Fix a few issues found during fine-tuning (#2582)

* Fix wandb log

* fix validation loss is not logged

batch_idx got reset for each epoch.
use the global step counter instead

* LR should only be updated per step, not per step+ per epoch

* add early stopping

* Fix bf16 handling

scaler is only needed for fp16

* more logs

---------

Co-authored-by: Tony Mak <tony@Tonys-MacBook-Air-1800.local>
This commit is contained in:
ming030890 2025-07-04 07:25:54 +01:00 committed by GitHub
parent 05c8eba11c
commit a750595594
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 28 additions and 10 deletions

View File

@ -149,7 +149,7 @@ def main(**kwargs):
dataloader = dataloader_class(**kwargs)
# dataloader_tr, dataloader_val = dataloader_class(**kwargs)
scaler = GradScaler(enabled=True) if trainer.use_fp16 or trainer.use_bf16 else None
scaler = GradScaler(enabled=True) if trainer.use_fp16 else None
scaler = ShardedGradScaler(enabled=trainer.use_fp16) if trainer.use_fsdp else scaler
trainer.resume_checkpoint(
@ -159,6 +159,10 @@ def main(**kwargs):
scaler=scaler,
)
early_stopping_patience = kwargs.get("train_conf", {}).get("early_stopping_patience", 0)
best_val_loss = float("inf")
epochs_no_improve = 0
dataloader_tr, dataloader_val = None, None
for epoch in range(trainer.start_epoch, trainer.max_epoch):
time1 = time.perf_counter()
@ -199,7 +203,19 @@ def main(**kwargs):
trainer.start_data_split_i = 0
trainer.validate_epoch(model=model, dataloader_val=dataloader_val, epoch=epoch + 1)
scheduler.step()
current_val = trainer.val_loss_avg
if current_val < best_val_loss:
logging.info(f"current_val: {current_val}, best_val_loss: {best_val_loss}")
best_val_loss = current_val
epochs_no_improve = 0
else:
epochs_no_improve += 1
logging.info(f"No val_loss improvement for {epochs_no_improve}/{early_stopping_patience} epochs")
if early_stopping_patience > 0 and epochs_no_improve >= early_stopping_patience:
logging.info(f"Early stopping triggered at epoch {epoch+1}")
break
trainer.step_in_epoch = 0
trainer.save_checkpoint(
epoch + 1, model=model, optim=optim, scheduler=scheduler, scaler=scaler

View File

@ -715,7 +715,7 @@ class Trainer:
if self.use_wandb and wandb is not None:
wandb.log(
description_dict,
setp=self.batch_total,
step=self.batch_total,
)
def close(self, writer=None):

View File

@ -30,9 +30,8 @@ def maybe_autocast(dtype=None, use_deepspeed=False):
yield
else:
if dtype == torch.float16 or dtype == torch.bfloat16:
yield
# with autocast(enabled=True, dtype=dtype):
# yield
with autocast(enabled=True, dtype=dtype):
yield
else:
yield
@ -684,7 +683,7 @@ class Trainer:
scaled_loss = model.backward(loss)
else:
loss = loss / self.accum_grad
if self.use_fp16 or self.use_bf16:
if scaler:
scaler.scale(loss).backward()
else:
loss.backward()
@ -712,7 +711,7 @@ class Trainer:
# Execute an optimization step (update model parameters)
if self.use_ddp or self.use_fsdp:
dist.barrier()
if self.use_fp16 or self.use_bf16:
if scaler:
scaler.step(optim)
scaler.update()
else:
@ -736,6 +735,9 @@ class Trainer:
Args:
epoch (int): The current epoch number.
"""
self.val_loss_avg = 0.0
self.val_acc_avg = 0.0
if self.use_ddp or self.use_fsdp or self.use_deepspeed:
dist.barrier()
logging.info(f"Validate epoch: {epoch}, rank: {self.rank}\n")
@ -757,7 +759,7 @@ class Trainer:
"data_split_i": kwargs.get("data_split_i", 0),
"data_split_num": kwargs.get("data_split_num", 1),
"log_step": batch_idx + kwargs.get("start_step", 0),
"batch_total": batch_idx + 1,
"batch_total": self.batch_total,
"step_in_epoch": batch_idx + 1,
"lr": 0.0,
}
@ -883,7 +885,7 @@ class Trainer:
if self.use_wandb and wandb is not None:
wandb.log(
description_dict,
setp=batch_total,
step=batch_total,
)
def close(self, writer=None):