mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
update
This commit is contained in:
parent
60fdbbf63d
commit
964a50d246
17
egs/aishell/branchformer/README.md
Normal file
17
egs/aishell/branchformer/README.md
Normal file
@ -0,0 +1,17 @@
|
||||
|
||||
# Conformer Result
|
||||
|
||||
## Training Config
|
||||
- Feature info: using 80 dims fbank, global cmvn, speed perturb(0.9, 1.0, 1.1), specaugment
|
||||
- Train info: lr 5e-4, batch_size 25000, 2 gpu(Tesla V100), acc_grad 1, 50 epochs
|
||||
- Train config: conf/train_asr_transformer.yaml
|
||||
- LM config: LM was not used
|
||||
- Model size: 46M
|
||||
|
||||
## Results (CER)
|
||||
- Decode config: conf/decode_asr_transformer.yaml (ctc weight:0.5)
|
||||
|
||||
| testset | CER(%) |
|
||||
|:-----------:|:-------:|
|
||||
| dev | 4.42 |
|
||||
| test | 4.87 |
|
||||
@ -0,0 +1,6 @@
|
||||
beam_size: 10
|
||||
penalty: 0.0
|
||||
maxlenratio: 0.0
|
||||
minlenratio: 0.0
|
||||
ctc_weight: 0.4
|
||||
lm_weight: 0.0
|
||||
86
egs/aishell/branchformer/conf/train_asr_branchformer.yaml
Normal file
86
egs/aishell/branchformer/conf/train_asr_branchformer.yaml
Normal file
@ -0,0 +1,86 @@
|
||||
# network architecture
|
||||
# encoder related
|
||||
encoder: branchformer
|
||||
encoder_conf:
|
||||
output_size: 256
|
||||
use_attn: true
|
||||
attention_heads: 4
|
||||
attention_layer_type: rel_selfattn
|
||||
pos_enc_layer_type: rel_pos
|
||||
rel_pos_type: latest
|
||||
use_cgmlp: true
|
||||
cgmlp_linear_units: 2048
|
||||
cgmlp_conv_kernel: 31
|
||||
use_linear_after_conv: false
|
||||
gate_activation: identity
|
||||
merge_method: concat
|
||||
cgmlp_weight: 0.5 # used only if merge_method is "fixed_ave"
|
||||
attn_branch_drop_rate: 0.0 # used only if merge_method is "learned_ave"
|
||||
num_blocks: 24
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0.1
|
||||
input_layer: conv2d
|
||||
stochastic_depth_rate: 0.0
|
||||
|
||||
# decoder related
|
||||
decoder: transformer
|
||||
decoder_conf:
|
||||
attention_heads: 4
|
||||
linear_units: 2048
|
||||
num_blocks: 6
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
self_attention_dropout_rate: 0.
|
||||
src_attention_dropout_rate: 0.
|
||||
|
||||
# hybrid CTC/attention
|
||||
model_conf:
|
||||
ctc_weight: 0.3
|
||||
lsm_weight: 0.1 # label smoothing option
|
||||
length_normalized_loss: false
|
||||
|
||||
# minibatch related
|
||||
batch_type: numel
|
||||
batch_bins: 25000000
|
||||
|
||||
# optimization related
|
||||
accum_grad: 1
|
||||
grad_clip: 5
|
||||
max_epoch: 60
|
||||
val_scheduler_criterion:
|
||||
- valid
|
||||
- acc
|
||||
best_model_criterion:
|
||||
- - valid
|
||||
- acc
|
||||
- max
|
||||
keep_nbest_models: 10
|
||||
|
||||
optim: adam
|
||||
optim_conf:
|
||||
lr: 0.001
|
||||
weight_decay: 0.000001
|
||||
scheduler: warmuplr
|
||||
scheduler_conf:
|
||||
warmup_steps: 35000
|
||||
|
||||
num_workers: 4 # num of workers of data loader
|
||||
use_amp: true # automatic mixed precision
|
||||
unused_parameters: false # set as true if some params are unused in DDP
|
||||
|
||||
specaug: specaug
|
||||
specaug_conf:
|
||||
apply_time_warp: true
|
||||
time_warp_window: 5
|
||||
time_warp_mode: bicubic
|
||||
apply_freq_mask: true
|
||||
freq_mask_width_range:
|
||||
- 0
|
||||
- 27
|
||||
num_freq_mask: 2
|
||||
apply_time_mask: true
|
||||
time_mask_width_ratio_range:
|
||||
- 0.
|
||||
- 0.05
|
||||
num_time_mask: 10
|
||||
66
egs/aishell/branchformer/local/aishell_data_prep.sh
Executable file
66
egs/aishell/branchformer/local/aishell_data_prep.sh
Executable file
@ -0,0 +1,66 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Copyright 2017 Xingyu Na
|
||||
# Apache 2.0
|
||||
|
||||
#. ./path.sh || exit 1;
|
||||
|
||||
if [ $# != 3 ]; then
|
||||
echo "Usage: $0 <audio-path> <text-path> <output-path>"
|
||||
echo " $0 /export/a05/xna/data/data_aishell/wav /export/a05/xna/data/data_aishell/transcript data"
|
||||
exit 1;
|
||||
fi
|
||||
|
||||
aishell_audio_dir=$1
|
||||
aishell_text=$2/aishell_transcript_v0.8.txt
|
||||
output_dir=$3
|
||||
|
||||
train_dir=$output_dir/data/local/train
|
||||
dev_dir=$output_dir/data/local/dev
|
||||
test_dir=$output_dir/data/local/test
|
||||
tmp_dir=$output_dir/data/local/tmp
|
||||
|
||||
mkdir -p $train_dir
|
||||
mkdir -p $dev_dir
|
||||
mkdir -p $test_dir
|
||||
mkdir -p $tmp_dir
|
||||
|
||||
# data directory check
|
||||
if [ ! -d $aishell_audio_dir ] || [ ! -f $aishell_text ]; then
|
||||
echo "Error: $0 requires two directory arguments"
|
||||
exit 1;
|
||||
fi
|
||||
|
||||
# find wav audio file for train, dev and test resp.
|
||||
find $aishell_audio_dir -iname "*.wav" > $tmp_dir/wav.flist
|
||||
n=`cat $tmp_dir/wav.flist | wc -l`
|
||||
[ $n -ne 141925 ] && \
|
||||
echo Warning: expected 141925 data data files, found $n
|
||||
|
||||
grep -i "wav/train" $tmp_dir/wav.flist > $train_dir/wav.flist || exit 1;
|
||||
grep -i "wav/dev" $tmp_dir/wav.flist > $dev_dir/wav.flist || exit 1;
|
||||
grep -i "wav/test" $tmp_dir/wav.flist > $test_dir/wav.flist || exit 1;
|
||||
|
||||
rm -r $tmp_dir
|
||||
|
||||
# Transcriptions preparation
|
||||
for dir in $train_dir $dev_dir $test_dir; do
|
||||
echo Preparing $dir transcriptions
|
||||
sed -e 's/\.wav//' $dir/wav.flist | awk -F '/' '{print $NF}' > $dir/utt.list
|
||||
paste -d' ' $dir/utt.list $dir/wav.flist > $dir/wav.scp_all
|
||||
utils/filter_scp.pl -f 1 $dir/utt.list $aishell_text > $dir/transcripts.txt
|
||||
awk '{print $1}' $dir/transcripts.txt > $dir/utt.list
|
||||
utils/filter_scp.pl -f 1 $dir/utt.list $dir/wav.scp_all | sort -u > $dir/wav.scp
|
||||
sort -u $dir/transcripts.txt > $dir/text
|
||||
done
|
||||
|
||||
mkdir -p $output_dir/data/train $output_dir/data/dev $output_dir/data/test
|
||||
|
||||
for f in wav.scp text; do
|
||||
cp $train_dir/$f $output_dir/data/train/$f || exit 1;
|
||||
cp $dev_dir/$f $output_dir/data/dev/$f || exit 1;
|
||||
cp $test_dir/$f $output_dir/data/test/$f || exit 1;
|
||||
done
|
||||
|
||||
echo "$0: AISHELL data preparation succeeded"
|
||||
exit 0;
|
||||
105
egs/aishell/branchformer/local/download_and_untar.sh
Executable file
105
egs/aishell/branchformer/local/download_and_untar.sh
Executable file
@ -0,0 +1,105 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# Copyright 2014 Johns Hopkins University (author: Daniel Povey)
|
||||
# 2017 Xingyu Na
|
||||
# Apache 2.0
|
||||
|
||||
remove_archive=false
|
||||
|
||||
if [ "$1" == --remove-archive ]; then
|
||||
remove_archive=true
|
||||
shift
|
||||
fi
|
||||
|
||||
if [ $# -ne 3 ]; then
|
||||
echo "Usage: $0 [--remove-archive] <data-base> <url-base> <corpus-part>"
|
||||
echo "e.g.: $0 /export/a05/xna/data www.openslr.org/resources/33 data_aishell"
|
||||
echo "With --remove-archive it will remove the archive after successfully un-tarring it."
|
||||
echo "<corpus-part> can be one of: data_aishell, resource_aishell."
|
||||
fi
|
||||
|
||||
data=$1
|
||||
url=$2
|
||||
part=$3
|
||||
|
||||
if [ ! -d "$data" ]; then
|
||||
echo "$0: no such directory $data"
|
||||
exit 1;
|
||||
fi
|
||||
|
||||
part_ok=false
|
||||
list="data_aishell resource_aishell"
|
||||
for x in $list; do
|
||||
if [ "$part" == $x ]; then part_ok=true; fi
|
||||
done
|
||||
if ! $part_ok; then
|
||||
echo "$0: expected <corpus-part> to be one of $list, but got '$part'"
|
||||
exit 1;
|
||||
fi
|
||||
|
||||
if [ -z "$url" ]; then
|
||||
echo "$0: empty URL base."
|
||||
exit 1;
|
||||
fi
|
||||
|
||||
if [ -f $data/$part/.complete ]; then
|
||||
echo "$0: data part $part was already successfully extracted, nothing to do."
|
||||
exit 0;
|
||||
fi
|
||||
|
||||
# sizes of the archive files in bytes.
|
||||
sizes="15582913665 1246920"
|
||||
|
||||
if [ -f $data/$part.tgz ]; then
|
||||
size=$(/bin/ls -l $data/$part.tgz | awk '{print $5}')
|
||||
size_ok=false
|
||||
for s in $sizes; do if [ $s == $size ]; then size_ok=true; fi; done
|
||||
if ! $size_ok; then
|
||||
echo "$0: removing existing file $data/$part.tgz because its size in bytes $size"
|
||||
echo "does not equal the size of one of the archives."
|
||||
rm $data/$part.tgz
|
||||
else
|
||||
echo "$data/$part.tgz exists and appears to be complete."
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ ! -f $data/$part.tgz ]; then
|
||||
if ! command -v wget >/dev/null; then
|
||||
echo "$0: wget is not installed."
|
||||
exit 1;
|
||||
fi
|
||||
full_url=$url/$part.tgz
|
||||
echo "$0: downloading data from $full_url. This may take some time, please be patient."
|
||||
|
||||
cd $data || exit 1
|
||||
if ! wget --no-check-certificate $full_url; then
|
||||
echo "$0: error executing wget $full_url"
|
||||
exit 1;
|
||||
fi
|
||||
fi
|
||||
|
||||
cd $data || exit 1
|
||||
|
||||
if ! tar -xvzf $part.tgz; then
|
||||
echo "$0: error un-tarring archive $data/$part.tgz"
|
||||
exit 1;
|
||||
fi
|
||||
|
||||
touch $data/$part/.complete
|
||||
|
||||
if [ $part == "data_aishell" ]; then
|
||||
cd $data/$part/wav || exit 1
|
||||
for wav in ./*.tar.gz; do
|
||||
echo "Extracting wav from $wav"
|
||||
tar -zxf $wav && rm $wav
|
||||
done
|
||||
fi
|
||||
|
||||
echo "$0: Successfully downloaded and un-tarred $data/$part.tgz"
|
||||
|
||||
if $remove_archive; then
|
||||
echo "$0: removing $data/$part.tgz file since --remove-archive option was supplied."
|
||||
rm $data/$part.tgz
|
||||
fi
|
||||
|
||||
exit 0;
|
||||
5
egs/aishell/branchformer/path.sh
Executable file
5
egs/aishell/branchformer/path.sh
Executable file
@ -0,0 +1,5 @@
|
||||
export FUNASR_DIR=$PWD/../../..
|
||||
|
||||
# NOTE(kan-bayashi): Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
|
||||
export PYTHONIOENCODING=UTF-8
|
||||
export PATH=$FUNASR_DIR/funasr/bin:$PATH
|
||||
225
egs/aishell/branchformer/run.sh
Executable file
225
egs/aishell/branchformer/run.sh
Executable file
@ -0,0 +1,225 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
. ./path.sh || exit 1;
|
||||
|
||||
# machines configuration
|
||||
CUDA_VISIBLE_DEVICES="0,1"
|
||||
gpu_num=2
|
||||
count=1
|
||||
gpu_inference=true # Whether to perform gpu decoding, set false for cpu decoding
|
||||
# for gpu decoding, inference_nj=ngpu*njob; for cpu decoding, inference_nj=njob
|
||||
njob=5
|
||||
train_cmd=utils/run.pl
|
||||
infer_cmd=utils/run.pl
|
||||
|
||||
# general configuration
|
||||
feats_dir="../DATA" #feature output dictionary
|
||||
exp_dir="."
|
||||
lang=zh
|
||||
token_type=char
|
||||
type=sound
|
||||
scp=wav.scp
|
||||
speed_perturb="0.9 1.0 1.1"
|
||||
stage=0
|
||||
stop_stage=5
|
||||
|
||||
# feature configuration
|
||||
feats_dim=80
|
||||
nj=64
|
||||
|
||||
# data
|
||||
raw_data=../raw_data
|
||||
data_url=www.openslr.org/resources/33
|
||||
|
||||
# exp tag
|
||||
tag="exp1"
|
||||
|
||||
. utils/parse_options.sh || exit 1;
|
||||
|
||||
# Set bash to 'debug' mode, it will exit on :
|
||||
# -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands',
|
||||
set -e
|
||||
set -u
|
||||
set -o pipefail
|
||||
|
||||
train_set=train
|
||||
valid_set=dev
|
||||
test_sets="dev test"
|
||||
|
||||
asr_config=conf/train_asr_branchformer.yaml
|
||||
model_dir="baseline_$(basename "${asr_config}" .yaml)_${lang}_${token_type}_${tag}"
|
||||
|
||||
inference_config=conf/decode_asr_transformer.yaml
|
||||
inference_asr_model=valid.acc.ave_10best.pb
|
||||
|
||||
# you can set gpu num for decoding here
|
||||
gpuid_list=$CUDA_VISIBLE_DEVICES # set gpus for decoding, the same as training stage by default
|
||||
ngpu=$(echo $gpuid_list | awk -F "," '{print NF}')
|
||||
|
||||
if ${gpu_inference}; then
|
||||
inference_nj=$[${ngpu}*${njob}]
|
||||
_ngpu=1
|
||||
else
|
||||
inference_nj=$njob
|
||||
_ngpu=0
|
||||
fi
|
||||
|
||||
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
|
||||
echo "stage -1: Data Download"
|
||||
local/download_and_untar.sh ${raw_data} ${data_url} data_aishell
|
||||
local/download_and_untar.sh ${raw_data} ${data_url} resource_aishell
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
||||
echo "stage 0: Data preparation"
|
||||
# Data preparation
|
||||
local/aishell_data_prep.sh ${raw_data}/data_aishell/wav ${raw_data}/data_aishell/transcript ${feats_dir}
|
||||
for x in train dev test; do
|
||||
cp ${feats_dir}/data/${x}/text ${feats_dir}/data/${x}/text.org
|
||||
paste -d " " <(cut -f 1 -d" " ${feats_dir}/data/${x}/text.org) <(cut -f 2- -d" " ${feats_dir}/data/${x}/text.org | tr -d " ") \
|
||||
> ${feats_dir}/data/${x}/text
|
||||
utils/text2token.py -n 1 -s 1 ${feats_dir}/data/${x}/text > ${feats_dir}/data/${x}/text.org
|
||||
mv ${feats_dir}/data/${x}/text.org ${feats_dir}/data/${x}/text
|
||||
done
|
||||
fi
|
||||
|
||||
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
||||
echo "stage 1: Feature and CMVN Generation"
|
||||
utils/compute_cmvn.sh --fbankdir ${feats_dir}/data/${train_set} --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} --config_file "$asr_config" --scale 1.0
|
||||
fi
|
||||
|
||||
token_list=${feats_dir}/data/${lang}_token_list/$token_type/tokens.txt
|
||||
echo "dictionary: ${token_list}"
|
||||
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
||||
echo "stage 2: Dictionary Preparation"
|
||||
mkdir -p ${feats_dir}/data/${lang}_token_list/$token_type/
|
||||
|
||||
echo "make a dictionary"
|
||||
echo "<blank>" > ${token_list}
|
||||
echo "<s>" >> ${token_list}
|
||||
echo "</s>" >> ${token_list}
|
||||
utils/text2token.py -s 1 -n 1 --space "" ${feats_dir}/data/$train_set/text | cut -f 2- -d" " | tr " " "\n" \
|
||||
| sort | uniq | grep -a -v -e '^\s*$' | awk '{print $0}' >> ${token_list}
|
||||
echo "<unk>" >> ${token_list}
|
||||
fi
|
||||
|
||||
# LM Training Stage
|
||||
world_size=$gpu_num # run on one machine
|
||||
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
||||
echo "stage 3: LM Training"
|
||||
fi
|
||||
|
||||
# ASR Training Stage
|
||||
world_size=$gpu_num # run on one machine
|
||||
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
||||
echo "stage 4: ASR Training"
|
||||
mkdir -p ${exp_dir}/exp/${model_dir}
|
||||
mkdir -p ${exp_dir}/exp/${model_dir}/log
|
||||
INIT_FILE=${exp_dir}/exp/${model_dir}/ddp_init
|
||||
if [ -f $INIT_FILE ];then
|
||||
rm -f $INIT_FILE
|
||||
fi
|
||||
init_method=file://$(readlink -f $INIT_FILE)
|
||||
echo "$0: init method is $init_method"
|
||||
for ((i = 0; i < $gpu_num; ++i)); do
|
||||
{
|
||||
rank=$i
|
||||
local_rank=$i
|
||||
gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1])
|
||||
train.py \
|
||||
--task_name asr \
|
||||
--gpu_id $gpu_id \
|
||||
--use_preprocessor true \
|
||||
--token_type $token_type \
|
||||
--token_list $token_list \
|
||||
--data_dir ${feats_dir}/data \
|
||||
--train_set ${train_set} \
|
||||
--valid_set ${valid_set} \
|
||||
--data_file_names "wav.scp,text" \
|
||||
--cmvn_file ${feats_dir}/data/${train_set}/cmvn/am.mvn \
|
||||
--speed_perturb ${speed_perturb} \
|
||||
--resume true \
|
||||
--output_dir ${exp_dir}/exp/${model_dir} \
|
||||
--config $asr_config \
|
||||
--ngpu $gpu_num \
|
||||
--num_worker_count $count \
|
||||
--dist_init_method $init_method \
|
||||
--dist_world_size $world_size \
|
||||
--dist_rank $rank \
|
||||
--local_rank $local_rank 1> ${exp_dir}/exp/${model_dir}/log/train.log.$i 2>&1
|
||||
} &
|
||||
done
|
||||
wait
|
||||
fi
|
||||
|
||||
# Testing Stage
|
||||
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
||||
echo "stage 5: Inference"
|
||||
for dset in ${test_sets}; do
|
||||
asr_exp=${exp_dir}/exp/${model_dir}
|
||||
inference_tag="$(basename "${inference_config}" .yaml)"
|
||||
_dir="${asr_exp}/${inference_tag}/${inference_asr_model}/${dset}"
|
||||
_logdir="${_dir}/logdir"
|
||||
if [ -d ${_dir} ]; then
|
||||
echo "${_dir} is already exists. if you want to decode again, please delete this dir first."
|
||||
exit 0
|
||||
fi
|
||||
mkdir -p "${_logdir}"
|
||||
_data="${feats_dir}/data/${dset}"
|
||||
key_file=${_data}/${scp}
|
||||
num_scp_file="$(<${key_file} wc -l)"
|
||||
_nj=$([ $inference_nj -le $num_scp_file ] && echo "$inference_nj" || echo "$num_scp_file")
|
||||
split_scps=
|
||||
for n in $(seq "${_nj}"); do
|
||||
split_scps+=" ${_logdir}/keys.${n}.scp"
|
||||
done
|
||||
# shellcheck disable=SC2086
|
||||
utils/split_scp.pl "${key_file}" ${split_scps}
|
||||
_opts=
|
||||
if [ -n "${inference_config}" ]; then
|
||||
_opts+="--config ${inference_config} "
|
||||
fi
|
||||
${infer_cmd} --gpu "${_ngpu}" --max-jobs-run "${_nj}" JOB=1:"${_nj}" "${_logdir}"/asr_inference.JOB.log \
|
||||
python -m funasr.bin.asr_inference_launch \
|
||||
--batch_size 1 \
|
||||
--ngpu "${_ngpu}" \
|
||||
--njob ${njob} \
|
||||
--gpuid_list ${gpuid_list} \
|
||||
--data_path_and_name_and_type "${_data}/${scp},speech,${type}" \
|
||||
--cmvn_file ${feats_dir}/data/${train_set}/cmvn/am.mvn \
|
||||
--key_file "${_logdir}"/keys.JOB.scp \
|
||||
--asr_train_config "${asr_exp}"/config.yaml \
|
||||
--asr_model_file "${asr_exp}"/"${inference_asr_model}" \
|
||||
--output_dir "${_logdir}"/output.JOB \
|
||||
--mode asr \
|
||||
${_opts}
|
||||
|
||||
for f in token token_int score text; do
|
||||
if [ -f "${_logdir}/output.1/1best_recog/${f}" ]; then
|
||||
for i in $(seq "${_nj}"); do
|
||||
cat "${_logdir}/output.${i}/1best_recog/${f}"
|
||||
done | sort -k1 >"${_dir}/${f}"
|
||||
fi
|
||||
done
|
||||
python utils/proce_text.py ${_dir}/text ${_dir}/text.proc
|
||||
python utils/proce_text.py ${_data}/text ${_data}/text.proc
|
||||
python utils/compute_wer.py ${_data}/text.proc ${_dir}/text.proc ${_dir}/text.cer
|
||||
tail -n 3 ${_dir}/text.cer > ${_dir}/text.cer.txt
|
||||
cat ${_dir}/text.cer.txt
|
||||
done
|
||||
fi
|
||||
|
||||
# Prepare files for ModelScope fine-tuning and inference
|
||||
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
|
||||
echo "stage 6: ModelScope Preparation"
|
||||
cp ${feats_dir}/data/${train_set}/cmvn/am.mvn ${exp_dir}/exp/${model_dir}/am.mvn
|
||||
vocab_size=$(cat ${token_list} | wc -l)
|
||||
python utils/gen_modelscope_configuration.py \
|
||||
--am_model_name $inference_asr_model \
|
||||
--mode asr \
|
||||
--model_name conformer \
|
||||
--dataset aishell \
|
||||
--output_dir $exp_dir/exp/$model_dir \
|
||||
--vocab_size $vocab_size \
|
||||
--tag $tag
|
||||
fi
|
||||
1
egs/aishell/branchformer/utils
Symbolic link
1
egs/aishell/branchformer/utils
Symbolic link
@ -0,0 +1 @@
|
||||
../transformer/utils
|
||||
547
funasr/models/encoder/branchformer_encoder.py
Normal file
547
funasr/models/encoder/branchformer_encoder.py
Normal file
@ -0,0 +1,547 @@
|
||||
# Copyright 2022 Yifan Peng (Carnegie Mellon University)
|
||||
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
||||
|
||||
"""Branchformer encoder definition.
|
||||
|
||||
Reference:
|
||||
Yifan Peng, Siddharth Dalmia, Ian Lane, and Shinji Watanabe,
|
||||
“Branchformer: Parallel MLP-Attention Architectures to Capture
|
||||
Local and Global Context for Speech Recognition and Understanding,”
|
||||
in Proceedings of ICML, 2022.
|
||||
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import numpy
|
||||
import torch
|
||||
from typeguard import check_argument_types
|
||||
|
||||
from funasr.models.encoder.abs_encoder import AbsEncoder
|
||||
from funasr.modules.cgmlp import ConvolutionalGatingMLP
|
||||
from funasr.modules.fastformer import FastSelfAttention
|
||||
from funasr.modules.nets_utils import make_pad_mask
|
||||
from funasr.modules.attention import ( # noqa: H301
|
||||
LegacyRelPositionMultiHeadedAttention,
|
||||
MultiHeadedAttention,
|
||||
RelPositionMultiHeadedAttention,
|
||||
)
|
||||
from funasr.modules.embedding import ( # noqa: H301
|
||||
LegacyRelPositionalEncoding,
|
||||
PositionalEncoding,
|
||||
RelPositionalEncoding,
|
||||
ScaledPositionalEncoding,
|
||||
)
|
||||
from funasr.modules.layer_norm import LayerNorm
|
||||
from funasr.modules.repeat import repeat
|
||||
from funasr.modules.subsampling import (
|
||||
Conv2dSubsampling,
|
||||
Conv2dSubsampling2,
|
||||
Conv2dSubsampling6,
|
||||
Conv2dSubsampling8,
|
||||
TooShortUttError,
|
||||
check_short_utt,
|
||||
)
|
||||
|
||||
|
||||
class BranchformerEncoderLayer(torch.nn.Module):
|
||||
"""Branchformer encoder layer module.
|
||||
|
||||
Args:
|
||||
size (int): model dimension
|
||||
attn: standard self-attention or efficient attention, optional
|
||||
cgmlp: ConvolutionalGatingMLP, optional
|
||||
dropout_rate (float): dropout probability
|
||||
merge_method (str): concat, learned_ave, fixed_ave
|
||||
cgmlp_weight (float): weight of the cgmlp branch, between 0 and 1,
|
||||
used if merge_method is fixed_ave
|
||||
attn_branch_drop_rate (float): probability of dropping the attn branch,
|
||||
used if merge_method is learned_ave
|
||||
stochastic_depth_rate (float): stochastic depth probability
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
size: int,
|
||||
attn: Optional[torch.nn.Module],
|
||||
cgmlp: Optional[torch.nn.Module],
|
||||
dropout_rate: float,
|
||||
merge_method: str,
|
||||
cgmlp_weight: float = 0.5,
|
||||
attn_branch_drop_rate: float = 0.0,
|
||||
stochastic_depth_rate: float = 0.0,
|
||||
):
|
||||
super().__init__()
|
||||
assert (attn is not None) or (
|
||||
cgmlp is not None
|
||||
), "At least one branch should be valid"
|
||||
|
||||
self.size = size
|
||||
self.attn = attn
|
||||
self.cgmlp = cgmlp
|
||||
self.merge_method = merge_method
|
||||
self.cgmlp_weight = cgmlp_weight
|
||||
self.attn_branch_drop_rate = attn_branch_drop_rate
|
||||
self.stochastic_depth_rate = stochastic_depth_rate
|
||||
self.use_two_branches = (attn is not None) and (cgmlp is not None)
|
||||
|
||||
if attn is not None:
|
||||
self.norm_mha = LayerNorm(size) # for the MHA module
|
||||
if cgmlp is not None:
|
||||
self.norm_mlp = LayerNorm(size) # for the MLP module
|
||||
self.norm_final = LayerNorm(size) # for the final output of the block
|
||||
|
||||
self.dropout = torch.nn.Dropout(dropout_rate)
|
||||
|
||||
if self.use_two_branches:
|
||||
if merge_method == "concat":
|
||||
self.merge_proj = torch.nn.Linear(size + size, size)
|
||||
|
||||
elif merge_method == "learned_ave":
|
||||
# attention-based pooling for two branches
|
||||
self.pooling_proj1 = torch.nn.Linear(size, 1)
|
||||
self.pooling_proj2 = torch.nn.Linear(size, 1)
|
||||
|
||||
# linear projections for calculating merging weights
|
||||
self.weight_proj1 = torch.nn.Linear(size, 1)
|
||||
self.weight_proj2 = torch.nn.Linear(size, 1)
|
||||
|
||||
# linear projection after weighted average
|
||||
self.merge_proj = torch.nn.Linear(size, size)
|
||||
|
||||
elif merge_method == "fixed_ave":
|
||||
assert (
|
||||
0.0 <= cgmlp_weight <= 1.0
|
||||
), "cgmlp weight should be between 0.0 and 1.0"
|
||||
|
||||
# remove the other branch if only one branch is used
|
||||
if cgmlp_weight == 0.0:
|
||||
self.use_two_branches = False
|
||||
self.cgmlp = None
|
||||
self.norm_mlp = None
|
||||
elif cgmlp_weight == 1.0:
|
||||
self.use_two_branches = False
|
||||
self.attn = None
|
||||
self.norm_mha = None
|
||||
|
||||
# linear projection after weighted average
|
||||
self.merge_proj = torch.nn.Linear(size, size)
|
||||
|
||||
else:
|
||||
raise ValueError(f"unknown merge method: {merge_method}")
|
||||
|
||||
else:
|
||||
self.merge_proj = torch.nn.Identity()
|
||||
|
||||
def forward(self, x_input, mask, cache=None):
|
||||
"""Compute encoded features.
|
||||
|
||||
Args:
|
||||
x_input (Union[Tuple, torch.Tensor]): Input tensor w/ or w/o pos emb.
|
||||
- w/ pos emb: Tuple of tensors [(#batch, time, size), (1, time, size)].
|
||||
- w/o pos emb: Tensor (#batch, time, size).
|
||||
mask (torch.Tensor): Mask tensor for the input (#batch, 1, time).
|
||||
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Output tensor (#batch, time, size).
|
||||
torch.Tensor: Mask tensor (#batch, time).
|
||||
"""
|
||||
|
||||
if cache is not None:
|
||||
raise NotImplementedError("cache is not None, which is not tested")
|
||||
|
||||
if isinstance(x_input, tuple):
|
||||
x, pos_emb = x_input[0], x_input[1]
|
||||
else:
|
||||
x, pos_emb = x_input, None
|
||||
|
||||
skip_layer = False
|
||||
# with stochastic depth, residual connection `x + f(x)` becomes
|
||||
# `x <- x + 1 / (1 - p) * f(x)` at training time.
|
||||
stoch_layer_coeff = 1.0
|
||||
if self.training and self.stochastic_depth_rate > 0:
|
||||
skip_layer = torch.rand(1).item() < self.stochastic_depth_rate
|
||||
stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate)
|
||||
|
||||
if skip_layer:
|
||||
if cache is not None:
|
||||
x = torch.cat([cache, x], dim=1)
|
||||
if pos_emb is not None:
|
||||
return (x, pos_emb), mask
|
||||
return x, mask
|
||||
|
||||
# Two branches
|
||||
x1 = x
|
||||
x2 = x
|
||||
|
||||
# Branch 1: multi-headed attention module
|
||||
if self.attn is not None:
|
||||
x1 = self.norm_mha(x1)
|
||||
|
||||
if isinstance(self.attn, FastSelfAttention):
|
||||
x_att = self.attn(x1, mask)
|
||||
else:
|
||||
if pos_emb is not None:
|
||||
x_att = self.attn(x1, x1, x1, pos_emb, mask)
|
||||
else:
|
||||
x_att = self.attn(x1, x1, x1, mask)
|
||||
|
||||
x1 = self.dropout(x_att)
|
||||
|
||||
# Branch 2: convolutional gating mlp
|
||||
if self.cgmlp is not None:
|
||||
x2 = self.norm_mlp(x2)
|
||||
|
||||
if pos_emb is not None:
|
||||
x2 = (x2, pos_emb)
|
||||
x2 = self.cgmlp(x2, mask)
|
||||
if isinstance(x2, tuple):
|
||||
x2 = x2[0]
|
||||
|
||||
x2 = self.dropout(x2)
|
||||
|
||||
# Merge two branches
|
||||
if self.use_two_branches:
|
||||
if self.merge_method == "concat":
|
||||
x = x + stoch_layer_coeff * self.dropout(
|
||||
self.merge_proj(torch.cat([x1, x2], dim=-1))
|
||||
)
|
||||
elif self.merge_method == "learned_ave":
|
||||
if (
|
||||
self.training
|
||||
and self.attn_branch_drop_rate > 0
|
||||
and torch.rand(1).item() < self.attn_branch_drop_rate
|
||||
):
|
||||
# Drop the attn branch
|
||||
w1, w2 = 0.0, 1.0
|
||||
else:
|
||||
# branch1
|
||||
score1 = (
|
||||
self.pooling_proj1(x1).transpose(1, 2) / self.size**0.5
|
||||
) # (batch, 1, time)
|
||||
if mask is not None:
|
||||
min_value = float(
|
||||
numpy.finfo(
|
||||
torch.tensor(0, dtype=score1.dtype).numpy().dtype
|
||||
).min
|
||||
)
|
||||
score1 = score1.masked_fill(mask.eq(0), min_value)
|
||||
score1 = torch.softmax(score1, dim=-1).masked_fill(
|
||||
mask.eq(0), 0.0
|
||||
)
|
||||
else:
|
||||
score1 = torch.softmax(score1, dim=-1)
|
||||
pooled1 = torch.matmul(score1, x1).squeeze(1) # (batch, size)
|
||||
weight1 = self.weight_proj1(pooled1) # (batch, 1)
|
||||
|
||||
# branch2
|
||||
score2 = (
|
||||
self.pooling_proj2(x2).transpose(1, 2) / self.size**0.5
|
||||
) # (batch, 1, time)
|
||||
if mask is not None:
|
||||
min_value = float(
|
||||
numpy.finfo(
|
||||
torch.tensor(0, dtype=score2.dtype).numpy().dtype
|
||||
).min
|
||||
)
|
||||
score2 = score2.masked_fill(mask.eq(0), min_value)
|
||||
score2 = torch.softmax(score2, dim=-1).masked_fill(
|
||||
mask.eq(0), 0.0
|
||||
)
|
||||
else:
|
||||
score2 = torch.softmax(score2, dim=-1)
|
||||
pooled2 = torch.matmul(score2, x2).squeeze(1) # (batch, size)
|
||||
weight2 = self.weight_proj2(pooled2) # (batch, 1)
|
||||
|
||||
# normalize weights of two branches
|
||||
merge_weights = torch.softmax(
|
||||
torch.cat([weight1, weight2], dim=-1), dim=-1
|
||||
) # (batch, 2)
|
||||
merge_weights = merge_weights.unsqueeze(-1).unsqueeze(
|
||||
-1
|
||||
) # (batch, 2, 1, 1)
|
||||
w1, w2 = merge_weights[:, 0], merge_weights[:, 1] # (batch, 1, 1)
|
||||
|
||||
x = x + stoch_layer_coeff * self.dropout(
|
||||
self.merge_proj(w1 * x1 + w2 * x2)
|
||||
)
|
||||
elif self.merge_method == "fixed_ave":
|
||||
x = x + stoch_layer_coeff * self.dropout(
|
||||
self.merge_proj(
|
||||
(1.0 - self.cgmlp_weight) * x1 + self.cgmlp_weight * x2
|
||||
)
|
||||
)
|
||||
else:
|
||||
raise RuntimeError(f"unknown merge method: {self.merge_method}")
|
||||
else:
|
||||
if self.attn is None:
|
||||
x = x + stoch_layer_coeff * self.dropout(self.merge_proj(x2))
|
||||
elif self.cgmlp is None:
|
||||
x = x + stoch_layer_coeff * self.dropout(self.merge_proj(x1))
|
||||
else:
|
||||
# This should not happen
|
||||
raise RuntimeError("Both branches are not None, which is unexpected.")
|
||||
|
||||
x = self.norm_final(x)
|
||||
|
||||
if pos_emb is not None:
|
||||
return (x, pos_emb), mask
|
||||
|
||||
return x, mask
|
||||
|
||||
|
||||
class BranchformerEncoder(AbsEncoder):
|
||||
"""Branchformer encoder module."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_size: int,
|
||||
output_size: int = 256,
|
||||
use_attn: bool = True,
|
||||
attention_heads: int = 4,
|
||||
attention_layer_type: str = "rel_selfattn",
|
||||
pos_enc_layer_type: str = "rel_pos",
|
||||
rel_pos_type: str = "latest",
|
||||
use_cgmlp: bool = True,
|
||||
cgmlp_linear_units: int = 2048,
|
||||
cgmlp_conv_kernel: int = 31,
|
||||
use_linear_after_conv: bool = False,
|
||||
gate_activation: str = "identity",
|
||||
merge_method: str = "concat",
|
||||
cgmlp_weight: Union[float, List[float]] = 0.5,
|
||||
attn_branch_drop_rate: Union[float, List[float]] = 0.0,
|
||||
num_blocks: int = 12,
|
||||
dropout_rate: float = 0.1,
|
||||
positional_dropout_rate: float = 0.1,
|
||||
attention_dropout_rate: float = 0.0,
|
||||
input_layer: Optional[str] = "conv2d",
|
||||
zero_triu: bool = False,
|
||||
padding_idx: int = -1,
|
||||
stochastic_depth_rate: Union[float, List[float]] = 0.0,
|
||||
):
|
||||
assert check_argument_types()
|
||||
super().__init__()
|
||||
self._output_size = output_size
|
||||
|
||||
if rel_pos_type == "legacy":
|
||||
if pos_enc_layer_type == "rel_pos":
|
||||
pos_enc_layer_type = "legacy_rel_pos"
|
||||
if attention_layer_type == "rel_selfattn":
|
||||
attention_layer_type = "legacy_rel_selfattn"
|
||||
elif rel_pos_type == "latest":
|
||||
assert attention_layer_type != "legacy_rel_selfattn"
|
||||
assert pos_enc_layer_type != "legacy_rel_pos"
|
||||
else:
|
||||
raise ValueError("unknown rel_pos_type: " + rel_pos_type)
|
||||
|
||||
if pos_enc_layer_type == "abs_pos":
|
||||
pos_enc_class = PositionalEncoding
|
||||
elif pos_enc_layer_type == "scaled_abs_pos":
|
||||
pos_enc_class = ScaledPositionalEncoding
|
||||
elif pos_enc_layer_type == "rel_pos":
|
||||
assert attention_layer_type == "rel_selfattn"
|
||||
pos_enc_class = RelPositionalEncoding
|
||||
elif pos_enc_layer_type == "legacy_rel_pos":
|
||||
assert attention_layer_type == "legacy_rel_selfattn"
|
||||
pos_enc_class = LegacyRelPositionalEncoding
|
||||
logging.warning(
|
||||
"Using legacy_rel_pos and it will be deprecated in the future."
|
||||
)
|
||||
else:
|
||||
raise ValueError("unknown pos_enc_layer: " + pos_enc_layer_type)
|
||||
|
||||
if input_layer == "linear":
|
||||
self.embed = torch.nn.Sequential(
|
||||
torch.nn.Linear(input_size, output_size),
|
||||
torch.nn.LayerNorm(output_size),
|
||||
torch.nn.Dropout(dropout_rate),
|
||||
pos_enc_class(output_size, positional_dropout_rate),
|
||||
)
|
||||
elif input_layer == "conv2d":
|
||||
self.embed = Conv2dSubsampling(
|
||||
input_size,
|
||||
output_size,
|
||||
dropout_rate,
|
||||
pos_enc_class(output_size, positional_dropout_rate),
|
||||
)
|
||||
elif input_layer == "conv2d2":
|
||||
self.embed = Conv2dSubsampling2(
|
||||
input_size,
|
||||
output_size,
|
||||
dropout_rate,
|
||||
pos_enc_class(output_size, positional_dropout_rate),
|
||||
)
|
||||
elif input_layer == "conv2d6":
|
||||
self.embed = Conv2dSubsampling6(
|
||||
input_size,
|
||||
output_size,
|
||||
dropout_rate,
|
||||
pos_enc_class(output_size, positional_dropout_rate),
|
||||
)
|
||||
elif input_layer == "conv2d8":
|
||||
self.embed = Conv2dSubsampling8(
|
||||
input_size,
|
||||
output_size,
|
||||
dropout_rate,
|
||||
pos_enc_class(output_size, positional_dropout_rate),
|
||||
)
|
||||
elif input_layer == "embed":
|
||||
self.embed = torch.nn.Sequential(
|
||||
torch.nn.Embedding(input_size, output_size, padding_idx=padding_idx),
|
||||
pos_enc_class(output_size, positional_dropout_rate),
|
||||
)
|
||||
elif isinstance(input_layer, torch.nn.Module):
|
||||
self.embed = torch.nn.Sequential(
|
||||
input_layer,
|
||||
pos_enc_class(output_size, positional_dropout_rate),
|
||||
)
|
||||
elif input_layer is None:
|
||||
if input_size == output_size:
|
||||
self.embed = None
|
||||
else:
|
||||
self.embed = torch.nn.Linear(input_size, output_size)
|
||||
else:
|
||||
raise ValueError("unknown input_layer: " + input_layer)
|
||||
|
||||
if attention_layer_type == "selfattn":
|
||||
encoder_selfattn_layer = MultiHeadedAttention
|
||||
encoder_selfattn_layer_args = (
|
||||
attention_heads,
|
||||
output_size,
|
||||
attention_dropout_rate,
|
||||
)
|
||||
elif attention_layer_type == "legacy_rel_selfattn":
|
||||
assert pos_enc_layer_type == "legacy_rel_pos"
|
||||
encoder_selfattn_layer = LegacyRelPositionMultiHeadedAttention
|
||||
encoder_selfattn_layer_args = (
|
||||
attention_heads,
|
||||
output_size,
|
||||
attention_dropout_rate,
|
||||
)
|
||||
logging.warning(
|
||||
"Using legacy_rel_selfattn and it will be deprecated in the future."
|
||||
)
|
||||
elif attention_layer_type == "rel_selfattn":
|
||||
assert pos_enc_layer_type == "rel_pos"
|
||||
encoder_selfattn_layer = RelPositionMultiHeadedAttention
|
||||
encoder_selfattn_layer_args = (
|
||||
attention_heads,
|
||||
output_size,
|
||||
attention_dropout_rate,
|
||||
zero_triu,
|
||||
)
|
||||
elif attention_layer_type == "fast_selfattn":
|
||||
assert pos_enc_layer_type in ["abs_pos", "scaled_abs_pos"]
|
||||
encoder_selfattn_layer = FastSelfAttention
|
||||
encoder_selfattn_layer_args = (
|
||||
output_size,
|
||||
attention_heads,
|
||||
attention_dropout_rate,
|
||||
)
|
||||
else:
|
||||
raise ValueError("unknown encoder_attn_layer: " + attention_layer_type)
|
||||
|
||||
cgmlp_layer = ConvolutionalGatingMLP
|
||||
cgmlp_layer_args = (
|
||||
output_size,
|
||||
cgmlp_linear_units,
|
||||
cgmlp_conv_kernel,
|
||||
dropout_rate,
|
||||
use_linear_after_conv,
|
||||
gate_activation,
|
||||
)
|
||||
|
||||
if isinstance(stochastic_depth_rate, float):
|
||||
stochastic_depth_rate = [stochastic_depth_rate] * num_blocks
|
||||
if len(stochastic_depth_rate) != num_blocks:
|
||||
raise ValueError(
|
||||
f"Length of stochastic_depth_rate ({len(stochastic_depth_rate)}) "
|
||||
f"should be equal to num_blocks ({num_blocks})"
|
||||
)
|
||||
|
||||
if isinstance(cgmlp_weight, float):
|
||||
cgmlp_weight = [cgmlp_weight] * num_blocks
|
||||
if len(cgmlp_weight) != num_blocks:
|
||||
raise ValueError(
|
||||
f"Length of cgmlp_weight ({len(cgmlp_weight)}) should be equal to "
|
||||
f"num_blocks ({num_blocks})"
|
||||
)
|
||||
|
||||
if isinstance(attn_branch_drop_rate, float):
|
||||
attn_branch_drop_rate = [attn_branch_drop_rate] * num_blocks
|
||||
if len(attn_branch_drop_rate) != num_blocks:
|
||||
raise ValueError(
|
||||
f"Length of attn_branch_drop_rate ({len(attn_branch_drop_rate)}) "
|
||||
f"should be equal to num_blocks ({num_blocks})"
|
||||
)
|
||||
|
||||
self.encoders = repeat(
|
||||
num_blocks,
|
||||
lambda lnum: BranchformerEncoderLayer(
|
||||
output_size,
|
||||
encoder_selfattn_layer(*encoder_selfattn_layer_args)
|
||||
if use_attn
|
||||
else None,
|
||||
cgmlp_layer(*cgmlp_layer_args) if use_cgmlp else None,
|
||||
dropout_rate,
|
||||
merge_method,
|
||||
cgmlp_weight[lnum],
|
||||
attn_branch_drop_rate[lnum],
|
||||
stochastic_depth_rate[lnum],
|
||||
),
|
||||
)
|
||||
self.after_norm = LayerNorm(output_size)
|
||||
|
||||
def output_size(self) -> int:
|
||||
return self._output_size
|
||||
|
||||
def forward(
|
||||
self,
|
||||
xs_pad: torch.Tensor,
|
||||
ilens: torch.Tensor,
|
||||
prev_states: torch.Tensor = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
|
||||
"""Calculate forward propagation.
|
||||
|
||||
Args:
|
||||
xs_pad (torch.Tensor): Input tensor (#batch, L, input_size).
|
||||
ilens (torch.Tensor): Input length (#batch).
|
||||
prev_states (torch.Tensor): Not to be used now.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Output tensor (#batch, L, output_size).
|
||||
torch.Tensor: Output length (#batch).
|
||||
torch.Tensor: Not to be used now.
|
||||
|
||||
"""
|
||||
|
||||
masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device)
|
||||
|
||||
if (
|
||||
isinstance(self.embed, Conv2dSubsampling)
|
||||
or isinstance(self.embed, Conv2dSubsampling2)
|
||||
or isinstance(self.embed, Conv2dSubsampling6)
|
||||
or isinstance(self.embed, Conv2dSubsampling8)
|
||||
):
|
||||
short_status, limit_size = check_short_utt(self.embed, xs_pad.size(1))
|
||||
if short_status:
|
||||
raise TooShortUttError(
|
||||
f"has {xs_pad.size(1)} frames and is too short for subsampling "
|
||||
+ f"(it needs more than {limit_size} frames), return empty results",
|
||||
xs_pad.size(1),
|
||||
limit_size,
|
||||
)
|
||||
xs_pad, masks = self.embed(xs_pad, masks)
|
||||
elif self.embed is not None:
|
||||
xs_pad = self.embed(xs_pad)
|
||||
|
||||
xs_pad, masks = self.encoders(xs_pad, masks)
|
||||
|
||||
if isinstance(xs_pad, tuple):
|
||||
xs_pad = xs_pad[0]
|
||||
|
||||
xs_pad = self.after_norm(xs_pad)
|
||||
olens = masks.squeeze(1).sum(1)
|
||||
return xs_pad, olens, None
|
||||
124
funasr/modules/cgmlp.py
Normal file
124
funasr/modules/cgmlp.py
Normal file
@ -0,0 +1,124 @@
|
||||
"""MLP with convolutional gating (cgMLP) definition.
|
||||
|
||||
References:
|
||||
https://openreview.net/forum?id=RA-zVvZLYIy
|
||||
https://arxiv.org/abs/2105.08050
|
||||
|
||||
"""
|
||||
|
||||
import torch
|
||||
|
||||
from funasr.modules.nets_utils import get_activation
|
||||
from funasr.modules.layer_norm import LayerNorm
|
||||
|
||||
|
||||
class ConvolutionalSpatialGatingUnit(torch.nn.Module):
|
||||
"""Convolutional Spatial Gating Unit (CSGU)."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
size: int,
|
||||
kernel_size: int,
|
||||
dropout_rate: float,
|
||||
use_linear_after_conv: bool,
|
||||
gate_activation: str,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
n_channels = size // 2 # split input channels
|
||||
self.norm = LayerNorm(n_channels)
|
||||
self.conv = torch.nn.Conv1d(
|
||||
n_channels,
|
||||
n_channels,
|
||||
kernel_size,
|
||||
1,
|
||||
(kernel_size - 1) // 2,
|
||||
groups=n_channels,
|
||||
)
|
||||
if use_linear_after_conv:
|
||||
self.linear = torch.nn.Linear(n_channels, n_channels)
|
||||
else:
|
||||
self.linear = None
|
||||
|
||||
if gate_activation == "identity":
|
||||
self.act = torch.nn.Identity()
|
||||
else:
|
||||
self.act = get_activation(gate_activation)
|
||||
|
||||
self.dropout = torch.nn.Dropout(dropout_rate)
|
||||
|
||||
def espnet_initialization_fn(self):
|
||||
torch.nn.init.normal_(self.conv.weight, std=1e-6)
|
||||
torch.nn.init.ones_(self.conv.bias)
|
||||
if self.linear is not None:
|
||||
torch.nn.init.normal_(self.linear.weight, std=1e-6)
|
||||
torch.nn.init.ones_(self.linear.bias)
|
||||
|
||||
def forward(self, x, gate_add=None):
|
||||
"""Forward method
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): (N, T, D)
|
||||
gate_add (torch.Tensor): (N, T, D/2)
|
||||
|
||||
Returns:
|
||||
out (torch.Tensor): (N, T, D/2)
|
||||
"""
|
||||
|
||||
x_r, x_g = x.chunk(2, dim=-1)
|
||||
|
||||
x_g = self.norm(x_g) # (N, T, D/2)
|
||||
x_g = self.conv(x_g.transpose(1, 2)).transpose(1, 2) # (N, T, D/2)
|
||||
if self.linear is not None:
|
||||
x_g = self.linear(x_g)
|
||||
|
||||
if gate_add is not None:
|
||||
x_g = x_g + gate_add
|
||||
|
||||
x_g = self.act(x_g)
|
||||
out = x_r * x_g # (N, T, D/2)
|
||||
out = self.dropout(out)
|
||||
return out
|
||||
|
||||
|
||||
class ConvolutionalGatingMLP(torch.nn.Module):
|
||||
"""Convolutional Gating MLP (cgMLP)."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
size: int,
|
||||
linear_units: int,
|
||||
kernel_size: int,
|
||||
dropout_rate: float,
|
||||
use_linear_after_conv: bool,
|
||||
gate_activation: str,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.channel_proj1 = torch.nn.Sequential(
|
||||
torch.nn.Linear(size, linear_units), torch.nn.GELU()
|
||||
)
|
||||
self.csgu = ConvolutionalSpatialGatingUnit(
|
||||
size=linear_units,
|
||||
kernel_size=kernel_size,
|
||||
dropout_rate=dropout_rate,
|
||||
use_linear_after_conv=use_linear_after_conv,
|
||||
gate_activation=gate_activation,
|
||||
)
|
||||
self.channel_proj2 = torch.nn.Linear(linear_units // 2, size)
|
||||
|
||||
def forward(self, x, mask):
|
||||
if isinstance(x, tuple):
|
||||
xs_pad, pos_emb = x
|
||||
else:
|
||||
xs_pad, pos_emb = x, None
|
||||
|
||||
xs_pad = self.channel_proj1(xs_pad) # size -> linear_units
|
||||
xs_pad = self.csgu(xs_pad) # linear_units -> linear_units/2
|
||||
xs_pad = self.channel_proj2(xs_pad) # linear_units/2 -> size
|
||||
|
||||
if pos_emb is not None:
|
||||
out = (xs_pad, pos_emb)
|
||||
else:
|
||||
out = xs_pad
|
||||
return out
|
||||
153
funasr/modules/fastformer.py
Normal file
153
funasr/modules/fastformer.py
Normal file
@ -0,0 +1,153 @@
|
||||
"""Fastformer attention definition.
|
||||
|
||||
Reference:
|
||||
Wu et al., "Fastformer: Additive Attention Can Be All You Need"
|
||||
https://arxiv.org/abs/2108.09084
|
||||
https://github.com/wuch15/Fastformer
|
||||
|
||||
"""
|
||||
|
||||
import numpy
|
||||
import torch
|
||||
|
||||
|
||||
class FastSelfAttention(torch.nn.Module):
|
||||
"""Fast self-attention used in Fastformer."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
size,
|
||||
attention_heads,
|
||||
dropout_rate,
|
||||
):
|
||||
super().__init__()
|
||||
if size % attention_heads != 0:
|
||||
raise ValueError(
|
||||
f"Hidden size ({size}) is not an integer multiple "
|
||||
f"of attention heads ({attention_heads})"
|
||||
)
|
||||
self.attention_head_size = size // attention_heads
|
||||
self.num_attention_heads = attention_heads
|
||||
|
||||
self.query = torch.nn.Linear(size, size)
|
||||
self.query_att = torch.nn.Linear(size, attention_heads)
|
||||
self.key = torch.nn.Linear(size, size)
|
||||
self.key_att = torch.nn.Linear(size, attention_heads)
|
||||
self.transform = torch.nn.Linear(size, size)
|
||||
self.dropout = torch.nn.Dropout(dropout_rate)
|
||||
|
||||
def espnet_initialization_fn(self):
|
||||
self.apply(self.init_weights)
|
||||
|
||||
def init_weights(self, module):
|
||||
if isinstance(module, torch.nn.Linear):
|
||||
module.weight.data.normal_(mean=0.0, std=0.02)
|
||||
if isinstance(module, torch.nn.Linear) and module.bias is not None:
|
||||
module.bias.data.zero_()
|
||||
|
||||
def transpose_for_scores(self, x):
|
||||
"""Reshape and transpose to compute scores.
|
||||
|
||||
Args:
|
||||
x: (batch, time, size = n_heads * attn_dim)
|
||||
|
||||
Returns:
|
||||
(batch, n_heads, time, attn_dim)
|
||||
"""
|
||||
|
||||
new_x_shape = x.shape[:-1] + (
|
||||
self.num_attention_heads,
|
||||
self.attention_head_size,
|
||||
)
|
||||
return x.reshape(*new_x_shape).transpose(1, 2)
|
||||
|
||||
def forward(self, xs_pad, mask):
|
||||
"""Forward method.
|
||||
|
||||
Args:
|
||||
xs_pad: (batch, time, size = n_heads * attn_dim)
|
||||
mask: (batch, 1, time), nonpadding is 1, padding is 0
|
||||
|
||||
Returns:
|
||||
torch.Tensor: (batch, time, size)
|
||||
"""
|
||||
|
||||
batch_size, seq_len, _ = xs_pad.shape
|
||||
mixed_query_layer = self.query(xs_pad) # (batch, time, size)
|
||||
mixed_key_layer = self.key(xs_pad) # (batch, time, size)
|
||||
|
||||
if mask is not None:
|
||||
mask = mask.eq(0) # padding is 1, nonpadding is 0
|
||||
|
||||
# (batch, n_heads, time)
|
||||
query_for_score = (
|
||||
self.query_att(mixed_query_layer).transpose(1, 2)
|
||||
/ self.attention_head_size**0.5
|
||||
)
|
||||
if mask is not None:
|
||||
min_value = float(
|
||||
numpy.finfo(
|
||||
torch.tensor(0, dtype=query_for_score.dtype).numpy().dtype
|
||||
).min
|
||||
)
|
||||
query_for_score = query_for_score.masked_fill(mask, min_value)
|
||||
query_weight = torch.softmax(query_for_score, dim=-1).masked_fill(mask, 0.0)
|
||||
else:
|
||||
query_weight = torch.softmax(query_for_score, dim=-1)
|
||||
|
||||
query_weight = query_weight.unsqueeze(2) # (batch, n_heads, 1, time)
|
||||
query_layer = self.transpose_for_scores(
|
||||
mixed_query_layer
|
||||
) # (batch, n_heads, time, attn_dim)
|
||||
|
||||
pooled_query = (
|
||||
torch.matmul(query_weight, query_layer)
|
||||
.transpose(1, 2)
|
||||
.reshape(-1, 1, self.num_attention_heads * self.attention_head_size)
|
||||
) # (batch, 1, size = n_heads * attn_dim)
|
||||
pooled_query = self.dropout(pooled_query)
|
||||
pooled_query_repeat = pooled_query.repeat(1, seq_len, 1) # (batch, time, size)
|
||||
|
||||
mixed_query_key_layer = (
|
||||
mixed_key_layer * pooled_query_repeat
|
||||
) # (batch, time, size)
|
||||
|
||||
# (batch, n_heads, time)
|
||||
query_key_score = (
|
||||
self.key_att(mixed_query_key_layer) / self.attention_head_size**0.5
|
||||
).transpose(1, 2)
|
||||
if mask is not None:
|
||||
min_value = float(
|
||||
numpy.finfo(
|
||||
torch.tensor(0, dtype=query_key_score.dtype).numpy().dtype
|
||||
).min
|
||||
)
|
||||
query_key_score = query_key_score.masked_fill(mask, min_value)
|
||||
query_key_weight = torch.softmax(query_key_score, dim=-1).masked_fill(
|
||||
mask, 0.0
|
||||
)
|
||||
else:
|
||||
query_key_weight = torch.softmax(query_key_score, dim=-1)
|
||||
|
||||
query_key_weight = query_key_weight.unsqueeze(2) # (batch, n_heads, 1, time)
|
||||
key_layer = self.transpose_for_scores(
|
||||
mixed_query_key_layer
|
||||
) # (batch, n_heads, time, attn_dim)
|
||||
pooled_key = torch.matmul(
|
||||
query_key_weight, key_layer
|
||||
) # (batch, n_heads, 1, attn_dim)
|
||||
pooled_key = self.dropout(pooled_key)
|
||||
|
||||
# NOTE: value = query, due to param sharing
|
||||
weighted_value = (pooled_key * query_layer).transpose(
|
||||
1, 2
|
||||
) # (batch, time, n_heads, attn_dim)
|
||||
weighted_value = weighted_value.reshape(
|
||||
weighted_value.shape[:-2]
|
||||
+ (self.num_attention_heads * self.attention_head_size,)
|
||||
) # (batch, time, size)
|
||||
weighted_value = (
|
||||
self.dropout(self.transform(weighted_value)) + mixed_query_layer
|
||||
)
|
||||
|
||||
return weighted_value
|
||||
Loading…
Reference in New Issue
Block a user