mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
commit
9bec4123da
@ -1,10 +1,16 @@
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Iterable
|
||||
from typing import List
|
||||
from typing import Union
|
||||
|
||||
import yaml
|
||||
|
||||
import sentencepiece as spm
|
||||
from torch.utils.data import DataLoader
|
||||
from typeguard import check_argument_types
|
||||
|
||||
from funasr.datasets.large_datasets.dataset import Dataset
|
||||
from funasr.iterators.abs_iter_factory import AbsIterFactory
|
||||
from funasr.text.abs_tokenizer import AbsTokenizer
|
||||
|
||||
|
||||
def read_symbol_table(symbol_table_file):
|
||||
@ -21,6 +27,7 @@ def read_symbol_table(symbol_table_file):
|
||||
symbol_table[char] = i
|
||||
return symbol_table
|
||||
|
||||
|
||||
def load_seg_dict(seg_dict_file):
|
||||
seg_dict = {}
|
||||
assert isinstance(seg_dict_file, str)
|
||||
@ -33,8 +40,33 @@ def load_seg_dict(seg_dict_file):
|
||||
seg_dict[key] = " ".join(value)
|
||||
return seg_dict
|
||||
|
||||
|
||||
class SentencepiecesTokenizer(AbsTokenizer):
|
||||
def __init__(self, model: Union[Path, str]):
|
||||
assert check_argument_types()
|
||||
self.model = str(model)
|
||||
self.sp = None
|
||||
|
||||
def __repr__(self):
|
||||
return f'{self.__class__.__name__}(model="{self.model}")'
|
||||
|
||||
def _build_sentence_piece_processor(self):
|
||||
if self.sp is None:
|
||||
self.sp = spm.SentencePieceProcessor()
|
||||
self.sp.load(self.model)
|
||||
|
||||
def text2tokens(self, line: str) -> List[str]:
|
||||
self._build_sentence_piece_processor()
|
||||
return self.sp.EncodeAsPieces(line)
|
||||
|
||||
def tokens2text(self, tokens: Iterable[str]) -> str:
|
||||
self._build_sentence_piece_processor()
|
||||
return self.sp.DecodePieces(list(tokens))
|
||||
|
||||
|
||||
class ArkDataLoader(AbsIterFactory):
|
||||
def __init__(self, data_list, dict_file, dataset_conf, frontend_conf=None, seg_dict_file=None, punc_dict_file=None, mode="train"):
|
||||
def __init__(self, data_list, dict_file, dataset_conf, frontend_conf=None, seg_dict_file=None, punc_dict_file=None,
|
||||
bpemodel_file=None, mode="train"):
|
||||
symbol_table = read_symbol_table(dict_file) if dict_file is not None else None
|
||||
if seg_dict_file is not None:
|
||||
seg_dict = load_seg_dict(seg_dict_file)
|
||||
@ -48,7 +80,11 @@ class ArkDataLoader(AbsIterFactory):
|
||||
self.frontend_conf = frontend_conf
|
||||
logging.info("dataloader config: {}".format(self.dataset_conf))
|
||||
batch_mode = self.dataset_conf.get("batch_mode", "padding")
|
||||
self.dataset = Dataset(data_list, symbol_table, seg_dict, punc_dict,
|
||||
if bpemodel_file is not None:
|
||||
bpe_tokenizer = SentencepiecesTokenizer(bpemodel_file)
|
||||
else:
|
||||
bpe_tokenizer = None
|
||||
self.dataset = Dataset(data_list, symbol_table, seg_dict, punc_dict, bpe_tokenizer,
|
||||
self.dataset_conf, self.frontend_conf, mode=mode, batch_mode=batch_mode)
|
||||
|
||||
def build_iter(self, epoch, shuffle=True):
|
||||
|
||||
@ -158,6 +158,7 @@ def Dataset(data_list_file,
|
||||
dict,
|
||||
seg_dict,
|
||||
punc_dict,
|
||||
bpe_tokenizer,
|
||||
conf,
|
||||
frontend_conf,
|
||||
mode="train",
|
||||
@ -173,7 +174,7 @@ def Dataset(data_list_file,
|
||||
dataset = FilterIterDataPipe(dataset, fn=filter_fn)
|
||||
|
||||
if "text" in data_names:
|
||||
vocab = {'vocab': dict, 'seg_dict': seg_dict, 'punc_dict': punc_dict}
|
||||
vocab = {'vocab': dict, 'seg_dict': seg_dict, 'punc_dict': punc_dict, 'bpe_tokenizer': bpe_tokenizer}
|
||||
tokenize_fn = partial(tokenize, **vocab)
|
||||
dataset = MapperIterDataPipe(dataset, fn=tokenize_fn)
|
||||
|
||||
|
||||
@ -28,13 +28,17 @@ def seg_tokenize(txt, seg_dict):
|
||||
def tokenize(data,
|
||||
vocab=None,
|
||||
seg_dict=None,
|
||||
punc_dict=None):
|
||||
punc_dict=None,
|
||||
bpe_tokenizer=None):
|
||||
assert "text" in data
|
||||
assert isinstance(vocab, dict)
|
||||
text = data["text"]
|
||||
token = []
|
||||
vad = -2
|
||||
|
||||
if bpe_tokenizer is not None:
|
||||
text = bpe_tokenizer.text2tokens(text)
|
||||
|
||||
if seg_dict is not None:
|
||||
assert isinstance(seg_dict, dict)
|
||||
txt = forward_segment("".join(text).lower(), seg_dict)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user