" \
--gpu_inference false \
--njob 64
```
- Results
The decoding results can be found in `${output_dir}/1best_recog/text.cer`, which includes recognition results of each sample and the CER metric of the whole test set.
If you decode the SpeechIO test sets, you can use textnorm with `stage`=3, and `DETAILS.txt`, `RESULTS.txt` record the results and CER after text normalization.
### Inference using local finetuned model
- Modify inference related parameters in `infer_after_finetune.py`
- <strong>modelscope_model_name: </strong> # model name on ModelScope
- <strong>output_dir:</strong> # result dir
- <strong>data_dir:</strong> # the dataset dir needs to include `test/wav.scp`. If `test/text` is also exists, CER will be computed
- <strong>decoding_model_name:</strong> # set the checkpoint name for decoding, e.g., `valid.cer_ctc.ave.pb`
- <strong>batch_size:</strong> # batchsize of inference
- Then you can run the pipeline to finetune with:
```python
python infer_after_finetune.py
```
- Results
The decoding results can be found in `$output_dir/decoding_results/text.cer`, which includes recognition results of each sample and the CER metric of the whole test set.

View File

@ -1,103 +0,0 @@
#!/usr/bin/env bash
set -e
set -u
set -o pipefail
stage=1
stop_stage=2
model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
data_dir="./data/test"
output_dir="./results"
batch_size=64
gpu_inference=true # whether to perform gpu decoding
gpuid_list="0,1" # set gpus, e.g., gpuid_list="0,1"
njob=64 # the number of jobs for CPU decoding, if gpu_inference=false, use CPU decoding, please set njob
checkpoint_dir=
checkpoint_name="valid.cer_ctc.ave.pb"
. utils/parse_options.sh || exit 1;
if ${gpu_inference} == "true"; then
nj=$(echo $gpuid_list | awk -F "," '{print NF}')
else
nj=$njob
batch_size=1
gpuid_list=""
for JOB in $(seq ${nj}); do
gpuid_list=$gpuid_list"-1,"
done
fi
mkdir -p $output_dir/split
split_scps=""
for JOB in $(seq ${nj}); do
split_scps="$split_scps $output_dir/split/wav.$JOB.scp"
done
perl utils/split_scp.pl ${data_dir}/wav.scp ${split_scps}
if [ -n "${checkpoint_dir}" ]; then
python utils/prepare_checkpoint.py ${model} ${checkpoint_dir} ${checkpoint_name}
model=${checkpoint_dir}/${model}
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ];then
echo "Decoding ..."
gpuid_list_array=(${gpuid_list//,/ })
for JOB in $(seq ${nj}); do
{
id=$((JOB-1))
gpuid=${gpuid_list_array[$id]}
mkdir -p ${output_dir}/output.$JOB
python infer.py \
--model ${model} \
--audio_in ${output_dir}/split/wav.$JOB.scp \
--output_dir ${output_dir}/output.$JOB \
--batch_size ${batch_size} \
--gpuid ${gpuid}
}&
done
wait
mkdir -p ${output_dir}/1best_recog
for f in token score text; do
if [ -f "${output_dir}/output.1/1best_recog/${f}" ]; then
for i in $(seq "${nj}"); do
cat "${output_dir}/output.${i}/1best_recog/${f}"
done | sort -k1 >"${output_dir}/1best_recog/${f}"
fi
done
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ];then
echo "Computing WER ..."
cp ${output_dir}/1best_recog/text ${output_dir}/1best_recog/text.proc
cp ${data_dir}/text ${output_dir}/1best_recog/text.ref
python utils/compute_wer.py ${output_dir}/1best_recog/text.ref ${output_dir}/1best_recog/text.proc ${output_dir}/1best_recog/text.cer
tail -n 3 ${output_dir}/1best_recog/text.cer
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ];then
echo "SpeechIO TIOBE textnorm"
echo "$0 --> Normalizing REF text ..."
./utils/textnorm_zh.py \
--has_key --to_upper \
${data_dir}/text \
${output_dir}/1best_recog/ref.txt
echo "$0 --> Normalizing HYP text ..."
./utils/textnorm_zh.py \
--has_key --to_upper \
${output_dir}/1best_recog/text.proc \
${output_dir}/1best_recog/rec.txt
grep -v $'\t$' ${output_dir}/1best_recog/rec.txt > ${output_dir}/1best_recog/rec_non_empty.txt
echo "$0 --> computing WER/CER and alignment ..."
./utils/error_rate_zh \
--tokenizer char \
--ref ${output_dir}/1best_recog/ref.txt \
--hyp ${output_dir}/1best_recog/rec_non_empty.txt \
${output_dir}/1best_recog/DETAILS.txt | tee ${output_dir}/1best_recog/RESULTS.txt
rm -rf ${output_dir}/1best_recog/rec.txt ${output_dir}/1best_recog/rec_non_empty.txt
fi

View File

@ -1,48 +0,0 @@
import json
import os
import shutil
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.hub.snapshot_download import snapshot_download
from funasr.utils.compute_wer import compute_wer
def modelscope_infer_after_finetune(params):
# prepare for decoding
try:
pretrained_model_path = snapshot_download(params["modelscope_model_name"], cache_dir=params["output_dir"])
except BaseException:
raise BaseException(f"Please download pretrain model from ModelScope firstly.")
shutil.copy(os.path.join(params["output_dir"], params["decoding_model_name"]), os.path.join(pretrained_model_path, "model.pb"))
decoding_path = os.path.join(params["output_dir"], "decode_results")
if os.path.exists(decoding_path):
shutil.rmtree(decoding_path)
os.mkdir(decoding_path)
# decoding
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model=pretrained_model_path,
output_dir=decoding_path,
batch_size=params["batch_size"]
)
audio_in = os.path.join(params["data_dir"], "wav.scp")
inference_pipeline(audio_in=audio_in)
# computer CER if GT text is set
text_in = os.path.join(params["data_dir"], "text")
if os.path.exists(text_in):
text_proc_file = os.path.join(decoding_path, "1best_recog/text")
compute_wer(text_in, text_proc_file, os.path.join(decoding_path, "text.cer"))
if __name__ == '__main__':
params = {}
params["modelscope_model_name"] = "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
params["output_dir"] = "./checkpoint"
params["data_dir"] = "./data/test"
params["decoding_model_name"] = "valid.acc.ave_10best.pb"
params["batch_size"] = 64
modelscope_infer_after_finetune(params)

View File

@ -1,30 +0,0 @@
# ModelScope Model
## How to finetune and infer using a pretrained Paraformer-large Model
### Finetune
- Modify finetune training related parameters in `finetune.py`
- <strong>output_dir:</strong> # result dir
- <strong>data_dir:</strong> # the dataset dir needs to include files: train/wav.scp, train/text; validation/wav.scp, validation/text.
- <strong>batch_bins:</strong> # batch size
- <strong>max_epoch:</strong> # number of training epoch
- <strong>lr:</strong> # learning rate
- Then you can run the pipeline to finetune with:
```python
python finetune.py
```
### Inference
Or you can use the finetuned model for inference directly.
- Setting parameters in `infer.py`
- <strong>audio_in:</strong> # support wav, url, bytes, and parsed audio format.
- <strong>output_dir:</strong> # If the input format is wav.scp, it needs to be set.
- Then you can run the pipeline to infer with:
```python
python infer.py
```

View File

@ -0,0 +1,15 @@
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
if __name__ == '__main__':
audio_in = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav'
output_dir = None
inference_pipline = pipeline(
task=Tasks.auto_speech_recognition,
model="damo/speech_paraformer_asr_nat-zh-cn-16k-aishell1-vocab4234-pytorch",
output_dir=output_dir,
batch_size=1,
)
rec_result = inference_pipline(audio_in=audio_in)
print(rec_result)

View File

@ -1,15 +0,0 @@
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
if __name__ == '__main__':
audio_in = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav'
output_dir = None
inference_pipline = pipeline(
task=Tasks.auto_speech_recognition,
model="damo/speech_paraformer_asr_nat-zh-cn-16k-aishell1-vocab4234-pytorch",
output_dir=output_dir,
batch_size=32,
)
rec_result = inference_pipline(audio_in=audio_in)
print(rec_result)

View File

@ -0,0 +1,13 @@
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
if __name__ == "__main__":
audio_in = "https://modelscope.oss-cn-beijing.aliyuncs.com/test/audios/asr_example.wav"
output_dir = "./results"
inference_pipline = pipeline(
task=Tasks.auto_speech_recognition,
model="damo/speech_paraformer_asr_nat-zh-cn-16k-aishell2-vocab5212-pytorch",
output_dir=output_dir,
)
rec_result = inference_pipline(audio_in=audio_in)
print(rec_result)

View File

@ -1,13 +0,0 @@
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
if __name__ == "__main__":
audio_in = "https://modelscope.oss-cn-beijing.aliyuncs.com/test/audios/asr_example.wav"
output_dir = "./results"
inference_pipline = pipeline(
task=Tasks.auto_speech_recognition,
model="damo/speech_paraformer_asr_nat-zh-cn-16k-aishell2-vocab5212-pytorch",
output_dir=output_dir,
)
rec_result = inference_pipline(audio_in=audio_in)
print(rec_result)

View File

@ -1,46 +1,246 @@
# ModelScope Model
# Speech Recognition
## How to finetune and infer using a pretrained Paraformer-large Model
> **Note**:
> The modelscope pipeline supports all the models in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope) to inference and finetine. Here we take the typic models as examples to demonstrate the usage.
### Finetune
## Inference
- Modify finetune training related parameters in `finetune.py`
- <strong>output_dir:</strong> # result dir
- <strong>data_dir:</strong> # the dataset dir needs to include files: train/wav.scp, train/text; validation/wav.scp, validation/text.
- <strong>batch_bins:</strong> # batch size
- <strong>max_epoch:</strong> # number of training epoch
- <strong>lr:</strong> # learning rate
- Then you can run the pipeline to finetune with:
### Quick start
#### [Paraformer Model](https://www.modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary)
```python
python finetune.py
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
)
rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav')
print(rec_result)
```
#### [Paraformer-online Model](https://www.modelscope.cn/models/damo/speech_paraformer_asr_nat-zh-cn-16k-common-vocab8404-online/summary)
```python
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_paraformer_asr_nat-zh-cn-16k-common-vocab8404-online',
)
import soundfile
speech, sample_rate = soundfile.read("example/asr_example.wav")
param_dict = {"cache": dict(), "is_final": False}
chunk_stride = 7680# 480ms
# first chunk, 480ms
speech_chunk = speech[0:chunk_stride]
rec_result = inference_pipeline(audio_in=speech_chunk, param_dict=param_dict)
print(rec_result)
# next chunk, 480ms
speech_chunk = speech[chunk_stride:chunk_stride+chunk_stride]
rec_result = inference_pipeline(audio_in=speech_chunk, param_dict=param_dict)
print(rec_result)
```
Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/FunASR/discussions/241)
#### [UniASR Model](https://www.modelscope.cn/models/damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/summary)
There are three decoding mode for UniASR model(`fast`、`normal`、`offline`), for more model detailes, please refer to [docs](https://www.modelscope.cn/models/damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/summary)
```python
decoding_model = "fast" # "fast"、"normal"、"offline"
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_UniASR_asr_2pass-minnan-16k-common-vocab3825',
param_dict={"decoding_model": decoding_model})
rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav')
print(rec_result)
```
The decoding mode of `fast` and `normal` is fake streaming, which could be used for evaluating of recognition accuracy.
Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/FunASR/discussions/151)
#### [RNN-T-online model]()
Undo
#### [MFCCA Model](https://www.modelscope.cn/models/NPU-ASLP/speech_mfcca_asr-zh-cn-16k-alimeeting-vocab4950/summary)
For more model detailes, please refer to [docs](https://www.modelscope.cn/models/NPU-ASLP/speech_mfcca_asr-zh-cn-16k-alimeeting-vocab4950/summary)
```python
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='NPU-ASLP/speech_mfcca_asr-zh-cn-16k-alimeeting-vocab4950',
model_revision='v3.0.0'
)
rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav')
print(rec_result)
```
### Inference
#### API-reference
##### Define pipeline
- `task`: `Tasks.auto_speech_recognition`
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
- `ngpu`: `1` (Default), decoding on GPU. If ngpu=0, decoding on CPU
- `ncpu`: `1` (Default), sets the number of threads used for intraop parallelism on CPU
- `output_dir`: `None` (Default), the output path of results if set
- `batch_size`: `1` (Default), batch size when decoding
##### Infer pipeline
- `audio_in`: the input to decode, which could be:
- wav_path, `e.g.`: asr_example.wav,
- pcm_path, `e.g.`: asr_example.pcm,
- audio bytes stream, `e.g.`: bytes data from a microphone
- audio sample point`e.g.`: `audio, rate = soundfile.read("asr_example_zh.wav")`, the dtype is numpy.ndarray or torch.Tensor
- wav.scp, kaldi style wav list (`wav_id \t wav_path`), `e.g.`:
```text
asr_example1 ./audios/asr_example1.wav
asr_example2 ./audios/asr_example2.wav
```
In this case of `wav.scp` input, `output_dir` must be set to save the output results
- `audio_fs`: audio sampling rate, only set when audio_in is pcm audio
- `output_dir`: None (Default), the output path of results if set
Or you can use the finetuned model for inference directly.
### Inference with multi-thread CPUs or multi GPUs
FunASR also offer recipes [egs_modelscope/asr/TEMPLATE/infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/asr/TEMPLATE/infer.sh) to decode with multi-thread CPUs, or multi GPUs.
- Setting parameters in `infer.py`
- <strong>audio_in:</strong> # support wav, url, bytes, and parsed audio format.
- <strong>output_dir:</strong> # If the input format is wav.scp, it needs to be set.
- Setting parameters in `infer.sh`
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
- `data_dir`: the dataset dir needs to include `wav.scp`. If `${data_dir}/text` is also exists, CER will be computed
- `output_dir`: output dir of the recognition results
- `batch_size`: `64` (Default), batch size of inference on gpu
- `gpu_inference`: `true` (Default), whether to perform gpu decoding, set false for CPU inference
- `gpuid_list`: `0,1` (Default), which gpu_ids are used to infer
- `njob`: only used for CPU inference (`gpu_inference`=`false`), `64` (Default), the number of jobs for CPU decoding
- `checkpoint_dir`: only used for infer finetuned models, the path dir of finetuned models
- `checkpoint_name`: only used for infer finetuned models, `valid.cer_ctc.ave.pb` (Default), which checkpoint is used to infer
- `decoding_mode`: `normal` (Default), decoding mode for UniASR model(fast、normal、offline)
- `hotword_txt`: `None` (Default), hotword file for contextual paraformer model(the hotword file name ends with .txt")
- Then you can run the pipeline to infer with:
```python
python infer.py
- Decode with multi GPUs:
```shell
bash infer.sh \
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
--data_dir "./data/test" \
--output_dir "./results" \
--batch_size 64 \
--gpu_inference true \
--gpuid_list "0,1"
```
### Inference using local finetuned model
- Modify inference related parameters in `infer_after_finetune.py`
- <strong>output_dir:</strong> # result dir
- <strong>data_dir:</strong> # the dataset dir needs to include `test/wav.scp`. If `test/text` is also exists, CER will be computed
- <strong>decoding_model_name:</strong> # set the checkpoint name for decoding, e.g., `valid.cer_ctc.ave.pb`
- Then you can run the pipeline to finetune with:
```python
python infer_after_finetune.py
- Decode with multi-thread CPUs:
```shell
bash infer.sh \
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
--data_dir "./data/test" \
--output_dir "./results" \
--gpu_inference false \
--njob 64
```
- Results
The decoding results can be found in `$output_dir/decoding_results/text.cer`, which includes recognition results of each sample and the CER metric of the whole test set.
The decoding results can be found in `$output_dir/1best_recog/text.cer`, which includes recognition results of each sample and the CER metric of the whole test set.
If you decode the SpeechIO test sets, you can use textnorm with `stage`=3, and `DETAILS.txt`, `RESULTS.txt` record the results and CER after text normalization.
## Finetune with pipeline
### Quick start
[finetune.py](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/asr/TEMPLATE/finetune.py)
```python
import os
from modelscope.metainfo import Trainers
from modelscope.trainers import build_trainer
from modelscope.msdatasets.audio.asr_dataset import ASRDataset
def modelscope_finetune(params):
if not os.path.exists(params.output_dir):
os.makedirs(params.output_dir, exist_ok=True)
# dataset split ["train", "validation"]
ds_dict = ASRDataset.load(params.data_path, namespace='speech_asr')
kwargs = dict(
model=params.model,
data_dir=ds_dict,
dataset_type=params.dataset_type,
work_dir=params.output_dir,
batch_bins=params.batch_bins,
max_epoch=params.max_epoch,
lr=params.lr)
trainer = build_trainer(Trainers.speech_asr_trainer, default_args=kwargs)
trainer.train()
if __name__ == '__main__':
from funasr.utils.modelscope_param import modelscope_args
params = modelscope_args(model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch")
params.output_dir = "./checkpoint" # 模型保存路径
params.data_path = "speech_asr_aishell1_trainsets" # 数据路径可以为modelscope中已上传数据也可以是本地数据
params.dataset_type = "small" # 小数据量设置small若数据量大于1000小时请使用large
params.batch_bins = 2000 # batch size如果dataset_type="small"batch_bins单位为fbank特征帧数如果dataset_type="large"batch_bins单位为毫秒
params.max_epoch = 50 # 最大训练轮数
params.lr = 0.00005 # 设置学习率
modelscope_finetune(params)
```
```shell
python finetune.py &> log.txt &
```
### Finetune with your data
- Modify finetune training related parameters in [finetune.py](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/asr/TEMPLATE/finetune.py)
- `output_dir`: result dir
- `data_dir`: the dataset dir needs to include files: `train/wav.scp`, `train/text`; `validation/wav.scp`, `validation/text`
- `dataset_type`: for dataset larger than 1000 hours, set as `large`, otherwise set as `small`
- `batch_bins`: batch size. For dataset_type is `small`, `batch_bins` indicates the feature frames. For dataset_type is `large`, `batch_bins` indicates the duration in ms
- `max_epoch`: number of training epoch
- `lr`: learning rate
- Training data formats
```sh
cat ./example_data/text
BAC009S0002W0122 而 对 楼 市 成 交 抑 制 作 用 最 大 的 限 购
BAC009S0002W0123 也 成 为 地 方 政 府 的 眼 中 钉
english_example_1 hello world
english_example_2 go swim 去 游 泳
cat ./example_data/wav.scp
BAC009S0002W0122 /mnt/data/wav/train/S0002/BAC009S0002W0122.wav
BAC009S0002W0123 /mnt/data/wav/train/S0002/BAC009S0002W0123.wav
english_example_1 /mnt/data/wav/train/S0002/english_example_1.wav
english_example_2 /mnt/data/wav/train/S0002/english_example_2.wav
```
- Then you can run the pipeline to finetune with:
```shell
python finetune.py
```
If you want finetune with multi-GPUs, you could:
```shell
CUDA_VISIBLE_DEVICES=1,2 python -m torch.distributed.launch --nproc_per_node 2 finetune.py > log.txt 2>&1
```
## Inference with your finetuned model
- Setting parameters in [egs_modelscope/asr/TEMPLATE/infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/asr/TEMPLATE/infer.sh) is the same with [docs](https://github.com/alibaba-damo-academy/FunASR/tree/main/egs_modelscope/asr/TEMPLATE#inference-with-multi-thread-cpus-or-multi-gpus), `model` is the model name from modelscope, which you finetuned.
- Decode with multi GPUs:
```shell
bash infer.sh \
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
--data_dir "./data/test" \
--output_dir "./results" \
--batch_size 64 \
--gpu_inference true \
--gpuid_list "0,1" \
--checkpoint_dir "./checkpoint" \
--checkpoint_name "valid.cer_ctc.ave.pb"
```
- Decode with multi-thread CPUs:
```shell
bash infer.sh \
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
--data_dir "./data/test" \
--output_dir "./results" \
--gpu_inference false \
--njob 64 \
--checkpoint_dir "./checkpoint" \
--checkpoint_name "valid.cer_ctc.ave.pb"
```

View File

@ -0,0 +1,15 @@
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
if __name__ == '__main__':
audio_in = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav'
output_dir = None
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
vad_model='damo/speech_fsmn_vad_zh-cn-16k-common-pytorch',
punc_model='damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch',
)
rec_result = inference_pipeline(audio_in=audio_in)
print(rec_result)

View File

@ -1,16 +1,28 @@
import os
import shutil
import argparse
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
if __name__ == '__main__':
audio_in = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav'
output_dir = None
def modelscope_infer(args):
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpuid)
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
vad_model='damo/speech_fsmn_vad_zh-cn-16k-common-pytorch',
punc_model='damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch',
ngpu=1,
model=args.model,
output_dir=args.output_dir,
batch_size=args.batch_size,
param_dict={"decoding_model": args.decoding_mode, "hotword": args.hotword_txt}
)
rec_result = inference_pipeline(audio_in=audio_in)
print(rec_result)
inference_pipeline(audio_in=args.audio_in)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch")
parser.add_argument('--audio_in', type=str, default="./data/test/wav.scp")
parser.add_argument('--output_dir', type=str, default="./results/")
parser.add_argument('--decoding_mode', type=str, default="normal")
parser.add_argument('--hotword_txt', type=str, default=None)
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--gpuid', type=str, default="0")
args = parser.parse_args()
modelscope_infer(args)

View File

@ -0,0 +1,103 @@
#!/usr/bin/env bash
set -e
set -u
set -o pipefail
stage=1
stop_stage=2
model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
data_dir="./data/test"
output_dir="./results"
batch_size=64
gpu_inference=true # whether to perform gpu decoding
gpuid_list="0,1" # set gpus, e.g., gpuid_list="0,1"
njob=64 # the number of jobs for CPU decoding, if gpu_inference=false, use CPU decoding, please set njob
checkpoint_dir=
checkpoint_name="valid.cer_ctc.ave.pb"
. utils/parse_options.sh || exit 1;
if ${gpu_inference} == "true"; then
nj=$(echo $gpuid_list | awk -F "," '{print NF}')
else
nj=$njob
batch_size=1
gpuid_list=""
for JOB in $(seq ${nj}); do
gpuid_list=$gpuid_list"-1,"
done
fi
mkdir -p $output_dir/split
split_scps=""
for JOB in $(seq ${nj}); do
split_scps="$split_scps $output_dir/split/wav.$JOB.scp"
done
perl utils/split_scp.pl ${data_dir}/wav.scp ${split_scps}
if [ -n "${checkpoint_dir}" ]; then
python utils/prepare_checkpoint.py ${model} ${checkpoint_dir} ${checkpoint_name}
model=${checkpoint_dir}/${model}
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ];then
echo "Decoding ..."
gpuid_list_array=(${gpuid_list//,/ })
for JOB in $(seq ${nj}); do
{
id=$((JOB-1))
gpuid=${gpuid_list_array[$id]}
mkdir -p ${output_dir}/output.$JOB
python infer.py \
--model ${model} \
--audio_in ${output_dir}/split/wav.$JOB.scp \
--output_dir ${output_dir}/output.$JOB \
--batch_size ${batch_size} \
--gpuid ${gpuid}
}&
done
wait
mkdir -p ${output_dir}/1best_recog
for f in token score text; do
if [ -f "${output_dir}/output.1/1best_recog/${f}" ]; then
for i in $(seq "${nj}"); do
cat "${output_dir}/output.${i}/1best_recog/${f}"
done | sort -k1 >"${output_dir}/1best_recog/${f}"
fi
done
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ];then
echo "Computing WER ..."
cp ${output_dir}/1best_recog/text ${output_dir}/1best_recog/text.proc
cp ${data_dir}/text ${output_dir}/1best_recog/text.ref
python utils/compute_wer.py ${output_dir}/1best_recog/text.ref ${output_dir}/1best_recog/text.proc ${output_dir}/1best_recog/text.cer
tail -n 3 ${output_dir}/1best_recog/text.cer
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ];then
echo "SpeechIO TIOBE textnorm"
echo "$0 --> Normalizing REF text ..."
./utils/textnorm_zh.py \
--has_key --to_upper \
${data_dir}/text \
${output_dir}/1best_recog/ref.txt
echo "$0 --> Normalizing HYP text ..."
./utils/textnorm_zh.py \
--has_key --to_upper \
${output_dir}/1best_recog/text.proc \
${output_dir}/1best_recog/rec.txt
grep -v $'\t$' ${output_dir}/1best_recog/rec.txt > ${output_dir}/1best_recog/rec_non_empty.txt
echo "$0 --> computing WER/CER and alignment ..."
./utils/error_rate_zh \
--tokenizer char \
--ref ${output_dir}/1best_recog/ref.txt \
--hyp ${output_dir}/1best_recog/rec_non_empty.txt \
${output_dir}/1best_recog/DETAILS.txt | tee ${output_dir}/1best_recog/RESULTS.txt
rm -rf ${output_dir}/1best_recog/rec.txt ${output_dir}/1best_recog/rec_non_empty.txt
fi

View File

@ -1,47 +0,0 @@
import json
import os
import shutil
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.hub.snapshot_download import snapshot_download
from funasr.utils.compute_wer import compute_wer
def modelscope_infer_after_finetune(params):
# prepare for decoding
try:
pretrained_model_path = snapshot_download(params["modelscope_model_name"], cache_dir=params["output_dir"])
except BaseException:
raise BaseException(f"Please download pretrain model from ModelScope firstly.")shutil.copy(os.path.join(params["output_dir"], params["decoding_model_name"]), os.path.join(pretrained_model_path, "model.pb"))
decoding_path = os.path.join(params["output_dir"], "decode_results")
if os.path.exists(decoding_path):
shutil.rmtree(decoding_path)
os.mkdir(decoding_path)
# decoding
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model=pretrained_model_path,
output_dir=decoding_path,
batch_size=params["batch_size"]
)
audio_in = os.path.join(params["data_dir"], "wav.scp")
inference_pipeline(audio_in=audio_in)
# computer CER if GT text is set
text_in = os.path.join(params["data_dir"], "text")
if os.path.exists(text_in):
text_proc_file = os.path.join(decoding_path, "1best_recog/token")
compute_wer(text_in, text_proc_file, os.path.join(decoding_path, "text.cer"))
if __name__ == '__main__':
params = {}
params["modelscope_model_name"] = "damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
params["output_dir"] = "./checkpoint"
params["data_dir"] = "./data/test"
params["decoding_model_name"] = "valid.acc.ave_10best.pb"
params["batch_size"] = 64
modelscope_infer_after_finetune(params)

View File

@ -1,5 +1,4 @@
# Punctuation Restoration
# Voice Activity Detection
> **Note**:
> The modelscope pipeline supports all the models in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope) to inference and finetune. Here we take the model of the punctuation model of CT-Transformer as example to demonstrate the usage.
@ -69,7 +68,7 @@ Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/
- `param_dict`: reserving the cache which is necessary in realtime mode.
### Inference with multi-thread CPUs or multi GPUs
FunASR also offer recipes [egs_modelscope/punc/TEMPLATE/infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/punc/TEMPLATE/infer.sh) to decode with multi-thread CPUs, or multi GPUs. It is an offline recipe and only support offline model.
FunASR also offer recipes [egs_modelscope/punctuation/TEMPLATE/infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/punctuation/TEMPLATE/infer.sh) to decode with multi-thread CPUs, or multi GPUs. It is an offline recipe and only support offline model.
- Setting parameters in `infer.sh`
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
@ -87,7 +86,7 @@ FunASR also offer recipes [egs_modelscope/punc/TEMPLATE/infer.sh](https://github
--model "damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch" \
--data_dir "./data/test" \
--output_dir "./results" \
--batch_size 64 \
--batch_size 1 \
--gpu_inference true \
--gpuid_list "0,1"
```
@ -98,7 +97,7 @@ FunASR also offer recipes [egs_modelscope/punc/TEMPLATE/infer.sh](https://github
--data_dir "./data/test" \
--output_dir "./results" \
--gpu_inference false \
--njob 64
--njob 1
```

View File

@ -0,0 +1 @@
../../TEMPLATE/README.md

View File

@ -0,0 +1,27 @@
##################text二进制数据#####################
inputs = "跨境河流是养育沿岸|人民的生命之源长期以来为帮助下游地区防灾减灾中方技术人员|在上游地区极为恶劣的自然条件下克服巨大困难甚至冒着生命危险|向印方提供汛期水文资料处理紧急事件中方重视印方在跨境河流问题上的关切|愿意进一步完善双方联合工作机制|凡是|中方能做的我们|都会去做而且会做得更好我请印度朋友们放心中国在上游的|任何开发利用都会经过科学|规划和论证兼顾上下游的利益"
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.utils.logger import get_logger
import logging
logger = get_logger(log_level=logging.CRITICAL)
logger.setLevel(logging.CRITICAL)
inference_pipeline = pipeline(
task=Tasks.punctuation,
model='damo/punc_ct-transformer_zh-cn-common-vad_realtime-vocab272727',
output_dir="./tmp/"
)
vads = inputs.split("|")
rec_result_all="outputs:"
param_dict = {"cache": []}
for vad in vads:
rec_result = inference_pipeline(text_in=vad, param_dict=param_dict)
rec_result_all += rec_result['text']
print(rec_result_all)

View File

@ -1,27 +0,0 @@
##################text二进制数据#####################
inputs = "跨境河流是养育沿岸|人民的生命之源长期以来为帮助下游地区防灾减灾中方技术人员|在上游地区极为恶劣的自然条件下克服巨大困难甚至冒着生命危险|向印方提供汛期水文资料处理紧急事件中方重视印方在跨境河流问题上的关切|愿意进一步完善双方联合工作机制|凡是|中方能做的我们|都会去做而且会做得更好我请印度朋友们放心中国在上游的|任何开发利用都会经过科学|规划和论证兼顾上下游的利益"
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.utils.logger import get_logger
import logging
logger = get_logger(log_level=logging.CRITICAL)
logger.setLevel(logging.CRITICAL)
inference_pipeline = pipeline(
task=Tasks.punctuation,
model='damo/punc_ct-transformer_zh-cn-common-vad_realtime-vocab272727',
output_dir="./tmp/"
)
vads = inputs.split("|")
rec_result_all="outputs:"
param_dict = {"cache": []}
for vad in vads:
rec_result = inference_pipeline(text_in=vad, param_dict=param_dict)
rec_result_all += rec_result['text']
print(rec_result_all)

View File

@ -0,0 +1 @@
../../TEMPLATE/infer.py

View File

@ -0,0 +1 @@
../../TEMPLATE/infer.sh

View File

@ -1,19 +0,0 @@
# ModelScope Model
## How to finetune and infer using a pretrained ModelScope Model
### Inference
Or you can use the finetuned model for inference directly.
task=Tasks.punctuation,
model='damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch',
- Setting parameters in `modelscope_common_infer.sh`
- <strong>model:</strong> damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch # pre-trained model, download from modelscope
- <strong>text_in:</strong> input path, text or url
- <strong>output_dir:</strong> the result dir
- Then you can run the pipeline to infer with:
```sh
python ./infer.py
```

View File

@ -0,0 +1 @@
../TEMPLATE/README.md

View File

@ -1,3 +0,0 @@
1 跨境河流是养育沿岸人民的生命之源长期以来为帮助下游地区防灾减灾中方技术人员在上游地区极为恶劣的自然条件下克服巨大困难甚至冒着生命危险向印方提供汛期水文资料处理紧急事件中方重视印方在跨境河流问题上的关切愿意进一步完善双方联合工作机制凡是中方能做的我们都会去做而且会做得更好我请印度朋友们放心中国在上游的任何开发利用都会经过科学规划和论证兼顾上下游的利益
2 从存储上来说仅仅是全景图片它就会是图片的四倍的容量然后全景的视频会是普通视频八倍的这个存储的容要求而三d的模型会是图片的十倍这都对我们今天运行在的云计算的平台存储的平台提出了更高的要求
3 那今天的会就到这里吧 happy new year 明年见

View File

@ -0,0 +1,23 @@
##################text.scp文件路径###################
inputs = "./egs_modelscope/punctuation/punc_ct-transformer_zh-cn-common-vocab272727-pytorch/data/punc_example.txt"
##################text二进制数据#####################
#inputs = "我们都是木头人不会讲话不会动"
##################text文件url#######################
#inputs = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/punc_example.txt"
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_pipline = pipeline(
task=Tasks.punctuation,
model='damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch',
model_revision="v1.1.7",
output_dir="./tmp/"
)
rec_result = inference_pipline(text_in=inputs)
print(rec_result)

View File

@ -1,23 +0,0 @@
##################text.scp文件路径###################
inputs = "./egs_modelscope/punctuation/punc_ct-transformer_zh-cn-common-vocab272727-pytorch/data/punc_example.txt"
##################text二进制数据#####################
#inputs = "我们都是木头人不会讲话不会动"
##################text文件url#######################
#inputs = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/punc_example.txt"
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_pipline = pipeline(
task=Tasks.punctuation,
model='damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch',
model_revision="v1.1.7",
output_dir="./tmp/"
)
rec_result = inference_pipline(text_in=inputs)
print(rec_result)

View File

@ -0,0 +1 @@
../TEMPLATE/infer.py

View File

@ -0,0 +1 @@
../TEMPLATE/infer.sh

View File

@ -59,11 +59,11 @@ Timestamp pipeline can also be used after ASR pipeline to compose complete ASR f
```
### Inference with multi-thread CPUs or multi GPUs
FunASR also offer recipes [egs_modelscope/vad/TEMPLATE/infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/vad/TEMPLATE/infer.sh) to decode with multi-thread CPUs, or multi GPUs.
FunASR also offer recipes [egs_modelscope/tp/TEMPLATE/infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/tp/TEMPLATE/infer.sh) to decode with multi-thread CPUs, or multi GPUs.
- Setting parameters in `infer.sh`
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
- `data_dir`: the dataset dir **must** include `wav.scp` and `text.scp`
- `data_dir`: the dataset dir **must** include `wav.scp` and `text.txt`
- `output_dir`: output dir of the recognition results
- `batch_size`: `64` (Default), batch size of inference on gpu
- `gpu_inference`: `true` (Default), whether to perform gpu decoding, set false for CPU inference
@ -78,7 +78,7 @@ FunASR also offer recipes [egs_modelscope/vad/TEMPLATE/infer.sh](https://github.
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
--data_dir "./data/test" \
--output_dir "./results" \
--batch_size 64 \
--batch_size 1 \
--gpu_inference true \
--gpuid_list "0,1"
```
@ -89,7 +89,7 @@ FunASR also offer recipes [egs_modelscope/vad/TEMPLATE/infer.sh](https://github.
--data_dir "./data/test" \
--output_dir "./results" \
--gpu_inference false \
--njob 64
--njob 1
```
## Finetune with pipeline

View File

@ -1 +0,0 @@
../speech_timestamp_prediction-v1-16k-offline/infer.py

View File

@ -0,0 +1,28 @@
import os
import argparse
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
def modelscope_infer(args):
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpuid)
inference_pipeline = pipeline(
task=Tasks.speech_timestamp,
model=args.model,
output_dir=args.output_dir,
batch_size=args.batch_size,
)
if args.output_dir is not None:
inference_pipeline(audio_in=args.audio_in, text_in=args.text_in)
else:
print(inference_pipeline(audio_in=args.audio_in, text_in=args.text_in))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default="damo/speech_timestamp_prediction-v1-16k-offline")
parser.add_argument('--audio_in', type=str, default="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_timestamps.wav")
parser.add_argument('--text_in', type=str, default="一 个 东 太 平 洋 国 家 为 什 么 跑 到 西 太 平 洋 来 了 呢")
parser.add_argument('--output_dir', type=str, default="./results/")
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--gpuid', type=str, default="0")
args = parser.parse_args()
modelscope_infer(args)

View File

@ -37,7 +37,7 @@ for JOB in $(seq ${nj}); do
split_texts="$split_texts $output_dir/split/text.$JOB.scp"
done
perl utils/split_scp.pl ${data_dir}/wav.scp ${split_scps}
perl utils/split_scp.pl ${data_dir}/text.scp ${split_texts}
perl utils/split_scp.pl ${data_dir}/text.txt ${split_texts}
if [ -n "${checkpoint_dir}" ]; then
python utils/prepare_checkpoint.py ${model} ${checkpoint_dir} ${checkpoint_name}

View File

@ -1,25 +0,0 @@
# ModelScope Model
## How to finetune and infer using a pretrained ModelScope Model
### Inference
Or you can use the finetuned model for inference directly.
- Setting parameters in `infer.py`
- <strong>audio_in:</strong> # support wav, url, bytes, and parsed audio format.
- <strong>text_in:</strong> # support text, text url.
- <strong>output_dir:</strong> # If the input format is wav.scp, it needs to be set.
- Then you can run the pipeline to infer with:
```python
python infer.py
```
Modify inference related parameters in vad.yaml.
- max_end_silence_time: The end-point silence duration to judge the end of sentence, the parameter range is 500ms~6000ms, and the default value is 800ms
- speech_noise_thres: The balance of speech and silence scores, the parameter range is (-1,1)
- The value tends to -1, the greater probability of noise being judged as speech
- The value tends to 1, the greater probability of speech being judged as noise

View File

@ -0,0 +1 @@
../../TEMPLATE/README.md

View File

@ -0,0 +1,12 @@
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_pipline = pipeline(
task=Tasks.speech_timestamp,
model='damo/speech_timestamp_prediction-v1-16k-offline',
output_dir=None)
rec_result = inference_pipline(
audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_timestamps.wav',
text_in='一 个 东 太 平 洋 国 家 为 什 么 跑 到 西 太 平 洋 来 了 呢',)
print(rec_result)

View File

@ -1,28 +0,0 @@
import os
import argparse
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
def modelscope_infer(args):
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpuid)
inference_pipeline = pipeline(
task=Tasks.speech_timestamp,
model=args.model,
output_dir=args.output_dir,
batch_size=args.batch_size,
)
if args.output_dir is not None:
inference_pipeline(audio_in=args.audio_in, text_in=args.text_in)
else:
print(inference_pipeline(audio_in=args.audio_in, text_in=args.text_in))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default="damo/speech_timestamp_prediction-v1-16k-offline")
parser.add_argument('--audio_in', type=str, default="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_timestamps.wav")
parser.add_argument('--text_in', type=str, default="一 个 东 太 平 洋 国 家 为 什 么 跑 到 西 太 平 洋 来 了 呢")
parser.add_argument('--output_dir', type=str, default="./results/")
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--gpuid', type=str, default="0")
args = parser.parse_args()
modelscope_infer(args)

View File

@ -0,0 +1 @@
../../TEMPLATE/infer.py

View File

@ -0,0 +1 @@
../../TEMPLATE/infer.sh

View File

@ -86,7 +86,7 @@ FunASR also offer recipes [egs_modelscope/vad/TEMPLATE/infer.sh](https://github.
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
--data_dir "./data/test" \
--output_dir "./results" \
--batch_size 64 \
--batch_size 1 \
--gpu_inference true \
--gpuid_list "0,1"
```
@ -97,7 +97,7 @@ FunASR also offer recipes [egs_modelscope/vad/TEMPLATE/infer.sh](https://github.
--data_dir "./data/test" \
--output_dir "./results" \
--gpu_inference false \
--njob 64
--njob 1
```
## Finetune with pipeline

View File

@ -1,24 +0,0 @@
# ModelScope Model
## How to finetune and infer using a pretrained ModelScope Model
### Inference
Or you can use the finetuned model for inference directly.
- Setting parameters in `infer.py`
- <strong>audio_in:</strong> # support wav, url, bytes, and parsed audio format.
- <strong>output_dir:</strong> # If the input format is wav.scp, it needs to be set.
- Then you can run the pipeline to infer with:
```python
python infer.py
```
Modify inference related parameters in vad.yaml.
- max_end_silence_time: The end-point silence duration to judge the end of sentence, the parameter range is 500ms~6000ms, and the default value is 800ms
- speech_noise_thres: The balance of speech and silence scores, the parameter range is (-1,1)
- The value tends to -1, the greater probability of noise being judged as speech
- The value tends to 1, the greater probability of speech being judged as noise

View File

@ -0,0 +1 @@
../../TEMPLATE/README.md

View File

@ -0,0 +1,15 @@
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
if __name__ == '__main__':
audio_in = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav'
output_dir = None
inference_pipline = pipeline(
task=Tasks.voice_activity_detection,
model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch",
model_revision='v1.2.0',
output_dir=output_dir,
batch_size=1,
)
segments_result = inference_pipline(audio_in=audio_in)
print(segments_result)

View File

@ -1,15 +0,0 @@
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
if __name__ == '__main__':
audio_in = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav'
output_dir = None
inference_pipline = pipeline(
task=Tasks.voice_activity_detection,
model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch",
model_revision='v1.2.0',
output_dir=output_dir,
batch_size=1,
)
segments_result = inference_pipline(audio_in=audio_in)
print(segments_result)

View File

@ -0,0 +1 @@
../../TEMPLATE/infer.py

View File

@ -0,0 +1 @@
../../TEMPLATE/infer.sh

View File

@ -1,24 +0,0 @@
# ModelScope Model
## How to finetune and infer using a pretrained ModelScope Model
### Inference
Or you can use the finetuned model for inference directly.
- Setting parameters in `infer.py`
- <strong>audio_in:</strong> # support wav, url, bytes, and parsed audio format.
- <strong>output_dir:</strong> # If the input format is wav.scp, it needs to be set.
- Then you can run the pipeline to infer with:
```python
python infer.py
```
Modify inference related parameters in vad.yaml.
- max_end_silence_time: The end-point silence duration to judge the end of sentence, the parameter range is 500ms~6000ms, and the default value is 800ms
- speech_noise_thres: The balance of speech and silence scores, the parameter range is (-1,1)
- The value tends to -1, the greater probability of noise being judged as speech
- The value tends to 1, the greater probability of speech being judged as noise

View File

@ -0,0 +1 @@
../../TEMPLATE/README.md

View File

@ -0,0 +1,15 @@
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
if __name__ == '__main__':
audio_in = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example_8k.wav'
output_dir = None
inference_pipline = pipeline(
task=Tasks.voice_activity_detection,
model="damo/speech_fsmn_vad_zh-cn-8k-common",
model_revision='v1.2.0',
output_dir=output_dir,
batch_size=1,
)
segments_result = inference_pipline(audio_in=audio_in)
print(segments_result)

View File

@ -1,15 +0,0 @@
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
if __name__ == '__main__':
audio_in = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example_8k.wav'
output_dir = None
inference_pipline = pipeline(
task=Tasks.voice_activity_detection,
model="damo/speech_fsmn_vad_zh-cn-8k-common",
model_revision='v1.2.0',
output_dir=output_dir,
batch_size=1,
)
segments_result = inference_pipline(audio_in=audio_in)
print(segments_result)

View File

@ -0,0 +1 @@
../../TEMPLATE/infer.py

View File

@ -0,0 +1 @@
../../TEMPLATE/infer.sh