Dev gzf exp (#1705)

* resume from step

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* train_loss_avg train_acc_avg

* train_loss_avg train_acc_avg

* train_loss_avg train_acc_avg

* log step

* wav is not exist

* wav is not exist

* decoding

* decoding

* decoding

* wechat

* decoding key

* decoding key

* decoding key

* decoding key

* decoding key

* Gcf (#1704)

* 添加富文本解码约束

* special token

* bug fix

* fix

---------

Co-authored-by: 常材 <gaochangfeng.gcf@alibaba-inc.com>

* decoding key

---------

Co-authored-by: 常材 <gaochangfeng.gcf@alibaba-inc.com>
This commit is contained in:
zhifu gao 2024-05-08 17:32:36 +08:00 committed by GitHub
parent d42c45c60a
commit a7bc099548
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 87 additions and 0 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 184 KiB

After

Width:  |  Height:  |  Size: 158 KiB

View File

@ -514,6 +514,20 @@ class SenseVoiceRWKV(nn.Module):
self.beam_search.sos = sos_int
self.beam_search.eos = eos_int[0]
# Paramterts for rich decoding
self.beam_search.emo_unk = tokenizer.encode(
DecodingOptions.get("emo_unk_token", "<|SPECIAL_TOKEN_1|>"), allowed_special="all")[0]
self.beam_search.emo_unk_score = 1
self.beam_search.emo_tokens = tokenizer.encode(
DecodingOptions.get("emo_target_tokens", "<|HAPPY|><|SAD|><|ANGRY|>"), allowed_special="all")
self.beam_search.emo_scores = DecodingOptions.get("emo_target_threshold", [0.1, 0.1, 0.1])
self.beam_search.event_bg_token = tokenizer.encode(
DecodingOptions.get("gain_tokens_bg", "<|Speech|><|BGM|><|Applause|><|Laughter|>"), allowed_special="all")
self.beam_search.event_ed_token = tokenizer.encode(
DecodingOptions.get("gain_tokens_ed", "<|/Speech|><|/BGM|><|/Applause|><|/Laughter|>"), allowed_special="all")
self.beam_search.event_score_ga = DecodingOptions.get("gain_tokens_score", [1, 1, 1, 1])
encoder_out, encoder_out_lens = self.encode(
speech[None, :, :].permute(0, 2, 1), speech_lengths
)
@ -843,6 +857,20 @@ class SenseVoiceFSMN(nn.Module):
self.beam_search.sos = sos_int
self.beam_search.eos = eos_int[0]
# Paramterts for rich decoding
self.beam_search.emo_unk = tokenizer.encode(
DecodingOptions.get("emo_unk_token", "<|SPECIAL_TOKEN_1|>"), allowed_special="all")[0]
self.beam_search.emo_unk_score = 1
self.beam_search.emo_tokens = tokenizer.encode(
DecodingOptions.get("emo_target_tokens", "<|HAPPY|><|SAD|><|ANGRY|>"), allowed_special="all")
self.beam_search.emo_scores = DecodingOptions.get("emo_target_threshold", [0.1, 0.1, 0.1])
self.beam_search.event_bg_token = tokenizer.encode(
DecodingOptions.get("gain_tokens_bg", "<|Speech|><|BGM|><|Applause|><|Laughter|>"), allowed_special="all")
self.beam_search.event_ed_token = tokenizer.encode(
DecodingOptions.get("gain_tokens_ed", "<|/Speech|><|/BGM|><|/Applause|><|/Laughter|>"), allowed_special="all")
self.beam_search.event_score_ga = DecodingOptions.get("gain_tokens_score", [1, 1, 1, 1])
encoder_out, encoder_out_lens = self.encode(
speech[None, :, :].permute(0, 2, 1), speech_lengths
)

View File

@ -1,4 +1,5 @@
from itertools import chain
from dataclasses import field
import logging
from typing import Any
from typing import Dict
@ -8,6 +9,7 @@ from typing import Tuple
from typing import Union
import torch
import numpy as np
from funasr.metrics.common import end_detect
from funasr.models.transformer.scorers.scorer_interface import PartialScorerInterface
@ -42,6 +44,17 @@ class BeamSearch(torch.nn.Module):
vocab_size: int,
sos=None,
eos=None,
# NOTE add rich decoding parameters
# [SPECIAL_TOKEN_1, HAPPY, SAD, ANGRY, NEUTRAL]
emo_unk: int = 58964,
emo_unk_score: float = 1.0,
emo_tokens: List[int] = field(default_factory=lambda: [58954, 58955, 58956, 58957]),
emo_scores: List[float] = field(default_factory=lambda: [0.1, 0.1, 0.1, 0.1]),
# [Speech, BGM, Laughter, Applause]
event_bg_token: List[int] = field(default_factory=lambda: [58946, 58948, 58950, 58952]),
event_ed_token: List[int] = field(default_factory=lambda: [58947, 58949, 58951, 58953]),
event_score_ga: List[float] = field(default_factory=lambda: [1, 1, 5, 25]),
token_list: List[str] = None,
pre_beam_ratio: float = 1.5,
pre_beam_score_key: str = None,
@ -110,6 +123,14 @@ class BeamSearch(torch.nn.Module):
and len(self.part_scorers) > 0
)
self.emo_unk = emo_unk
self.emo_unk_score = emo_unk_score
self.emo_tokens = emo_tokens
self.emo_scores = emo_scores
self.event_bg_token = event_bg_token
self.event_ed_token = event_ed_token
self.event_score_ga = event_score_ga
def init_hyp(self, x: torch.Tensor) -> List[Hypothesis]:
"""Get an initial hypothesis data.
@ -170,10 +191,48 @@ class BeamSearch(torch.nn.Module):
"""
scores = dict()
states = dict()
def get_score(yseq, sp1, sp2):
score = [0, 0]
last_token = yseq[-1]
last_token2 = yseq[-2] if len(yseq) > 1 else yseq[-1]
sum_sp1 = sum([1 if x == sp1 else 0 for x in yseq])
sum_sp2 = sum([1 if x == sp2 else 0 for x in yseq])
if sum_sp1 > sum_sp2 or last_token in [sp1, sp2]:
score[0] = -np.inf
if sum_sp2 >= sum_sp1:
score[1] = -np.inf
return score
def struct_score(yseq, score):
import math
last_token = yseq[-1]
if last_token in self.emo_tokens + [self.emo_unk]:
# prevent output event after emotation token
score[self.event_bg_token] = -np.inf
for eve_bg, eve_ed, eve_ga in zip(self.event_bg_token, self.event_ed_token, self.event_score_ga):
score_offset = get_score(yseq, eve_bg, eve_ed)
score[eve_bg] += score_offset[0]
score[eve_ed] += score_offset[1]
score[eve_bg] += math.log(eve_ga)
score[self.emo_unk] += math.log(self.emo_unk_score)
for emo, emo_th in zip(self.emo_tokens, self.emo_scores):
if score.argmax() == emo and score[emo] < math.log(emo_th):
score[self.emo_unk] = max(score[emo], score[self.emo_unk])
score[emo] = -np.inf
return score
for k, d in self.full_scorers.items():
scores[k], states[k] = d.score(hyp.yseq, hyp.states[k], x)
scores[k] = struct_score(hyp.yseq, scores[k])
return scores, states
def score_partial(
self, hyp: Hypothesis, ids: torch.Tensor, x: torch.Tensor
) -> Tuple[Dict[str, torch.Tensor], Dict[str, Any]]: