mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
export model
This commit is contained in:
parent
22ef23fb6a
commit
abd600823b
@ -11,33 +11,23 @@ The installation is the same as [funasr](../../README.md)
|
|||||||
|
|
||||||
## Export onnx format model
|
## Export onnx format model
|
||||||
Export model from modelscope
|
Export model from modelscope
|
||||||
```python
|
```shell
|
||||||
from funasr.export.export_model import ASRModelExportParaformer
|
python -m funasr.export.export_model 'damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch' "./export" true
|
||||||
|
|
||||||
output_dir = "../export" # onnx/torchscripts model save path
|
|
||||||
export_model = ASRModelExportParaformer(cache_dir=output_dir, onnx=True)
|
|
||||||
export_model.export('damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch')
|
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
Export model from local path
|
Export model from local path
|
||||||
```python
|
```shell
|
||||||
export_model.export('/root/cache/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch')
|
python -m funasr.export.export_model '/mnt/workspace/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch' "./export" true
|
||||||
```
|
```
|
||||||
|
|
||||||
## Export torchscripts format model
|
## Export torchscripts format model
|
||||||
Export model from modelscope
|
Export model from modelscope
|
||||||
```python
|
```shell
|
||||||
from funasr.export.export_model import ASRModelExportParaformer
|
python -m funasr.export.export_model 'damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch' "./export" false
|
||||||
|
|
||||||
output_dir = "../export" # onnx/torchscripts model save path
|
|
||||||
export_model = ASRModelExportParaformer(cache_dir=output_dir, onnx=False)
|
|
||||||
export_model.export('damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch')
|
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
Export model from local path
|
Export model from local path
|
||||||
```python
|
```shell
|
||||||
|
python -m funasr.export.export_model '/mnt/workspace/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch' "./export" false
|
||||||
export_model.export('/root/cache/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch')
|
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|||||||
@ -117,7 +117,15 @@ class ASRModelExportParaformer:
|
|||||||
)
|
)
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
output_dir = "../export"
|
import sys
|
||||||
export_model = ASRModelExportParaformer(cache_dir=output_dir, onnx=True)
|
|
||||||
export_model.export('damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch')
|
model_path = sys.argv[1]
|
||||||
|
output_dir = sys.argv[2]
|
||||||
|
onnx = sys.argv[3]
|
||||||
|
onnx = onnx.lower()
|
||||||
|
onnx = onnx == 'true'
|
||||||
|
# model_path = 'damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch'
|
||||||
|
# output_dir = "../export"
|
||||||
|
export_model = ASRModelExportParaformer(cache_dir=output_dir, onnx=onnx)
|
||||||
|
export_model.export(model_path)
|
||||||
# export_model.export('/root/cache/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch')
|
# export_model.export('/root/cache/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch')
|
||||||
@ -116,53 +116,3 @@ def cif(hidden, alphas, threshold: float):
|
|||||||
pad_l = torch.zeros([int(max_label_len - l.size(0)), int(hidden_size)], device=hidden.device)
|
pad_l = torch.zeros([int(max_label_len - l.size(0)), int(hidden_size)], device=hidden.device)
|
||||||
list_ls.append(torch.cat([l, pad_l], 0))
|
list_ls.append(torch.cat([l, pad_l], 0))
|
||||||
return torch.stack(list_ls, 0), fires
|
return torch.stack(list_ls, 0), fires
|
||||||
|
|
||||||
|
|
||||||
def CifPredictorV2_test():
|
|
||||||
x = torch.rand([2, 21, 2])
|
|
||||||
x_len = torch.IntTensor([6, 21])
|
|
||||||
|
|
||||||
mask = sequence_mask(x_len, maxlen=x.size(1), dtype=x.dtype)
|
|
||||||
x = x * mask[:, :, None]
|
|
||||||
|
|
||||||
predictor_scripts = torch.jit.script(CifPredictorV2(2, 1, 1))
|
|
||||||
# cif_output, cif_length, alphas, cif_peak = predictor_scripts(x, mask=mask[:, None, :])
|
|
||||||
predictor_scripts.save('test.pt')
|
|
||||||
loaded = torch.jit.load('test.pt')
|
|
||||||
cif_output, cif_length, alphas, cif_peak = loaded(x, mask=mask[:, None, :])
|
|
||||||
# print(cif_output)
|
|
||||||
print(predictor_scripts.code)
|
|
||||||
# predictor = CifPredictorV2(2, 1, 1)
|
|
||||||
# cif_output, cif_length, alphas, cif_peak = predictor(x, mask=mask[:, None, :])
|
|
||||||
print(cif_output)
|
|
||||||
|
|
||||||
|
|
||||||
def CifPredictorV2_export_test():
|
|
||||||
x = torch.rand([2, 21, 2])
|
|
||||||
x_len = torch.IntTensor([6, 21])
|
|
||||||
|
|
||||||
mask = sequence_mask(x_len, maxlen=x.size(1), dtype=x.dtype)
|
|
||||||
x = x * mask[:, :, None]
|
|
||||||
|
|
||||||
# predictor_scripts = torch.jit.script(CifPredictorV2(2, 1, 1))
|
|
||||||
# cif_output, cif_length, alphas, cif_peak = predictor_scripts(x, mask=mask[:, None, :])
|
|
||||||
predictor = CifPredictorV2(2, 1, 1)
|
|
||||||
predictor_trace = torch.jit.trace(predictor, (x, mask[:, None, :]))
|
|
||||||
predictor_trace.save('test_trace.pt')
|
|
||||||
loaded = torch.jit.load('test_trace.pt')
|
|
||||||
|
|
||||||
x = torch.rand([3, 30, 2])
|
|
||||||
x_len = torch.IntTensor([6, 20, 30])
|
|
||||||
mask = sequence_mask(x_len, maxlen=x.size(1), dtype=x.dtype)
|
|
||||||
x = x * mask[:, :, None]
|
|
||||||
cif_output, cif_length, alphas, cif_peak = loaded(x, mask=mask[:, None, :])
|
|
||||||
print(cif_output)
|
|
||||||
# print(predictor_trace.code)
|
|
||||||
# predictor = CifPredictorV2(2, 1, 1)
|
|
||||||
# cif_output, cif_length, alphas, cif_peak = predictor(x, mask=mask[:, None, :])
|
|
||||||
# print(cif_output)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
# CifPredictorV2_test()
|
|
||||||
CifPredictorV2_export_test()
|
|
||||||
@ -20,9 +20,19 @@ cd funasr/runtime/python/onnxruntime/paraformer/rapid_paraformer
|
|||||||
pip install -r requirements.txt
|
pip install -r requirements.txt
|
||||||
```
|
```
|
||||||
3. Export the model.
|
3. Export the model.
|
||||||
- Export your model([docs](https://github.com/alibaba-damo-academy/FunASR/tree/main/funasr/export))
|
|
||||||
|
- Export model from modelscope
|
||||||
|
```shell
|
||||||
|
python -m funasr.export.export_model 'damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch' "./export" true
|
||||||
|
```
|
||||||
|
- Export model from local path
|
||||||
|
```shell
|
||||||
|
python -m funasr.export.export_model '/mnt/workspace/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch' "./export" true
|
||||||
|
```
|
||||||
|
- More details ref to ([docs](https://github.com/alibaba-damo-academy/FunASR/tree/main/funasr/export))
|
||||||
|
|
||||||
4. Run the demo.
|
|
||||||
|
5. Run the demo.
|
||||||
- Model_dir: the model path, which contains `model.onnx`, `config.yaml`, `am.mvn`.
|
- Model_dir: the model path, which contains `model.onnx`, `config.yaml`, `am.mvn`.
|
||||||
- Input: wav formt file, support formats: `str, np.ndarray, List[str]`
|
- Input: wav formt file, support formats: `str, np.ndarray, List[str]`
|
||||||
- Output: `List[str]`: recognition result.
|
- Output: `List[str]`: recognition result.
|
||||||
|
|||||||
@ -0,0 +1,9 @@
|
|||||||
|
from paraformer_onnx import Paraformer
|
||||||
|
|
||||||
|
model_dir = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
|
||||||
|
model = Paraformer(model_dir, batch_size=1)
|
||||||
|
|
||||||
|
wav_path = ['/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav']
|
||||||
|
|
||||||
|
result = model(wav_path)
|
||||||
|
print(result)
|
||||||
Loading…
Reference in New Issue
Block a user