This commit is contained in:
speech_asr 2023-04-17 19:22:57 +08:00
parent 4012630708
commit 9a6de675dc
3 changed files with 44 additions and 24 deletions

View File

@ -1,15 +1,42 @@
import os
import torch
from funasr.datasets.small_datasets.dataset import ESPnetDataset
from funasr.datasets.small_datasets.preprocessor import build_preprocess
from funasr.samplers.build_batch_sampler import build_batch_sampler
def build_dataloader(args, train=False):
preprocess_fn = build_preprocess(args, train=train)
def build_dataloader(args, mode="train"):
preprocess_fn = build_preprocess(args, train=mode=="train")
dest_sample_rate = args.frontend_conf["fs"] if (args.frontend_conf is not None and "fs" in args.frontend_conf) else 16000
if mode == "train":
data_path_and_name_and_type = args.train_data_path_and_name_and_type
shape_files = args.train_shape_file
elif mode == "valid":
data_path_and_name_and_type = args.valid_data_path_and_name_and_type
shape_files = args.valid_shape_file
else:
raise NotImplementedError(f"mode={mode}")
dataset = ESPnetDataset(
iter_options.data_path_and_name_and_type,
data_path_and_name_and_type,
float_dtype=args.train_dtype,
preprocess=preprocess_fn,
max_cache_size=args.max_cache_size,
max_cache_fd=args.max_cache_fd,
dest_sample_rate=dest_sample_rate,
)
if os.path.exists(os.path.join(data_path_and_name_and_type[0][0].parent, "utt2category")):
utt2category_file = os.path.join(data_path_and_name_and_type[0][0].parent, "utt2category")
else:
utt2category_file = None
batch_sampler = build_batch_sampler(
type=args.batch_type,
shape_files=iter_options.shape_files,
fold_lengths=args.fold_length,
batch_size=iter_options.batch_size,
batch_bins=iter_options.batch_bins,
sort_in_batch=args.sort_in_batch,
sort_batch=args.sort_batch,
drop_last=False,
min_batch_size=torch.distributed.get_world_size() if args.distributed else 1,
utt2category_file=utt2category_file,
)

View File

@ -12,7 +12,6 @@ from typing import Mapping
from typing import Tuple
from typing import Union
import humanfriendly
import kaldiio
import numpy as np
import torch
@ -22,7 +21,6 @@ from typeguard import check_return_type
from funasr.fileio.npy_scp import NpyScpReader
from funasr.fileio.sound_scp import SoundScpReader
from funasr.utils.sized_dict import SizedDict
class AdapterForSoundScpReader(collections.abc.Mapping):
@ -111,8 +109,6 @@ class ESPnetDataset(Dataset):
] = None,
float_dtype: str = "float32",
int_dtype: str = "long",
max_cache_size: Union[float, int, str] = 0.0,
max_cache_fd: int = 0,
dest_sample_rate: int = 16000,
):
assert check_argument_types()
@ -126,7 +122,6 @@ class ESPnetDataset(Dataset):
self.float_dtype = float_dtype
self.int_dtype = int_dtype
self.max_cache_fd = max_cache_fd
self.dest_sample_rate = dest_sample_rate
self.loader_dict = {}
@ -141,14 +136,6 @@ class ESPnetDataset(Dataset):
if len(self.loader_dict[name]) == 0:
raise RuntimeError(f"{path} has no samples")
if isinstance(max_cache_size, str):
max_cache_size = humanfriendly.parse_size(max_cache_size)
self.max_cache_size = max_cache_size
if max_cache_size > 0:
self.cache = SizedDict(shared=True)
else:
self.cache = None
def _build_loader(
self, path: str, loader_type: str
) -> Mapping[str, Union[np.ndarray, torch.Tensor, str, numbers.Number]]:
@ -162,7 +149,7 @@ class ESPnetDataset(Dataset):
loader = SoundScpReader(path, self.dest_sample_rate, normalize=True, always_2d=False)
return AdapterForSoundScpReader(loader, self.float_dtype)
elif loader_type == "kaldi_ark":
loader = kaldiio.load_scp(path, max_cache_fd=self.max_cache_fd)
loader = kaldiio.load_scp(path)
return AdapterForSoundScpReader(loader, self.float_dtype)
elif loader_type == "npy":
return NpyScpReader()
@ -207,10 +194,6 @@ class ESPnetDataset(Dataset):
d = next(iter(self.loader_dict.values()))
uid = list(d)[uid]
if self.cache is not None and uid in self.cache:
data = self.cache[uid]
return uid, data
data = {}
# 1. Load data from each loaders
for name, loader in self.loader_dict.items():
@ -261,9 +244,6 @@ class ESPnetDataset(Dataset):
raise NotImplementedError(f"Not supported dtype: {value.dtype}")
data[name] = value
if self.cache is not None and self.cache.size < self.max_cache_size:
self.cache[uid] = data
retval = uid, data
assert check_return_type(retval)
return retval

View File

@ -855,6 +855,19 @@ def build_preprocess(args, train):
text_name=text_names,
non_linguistic_symbols=args.non_linguistic_symbols,
)
elif args.task_name == "lm":
retval = LMPreprocessor(
train=train,
token_type=args.token_type,
token_list=args.token_list,
bpemodel=args.bpemodel,
text_cleaner=args.cleaner,
g2p_type=args.g2p,
text_name="text",
non_linguistic_symbols=args.non_linguistic_symbols,
split_with_space=args.split_with_space,
seg_dict_file=args.seg_dict_file
)
elif args.task_name == "vad":
retval = None
else: