mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
readme
This commit is contained in:
parent
450ed4f344
commit
a8fa75b81f
Binary file not shown.
|
Before Width: | Height: | Size: 180 KiB After Width: | Height: | Size: 143 KiB |
Binary file not shown.
|
Before Width: | Height: | Size: 186 KiB After Width: | Height: | Size: 394 KiB |
@ -46,11 +46,6 @@ from funasr.models.frontend.wav_frontend import WavFrontend
|
||||
header_colors = '\033[95m'
|
||||
end_colors = '\033[0m'
|
||||
|
||||
global_asr_language: str = 'zh-cn'
|
||||
global_sample_rate: Union[int, Dict[Any, int]] = {
|
||||
'audio_fs': 16000,
|
||||
'model_fs': 16000
|
||||
}
|
||||
|
||||
class Speech2Text:
|
||||
"""Speech2Text class
|
||||
@ -256,142 +251,6 @@ class Speech2Text:
|
||||
assert check_return_type(results)
|
||||
return results
|
||||
|
||||
|
||||
# def inference(
|
||||
# maxlenratio: float,
|
||||
# minlenratio: float,
|
||||
# batch_size: int,
|
||||
# beam_size: int,
|
||||
# ngpu: int,
|
||||
# ctc_weight: float,
|
||||
# lm_weight: float,
|
||||
# penalty: float,
|
||||
# log_level: Union[int, str],
|
||||
# data_path_and_name_and_type,
|
||||
# asr_train_config: Optional[str],
|
||||
# asr_model_file: Optional[str],
|
||||
# cmvn_file: Optional[str] = None,
|
||||
# lm_train_config: Optional[str] = None,
|
||||
# lm_file: Optional[str] = None,
|
||||
# token_type: Optional[str] = None,
|
||||
# key_file: Optional[str] = None,
|
||||
# word_lm_train_config: Optional[str] = None,
|
||||
# bpemodel: Optional[str] = None,
|
||||
# allow_variable_data_keys: bool = False,
|
||||
# streaming: bool = False,
|
||||
# output_dir: Optional[str] = None,
|
||||
# dtype: str = "float32",
|
||||
# seed: int = 0,
|
||||
# ngram_weight: float = 0.9,
|
||||
# nbest: int = 1,
|
||||
# num_workers: int = 1,
|
||||
# **kwargs,
|
||||
# ):
|
||||
# assert check_argument_types()
|
||||
# if batch_size > 1:
|
||||
# raise NotImplementedError("batch decoding is not implemented")
|
||||
# if word_lm_train_config is not None:
|
||||
# raise NotImplementedError("Word LM is not implemented")
|
||||
# if ngpu > 1:
|
||||
# raise NotImplementedError("only single GPU decoding is supported")
|
||||
#
|
||||
# logging.basicConfig(
|
||||
# level=log_level,
|
||||
# format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
|
||||
# )
|
||||
#
|
||||
# if ngpu >= 1 and torch.cuda.is_available():
|
||||
# device = "cuda"
|
||||
# else:
|
||||
# device = "cpu"
|
||||
#
|
||||
# # 1. Set random-seed
|
||||
# set_all_random_seed(seed)
|
||||
#
|
||||
# # 2. Build speech2text
|
||||
# speech2text_kwargs = dict(
|
||||
# asr_train_config=asr_train_config,
|
||||
# asr_model_file=asr_model_file,
|
||||
# cmvn_file=cmvn_file,
|
||||
# lm_train_config=lm_train_config,
|
||||
# lm_file=lm_file,
|
||||
# token_type=token_type,
|
||||
# bpemodel=bpemodel,
|
||||
# device=device,
|
||||
# maxlenratio=maxlenratio,
|
||||
# minlenratio=minlenratio,
|
||||
# dtype=dtype,
|
||||
# beam_size=beam_size,
|
||||
# ctc_weight=ctc_weight,
|
||||
# lm_weight=lm_weight,
|
||||
# ngram_weight=ngram_weight,
|
||||
# penalty=penalty,
|
||||
# nbest=nbest,
|
||||
# streaming=streaming,
|
||||
# )
|
||||
# logging.info("speech2text_kwargs: {}".format(speech2text_kwargs))
|
||||
# speech2text = Speech2Text(**speech2text_kwargs)
|
||||
#
|
||||
# # 3. Build data-iterator
|
||||
# loader = ASRTask.build_streaming_iterator(
|
||||
# data_path_and_name_and_type,
|
||||
# dtype=dtype,
|
||||
# batch_size=batch_size,
|
||||
# key_file=key_file,
|
||||
# num_workers=num_workers,
|
||||
# preprocess_fn=ASRTask.build_preprocess_fn(speech2text.asr_train_args, False),
|
||||
# collate_fn=ASRTask.build_collate_fn(speech2text.asr_train_args, False),
|
||||
# allow_variable_data_keys=allow_variable_data_keys,
|
||||
# inference=True,
|
||||
# )
|
||||
#
|
||||
# finish_count = 0
|
||||
# file_count = 1
|
||||
# # 7 .Start for-loop
|
||||
# # FIXME(kamo): The output format should be discussed about
|
||||
# asr_result_list = []
|
||||
# if output_dir is not None:
|
||||
# writer = DatadirWriter(output_dir)
|
||||
# else:
|
||||
# writer = None
|
||||
#
|
||||
# for keys, batch in loader:
|
||||
# assert isinstance(batch, dict), type(batch)
|
||||
# assert all(isinstance(s, str) for s in keys), keys
|
||||
# _bs = len(next(iter(batch.values())))
|
||||
# assert len(keys) == _bs, f"{len(keys)} != {_bs}"
|
||||
# #batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
|
||||
#
|
||||
# # N-best list of (text, token, token_int, hyp_object)
|
||||
# try:
|
||||
# results = speech2text(**batch)
|
||||
# except TooShortUttError as e:
|
||||
# logging.warning(f"Utterance {keys} {e}")
|
||||
# hyp = Hypothesis(score=0.0, scores={}, states={}, yseq=[])
|
||||
# results = [[" ", ["sil"], [2], hyp]] * nbest
|
||||
#
|
||||
# # Only supporting batch_size==1
|
||||
# key = keys[0]
|
||||
# for n, (text, token, token_int, hyp) in zip(range(1, nbest + 1), results):
|
||||
# # Create a directory: outdir/{n}best_recog
|
||||
# if writer is not None:
|
||||
# ibest_writer = writer[f"{n}best_recog"]
|
||||
#
|
||||
# # Write the result to each file
|
||||
# ibest_writer["token"][key] = " ".join(token)
|
||||
# ibest_writer["token_int"][key] = " ".join(map(str, token_int))
|
||||
# ibest_writer["score"][key] = str(hyp.score)
|
||||
#
|
||||
# if text is not None:
|
||||
# text_postprocessed = postprocess_utils.sentence_postprocess(token)
|
||||
# item = {'key': key, 'value': text_postprocessed}
|
||||
# asr_result_list.append(item)
|
||||
# finish_count += 1
|
||||
# asr_utils.print_progress(finish_count / file_count)
|
||||
# if writer is not None:
|
||||
# ibest_writer["text"][key] = text
|
||||
# return asr_result_list
|
||||
|
||||
def inference(
|
||||
maxlenratio: float,
|
||||
minlenratio: float,
|
||||
|
||||
@ -280,162 +280,6 @@ class Speech2Text:
|
||||
return results
|
||||
|
||||
|
||||
# def inference(
|
||||
# maxlenratio: float,
|
||||
# minlenratio: float,
|
||||
# batch_size: int,
|
||||
# beam_size: int,
|
||||
# ngpu: int,
|
||||
# ctc_weight: float,
|
||||
# lm_weight: float,
|
||||
# penalty: float,
|
||||
# log_level: Union[int, str],
|
||||
# data_path_and_name_and_type,
|
||||
# asr_train_config: Optional[str],
|
||||
# asr_model_file: Optional[str],
|
||||
# cmvn_file: Optional[str] = None,
|
||||
# raw_inputs: Union[np.ndarray, torch.Tensor] = None,
|
||||
# lm_train_config: Optional[str] = None,
|
||||
# lm_file: Optional[str] = None,
|
||||
# token_type: Optional[str] = None,
|
||||
# key_file: Optional[str] = None,
|
||||
# word_lm_train_config: Optional[str] = None,
|
||||
# bpemodel: Optional[str] = None,
|
||||
# allow_variable_data_keys: bool = False,
|
||||
# streaming: bool = False,
|
||||
# output_dir: Optional[str] = None,
|
||||
# dtype: str = "float32",
|
||||
# seed: int = 0,
|
||||
# ngram_weight: float = 0.9,
|
||||
# nbest: int = 1,
|
||||
# num_workers: int = 1,
|
||||
# frontend_conf: dict = None,
|
||||
# fs: Union[dict, int] = 16000,
|
||||
# lang: Optional[str] = None,
|
||||
# **kwargs,
|
||||
# ):
|
||||
# assert check_argument_types()
|
||||
#
|
||||
# if word_lm_train_config is not None:
|
||||
# raise NotImplementedError("Word LM is not implemented")
|
||||
# if ngpu > 1:
|
||||
# raise NotImplementedError("only single GPU decoding is supported")
|
||||
#
|
||||
# logging.basicConfig(
|
||||
# level=log_level,
|
||||
# format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
|
||||
# )
|
||||
#
|
||||
# if ngpu >= 1 and torch.cuda.is_available():
|
||||
# device = "cuda"
|
||||
# else:
|
||||
# device = "cpu"
|
||||
#
|
||||
# # 1. Set random-seed
|
||||
# set_all_random_seed(seed)
|
||||
#
|
||||
# # 2. Build speech2text
|
||||
# speech2text_kwargs = dict(
|
||||
# asr_train_config=asr_train_config,
|
||||
# asr_model_file=asr_model_file,
|
||||
# cmvn_file=cmvn_file,
|
||||
# lm_train_config=lm_train_config,
|
||||
# lm_file=lm_file,
|
||||
# token_type=token_type,
|
||||
# bpemodel=bpemodel,
|
||||
# device=device,
|
||||
# maxlenratio=maxlenratio,
|
||||
# minlenratio=minlenratio,
|
||||
# dtype=dtype,
|
||||
# beam_size=beam_size,
|
||||
# ctc_weight=ctc_weight,
|
||||
# lm_weight=lm_weight,
|
||||
# ngram_weight=ngram_weight,
|
||||
# penalty=penalty,
|
||||
# nbest=nbest,
|
||||
# frontend_conf=frontend_conf,
|
||||
# )
|
||||
# speech2text = Speech2Text(**speech2text_kwargs)
|
||||
#
|
||||
# # 3. Build data-iterator
|
||||
# loader = ASRTask.build_streaming_iterator(
|
||||
# data_path_and_name_and_type,
|
||||
# dtype=dtype,
|
||||
# batch_size=batch_size,
|
||||
# key_file=key_file,
|
||||
# num_workers=num_workers,
|
||||
# preprocess_fn=ASRTask.build_preprocess_fn(speech2text.asr_train_args, False),
|
||||
# collate_fn=ASRTask.build_collate_fn(speech2text.asr_train_args, False),
|
||||
# allow_variable_data_keys=allow_variable_data_keys,
|
||||
# inference=True,
|
||||
# )
|
||||
#
|
||||
# forward_time_total = 0.0
|
||||
# length_total = 0.0
|
||||
# finish_count = 0
|
||||
# file_count = 1
|
||||
# # 7 .Start for-loop
|
||||
# # FIXME(kamo): The output format should be discussed about
|
||||
# asr_result_list = []
|
||||
# if output_dir is not None:
|
||||
# writer = DatadirWriter(output_dir)
|
||||
# else:
|
||||
# writer = None
|
||||
#
|
||||
# for keys, batch in loader:
|
||||
# assert isinstance(batch, dict), type(batch)
|
||||
# assert all(isinstance(s, str) for s in keys), keys
|
||||
# _bs = len(next(iter(batch.values())))
|
||||
# assert len(keys) == _bs, f"{len(keys)} != {_bs}"
|
||||
# # batch = {k: v for k, v in batch.items() if not k.endswith("_lengths")}
|
||||
#
|
||||
# logging.info("decoding, utt_id: {}".format(keys))
|
||||
# # N-best list of (text, token, token_int, hyp_object)
|
||||
#
|
||||
# time_beg = time.time()
|
||||
# results = speech2text(**batch)
|
||||
# if len(results) < 1:
|
||||
# hyp = Hypothesis(score=0.0, scores={}, states={}, yseq=[])
|
||||
# results = [[" ", ["sil"], [2], hyp, 10, 6]] * nbest
|
||||
# time_end = time.time()
|
||||
# forward_time = time_end - time_beg
|
||||
# lfr_factor = results[0][-1]
|
||||
# length = results[0][-2]
|
||||
# forward_time_total += forward_time
|
||||
# length_total += length
|
||||
# logging.info(
|
||||
# "decoding, feature length: {}, forward_time: {:.4f}, rtf: {:.4f}".
|
||||
# format(length, forward_time, 100 * forward_time / (length*lfr_factor)))
|
||||
#
|
||||
# for batch_id in range(_bs):
|
||||
# result = [results[batch_id][:-2]]
|
||||
#
|
||||
# key = keys[batch_id]
|
||||
# for n, (text, token, token_int, hyp) in zip(range(1, nbest + 1), result):
|
||||
# # Create a directory: outdir/{n}best_recog
|
||||
# if writer is not None:
|
||||
# ibest_writer = writer[f"{n}best_recog"]
|
||||
#
|
||||
# # Write the result to each file
|
||||
# ibest_writer["token"][key] = " ".join(token)
|
||||
# ibest_writer["token_int"][key] = " ".join(map(str, token_int))
|
||||
# ibest_writer["score"][key] = str(hyp.score)
|
||||
#
|
||||
# if text is not None:
|
||||
# text_postprocessed = postprocess_utils.sentence_postprocess(token)
|
||||
# item = {'key': key, 'value': text_postprocessed}
|
||||
# asr_result_list.append(item)
|
||||
# finish_count += 1
|
||||
# # asr_utils.print_progress(finish_count / file_count)
|
||||
# if writer is not None:
|
||||
# ibest_writer["text"][key] = text
|
||||
#
|
||||
# logging.info("decoding, utt: {}, predictions: {}".format(key, text))
|
||||
#
|
||||
# logging.info("decoding, feature length total: {}, forward_time total: {:.4f}, rtf avg: {:.4f}".
|
||||
# format(length_total, forward_time_total, 100 * forward_time_total / (length_total*lfr_factor)))
|
||||
# return asr_result_list
|
||||
|
||||
def inference(
|
||||
maxlenratio: float,
|
||||
minlenratio: float,
|
||||
|
||||
@ -40,18 +40,10 @@ from funasr.models.frontend.wav_frontend import WavFrontend
|
||||
from funasr.tasks.vad import VADTask
|
||||
from funasr.utils.timestamp_tools import time_stamp_lfr6
|
||||
from funasr.bin.punctuation_infer import Text2Punc
|
||||
from funasr.torch_utils.forward_adaptor import ForwardAdaptor
|
||||
from funasr.datasets.preprocessor import CommonPreprocessor
|
||||
from funasr.punctuation.text_preprocessor import split_to_mini_sentence
|
||||
|
||||
header_colors = '\033[95m'
|
||||
end_colors = '\033[0m'
|
||||
|
||||
global_asr_language: str = 'zh-cn'
|
||||
global_sample_rate: Union[int, Dict[Any, int]] = {
|
||||
'audio_fs': 16000,
|
||||
'model_fs': 16000
|
||||
}
|
||||
|
||||
class Speech2Text:
|
||||
"""Speech2Text class
|
||||
|
||||
@ -272,150 +272,6 @@ class Speech2Text:
|
||||
return results
|
||||
|
||||
|
||||
# def inference(
|
||||
# maxlenratio: float,
|
||||
# minlenratio: float,
|
||||
# batch_size: int,
|
||||
# beam_size: int,
|
||||
# ngpu: int,
|
||||
# ctc_weight: float,
|
||||
# lm_weight: float,
|
||||
# penalty: float,
|
||||
# log_level: Union[int, str],
|
||||
# data_path_and_name_and_type,
|
||||
# asr_train_config: Optional[str],
|
||||
# asr_model_file: Optional[str],
|
||||
# ngram_file: Optional[str] = None,
|
||||
# cmvn_file: Optional[str] = None,
|
||||
# raw_inputs: Union[np.ndarray, torch.Tensor] = None,
|
||||
# lm_train_config: Optional[str] = None,
|
||||
# lm_file: Optional[str] = None,
|
||||
# token_type: Optional[str] = None,
|
||||
# key_file: Optional[str] = None,
|
||||
# word_lm_train_config: Optional[str] = None,
|
||||
# bpemodel: Optional[str] = None,
|
||||
# allow_variable_data_keys: bool = False,
|
||||
# streaming: bool = False,
|
||||
# output_dir: Optional[str] = None,
|
||||
# dtype: str = "float32",
|
||||
# seed: int = 0,
|
||||
# ngram_weight: float = 0.9,
|
||||
# nbest: int = 1,
|
||||
# num_workers: int = 1,
|
||||
# token_num_relax: int = 1,
|
||||
# decoding_ind: int = 0,
|
||||
# decoding_mode: str = "model1",
|
||||
# **kwargs,
|
||||
# ):
|
||||
# assert check_argument_types()
|
||||
# if batch_size > 1:
|
||||
# raise NotImplementedError("batch decoding is not implemented")
|
||||
# if word_lm_train_config is not None:
|
||||
# raise NotImplementedError("Word LM is not implemented")
|
||||
# if ngpu > 1:
|
||||
# raise NotImplementedError("only single GPU decoding is supported")
|
||||
#
|
||||
# logging.basicConfig(
|
||||
# level=log_level,
|
||||
# format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
|
||||
# )
|
||||
#
|
||||
# if ngpu >= 1 and torch.cuda.is_available():
|
||||
# device = "cuda"
|
||||
# else:
|
||||
# device = "cpu"
|
||||
#
|
||||
# # 1. Set random-seed
|
||||
# set_all_random_seed(seed)
|
||||
#
|
||||
# # 2. Build speech2text
|
||||
# speech2text_kwargs = dict(
|
||||
# asr_train_config=asr_train_config,
|
||||
# asr_model_file=asr_model_file,
|
||||
# cmvn_file=cmvn_file,
|
||||
# lm_train_config=lm_train_config,
|
||||
# lm_file=lm_file,
|
||||
# ngram_file=ngram_file,
|
||||
# token_type=token_type,
|
||||
# bpemodel=bpemodel,
|
||||
# device=device,
|
||||
# maxlenratio=maxlenratio,
|
||||
# minlenratio=minlenratio,
|
||||
# dtype=dtype,
|
||||
# beam_size=beam_size,
|
||||
# ctc_weight=ctc_weight,
|
||||
# lm_weight=lm_weight,
|
||||
# ngram_weight=ngram_weight,
|
||||
# penalty=penalty,
|
||||
# nbest=nbest,
|
||||
# streaming=streaming,
|
||||
# token_num_relax=token_num_relax,
|
||||
# decoding_ind=decoding_ind,
|
||||
# decoding_mode=decoding_mode,
|
||||
# )
|
||||
# speech2text = Speech2Text(**speech2text_kwargs)
|
||||
#
|
||||
# # 3. Build data-iterator
|
||||
# loader = ASRTask.build_streaming_iterator(
|
||||
# data_path_and_name_and_type,
|
||||
# dtype=dtype,
|
||||
# batch_size=batch_size,
|
||||
# key_file=key_file,
|
||||
# num_workers=num_workers,
|
||||
# preprocess_fn=ASRTask.build_preprocess_fn(speech2text.asr_train_args, False),
|
||||
# collate_fn=ASRTask.build_collate_fn(speech2text.asr_train_args, False),
|
||||
# allow_variable_data_keys=allow_variable_data_keys,
|
||||
# inference=True,
|
||||
# )
|
||||
#
|
||||
# finish_count = 0
|
||||
# file_count = 1
|
||||
# # 7 .Start for-loop
|
||||
# # FIXME(kamo): The output format should be discussed about
|
||||
# asr_result_list = []
|
||||
# if output_dir is not None:
|
||||
# writer = DatadirWriter(output_dir)
|
||||
# else:
|
||||
# writer = None
|
||||
#
|
||||
# for keys, batch in loader:
|
||||
# assert isinstance(batch, dict), type(batch)
|
||||
# assert all(isinstance(s, str) for s in keys), keys
|
||||
# _bs = len(next(iter(batch.values())))
|
||||
# assert len(keys) == _bs, f"{len(keys)} != {_bs}"
|
||||
# #batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
|
||||
#
|
||||
# # N-best list of (text, token, token_int, hyp_object)
|
||||
# try:
|
||||
# results = speech2text(**batch)
|
||||
# except TooShortUttError as e:
|
||||
# logging.warning(f"Utterance {keys} {e}")
|
||||
# hyp = Hypothesis(score=0.0, scores={}, states={}, yseq=[])
|
||||
# results = [[" ", ["sil"], [2], hyp]] * nbest
|
||||
#
|
||||
# # Only supporting batch_size==1
|
||||
# key = keys[0]
|
||||
# logging.info(f"Utterance: {key}")
|
||||
# for n, (text, token, token_int, hyp) in zip(range(1, nbest + 1), results):
|
||||
# # Create a directory: outdir/{n}best_recog
|
||||
# if writer is not None:
|
||||
# ibest_writer = writer[f"{n}best_recog"]
|
||||
#
|
||||
# # Write the result to each file
|
||||
# ibest_writer["token"][key] = " ".join(token)
|
||||
# ibest_writer["token_int"][key] = " ".join(map(str, token_int))
|
||||
# ibest_writer["score"][key] = str(hyp.score)
|
||||
#
|
||||
# if text is not None:
|
||||
# text_postprocessed = postprocess_utils.sentence_postprocess(token)
|
||||
# item = {'key': key, 'value': text_postprocessed}
|
||||
# asr_result_list.append(item)
|
||||
# finish_count += 1
|
||||
# asr_utils.print_progress(finish_count / file_count)
|
||||
# if writer is not None:
|
||||
# ibest_writer["text"][key] = text
|
||||
# return asr_result_list
|
||||
|
||||
def inference(
|
||||
maxlenratio: float,
|
||||
minlenratio: float,
|
||||
|
||||
@ -214,6 +214,7 @@ def inference_modelscope(
|
||||
data_path_and_name_and_type: Sequence[Tuple[str, str, str]] = None,
|
||||
raw_inputs: Union[np.ndarray, torch.Tensor] = None,
|
||||
output_dir_v2: Optional[str] = None,
|
||||
fs: dict = None,
|
||||
param_dict: Optional[dict] = None,
|
||||
):
|
||||
logging.info("param_dict: {}".format(param_dict))
|
||||
|
||||
@ -116,90 +116,6 @@ class Speech2VadSegment:
|
||||
return segments
|
||||
|
||||
|
||||
#def inference(
|
||||
# batch_size: int,
|
||||
# ngpu: int,
|
||||
# log_level: Union[int, str],
|
||||
# data_path_and_name_and_type,
|
||||
# vad_infer_config: Optional[str],
|
||||
# vad_model_file: Optional[str],
|
||||
# vad_cmvn_file: Optional[str] = None,
|
||||
# raw_inputs: Union[np.ndarray, torch.Tensor] = None,
|
||||
# key_file: Optional[str] = None,
|
||||
# allow_variable_data_keys: bool = False,
|
||||
# output_dir: Optional[str] = None,
|
||||
# dtype: str = "float32",
|
||||
# seed: int = 0,
|
||||
# num_workers: int = 1,
|
||||
# fs: Union[dict, int] = 16000,
|
||||
# **kwargs,
|
||||
#):
|
||||
# assert check_argument_types()
|
||||
# if batch_size > 1:
|
||||
# raise NotImplementedError("batch decoding is not implemented")
|
||||
# if ngpu > 1:
|
||||
# raise NotImplementedError("only single GPU decoding is supported")
|
||||
#
|
||||
# logging.basicConfig(
|
||||
# level=log_level,
|
||||
# format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
|
||||
# )
|
||||
#
|
||||
# if ngpu >= 1 and torch.cuda.is_available():
|
||||
# device = "cuda"
|
||||
# else:
|
||||
# device = "cpu"
|
||||
#
|
||||
# # 1. Set random-seed
|
||||
# set_all_random_seed(seed)
|
||||
#
|
||||
# # 2. Build speech2vadsegment
|
||||
# speech2vadsegment_kwargs = dict(
|
||||
# vad_infer_config=vad_infer_config,
|
||||
# vad_model_file=vad_model_file,
|
||||
# vad_cmvn_file=vad_cmvn_file,
|
||||
# device=device,
|
||||
# dtype=dtype,
|
||||
# )
|
||||
# logging.info("speech2vadsegment_kwargs: {}".format(speech2vadsegment_kwargs))
|
||||
# speech2vadsegment = Speech2VadSegment(**speech2vadsegment_kwargs)
|
||||
# # 3. Build data-iterator
|
||||
# loader = VADTask.build_streaming_iterator(
|
||||
# data_path_and_name_and_type,
|
||||
# dtype=dtype,
|
||||
# batch_size=batch_size,
|
||||
# key_file=key_file,
|
||||
# num_workers=num_workers,
|
||||
# preprocess_fn=VADTask.build_preprocess_fn(speech2vadsegment.vad_infer_args, False),
|
||||
# collate_fn=VADTask.build_collate_fn(speech2vadsegment.vad_infer_args, False),
|
||||
# allow_variable_data_keys=allow_variable_data_keys,
|
||||
# inference=True,
|
||||
# )
|
||||
#
|
||||
# finish_count = 0
|
||||
# file_count = 1
|
||||
# # 7 .Start for-loop
|
||||
# # FIXME(kamo): The output format should be discussed about
|
||||
# if output_dir is not None:
|
||||
# writer = DatadirWriter(output_dir)
|
||||
# else:
|
||||
# writer = None
|
||||
#
|
||||
# vad_results = []
|
||||
# for keys, batch in loader:
|
||||
# assert isinstance(batch, dict), type(batch)
|
||||
# assert all(isinstance(s, str) for s in keys), keys
|
||||
# _bs = len(next(iter(batch.values())))
|
||||
# assert len(keys) == _bs, f"{len(keys)} != {_bs}"
|
||||
# # batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
|
||||
#
|
||||
# # do vad segment
|
||||
# results = speech2vadsegment(**batch)
|
||||
# for i, _ in enumerate(keys):
|
||||
# item = {'key': keys[i], 'value': results[i]}
|
||||
# vad_results.append(item)
|
||||
#
|
||||
# return vad_results
|
||||
|
||||
|
||||
def inference(
|
||||
|
||||
Loading…
Reference in New Issue
Block a user