Dev gzf deepspeed (#1736)

* resume from step

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* train_loss_avg train_acc_avg

* train_loss_avg train_acc_avg

* train_loss_avg train_acc_avg

* log step

* wav is not exist

* wav is not exist

* decoding

* decoding

* decoding

* wechat

* decoding key

* decoding key

* decoding key

* decoding key

* decoding key

* decoding key

* dynamic batch

* start_data_split_i=0

* total_time/accum_grad

* total_time/accum_grad

* total_time/accum_grad

* update avg slice

* update avg slice

* sensevoice sanm

* sensevoice sanm

* add

* add

* add

* add

* deepspeed

* update with main (#1731)

* c++ runtime adapt to 1.0 (#1724)

* adapt vad runtime to 1.0

* add json

* change yml name

* add func LoadVocabFromJson

* add token file for InitAsr

* add token path for OfflineStream

* add funcOpenYaml

* add token file for InitPunc

* add token file for stream

* update punc-model

* update funasr-wss-server

* update runtime_sdk_download_tool.py

* update docker list

* Delete docs/images/wechat.png

* Add files via upload

* Emo2Vec限定选择的情感类别 (#1730)

* 限定选择的情感类别

* 使用none来禁用情感标签输出

* 修改输出接口

* 使用unuse来禁用token

---------

Co-authored-by: 常材 <gaochangfeng.gcf@alibaba-inc.com>

* bugfix

* v1.0.27

* update docs

* hf hub

* Fix incorrect assignment of 'end' attribute to 'start' in sentences list comprehension (#1680)

---------

Co-authored-by: Yabin Li <wucong.lyb@alibaba-inc.com>
Co-authored-by: gaochangfeng <54253717+gaochangfeng@users.noreply.github.com>
Co-authored-by: 常材 <gaochangfeng.gcf@alibaba-inc.com>
Co-authored-by: nsdou <168500039+nsdou@users.noreply.github.com>

* docs

* docs

* deepspeed

* deepspeed

* deepspeed

* deepspeed

* update

* ds

* ds

* ds

* ds

* ds

* ds

* ds

---------

Co-authored-by: Yabin Li <wucong.lyb@alibaba-inc.com>
Co-authored-by: gaochangfeng <54253717+gaochangfeng@users.noreply.github.com>
Co-authored-by: 常材 <gaochangfeng.gcf@alibaba-inc.com>
Co-authored-by: nsdou <168500039+nsdou@users.noreply.github.com>
This commit is contained in:
zhifu gao 2024-05-20 15:31:46 +08:00 committed by GitHub
parent d3da0760a5
commit 961ec280af
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 474 additions and 339 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 157 KiB

After

Width:  |  Height:  |  Size: 181 KiB

View File

@ -130,32 +130,10 @@ def main(**kwargs):
model = trainer.warp_model(model)
kwargs["device"] = next(model.parameters()).device
trainer.device = kwargs["device"]
kwargs["device"] = int(os.environ.get("LOCAL_RANK", 0))
trainer.device = int(os.environ.get("LOCAL_RANK", 0))
# optim
logging.info("Build optim")
optim = kwargs.get("optim", "adam")
assert optim in optim_classes
optim_class = optim_classes.get(optim)
optim = optim_class(model.parameters(), **kwargs.get("optim_conf"))
# scheduler
logging.info("Build scheduler")
scheduler = kwargs.get("scheduler", "warmuplr")
assert scheduler in scheduler_classes
scheduler_class = scheduler_classes.get(scheduler)
scheduler = scheduler_class(optim, **kwargs.get("scheduler_conf"))
if use_deepspeed:
args = OmegaConf.create({"deepspeed_config": kwargs.get("deepspeed_config", "")})
model, optimizer, _, scheduler = deepspeed.initialize(
args=args,
model=model,
optimizer=optim,
lr_scheduler=scheduler,
model_parameters=model.parameters(),
)
model, optim, scheduler = trainer.warp_optim_scheduler(model, **kwargs)
# dataset
logging.info("Build dataloader")
@ -175,15 +153,6 @@ def main(**kwargs):
scaler=scaler,
)
tensorboard_dir = os.path.join(kwargs.get("output_dir"), "tensorboard")
os.makedirs(tensorboard_dir, exist_ok=True)
try:
from tensorboardX import SummaryWriter
writer = SummaryWriter(tensorboard_dir) # if trainer.rank == 0 else None
except:
writer = None
dataloader_tr, dataloader_val = None, None
for epoch in range(trainer.start_epoch, trainer.max_epoch):
time1 = time.perf_counter()
@ -201,7 +170,6 @@ def main(**kwargs):
dataloader_train=dataloader_tr,
dataloader_val=dataloader_val,
epoch=epoch,
writer=writer,
data_split_i=data_split_i,
data_split_num=dataloader.data_split_num,
start_step=trainer.start_step,
@ -211,9 +179,7 @@ def main(**kwargs):
torch.cuda.empty_cache()
trainer.start_data_split_i = 0
trainer.validate_epoch(
model=model, dataloader_val=dataloader_val, epoch=epoch + 1, writer=writer
)
trainer.validate_epoch(model=model, dataloader_val=dataloader_val, epoch=epoch + 1)
scheduler.step()
trainer.step_in_epoch = 0
trainer.save_checkpoint(
@ -232,7 +198,9 @@ def main(**kwargs):
trainer.train_loss_avg = 0.0
if trainer.rank == 0:
average_checkpoints(trainer.output_dir, trainer.avg_nbest_model)
average_checkpoints(
trainer.output_dir, trainer.avg_nbest_model, use_deepspeed=trainer.use_deepspeed
)
trainer.close()

View File

@ -72,6 +72,7 @@ class EspnetStyleBatchSampler(DistributedSampler):
self.min_token_length = kwargs.get("min_token_length", 0)
self.length_scale_source = kwargs.get("length_scale_source", 1.0)
self.start_step = start_step
self.batch_num = 1
if self.start_step > 0:
logging.info(f"Warning, start_step > 0, dataloader start from step: {self.start_step}")
# super().__init__(dataset, num_replicas=num_replicas, rank=rank,
@ -146,6 +147,7 @@ class EspnetStyleBatchSampler(DistributedSampler):
start_idx = self.rank * batches_per_rank
end_idx = start_idx + batches_per_rank
rank_batches = buffer_batches[start_idx + self.start_step : end_idx]
self.batch_num = len(rank_batches)
logging.info(
f"rank: {self.rank}, dataloader start from step: {self.start_step}, batch_num: {end_idx-start_idx}, batch_num_after_step: {len(rank_batches)}"
)
@ -154,7 +156,7 @@ class EspnetStyleBatchSampler(DistributedSampler):
def __len__(self):
# Calculate the number of batches per epoch for the current rank
return 1
return self.batch_num
def set_epoch(self, epoch):
# Set the epoch for shuffling

View File

@ -100,7 +100,9 @@ class MultiHeadedAttention(nn.Module):
n_batch = value.size(0)
if mask is not None:
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
min_value = float(numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min)
min_value = -float(
"inf"
) # float(numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min)
scores = scores.masked_fill(mask, min_value)
self.attn = torch.softmax(scores, dim=-1).masked_fill(
mask, 0.0
@ -269,7 +271,9 @@ class MultiHeadedAttentionSANM(nn.Module):
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
min_value = float(numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min)
min_value = -float(
"inf"
) # float(numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min)
scores = scores.masked_fill(mask, min_value)
self.attn = torch.softmax(scores, dim=-1).masked_fill(
mask, 0.0
@ -673,7 +677,9 @@ class MultiHeadedAttentionCrossAtt(nn.Module):
n_batch = value.size(0)
if mask is not None:
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
min_value = float(numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min)
min_value = -float(
"inf"
) # float(numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min)
# logging.info(
# "scores: {}, mask_size: {}".format(scores.size(), mask.size()))
scores = scores.masked_fill(mask, min_value)
@ -858,7 +864,9 @@ class MultiHeadSelfAttention(nn.Module):
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
min_value = float(numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min)
min_value = -float(
"inf"
) # float(numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min)
scores = scores.masked_fill(mask, min_value)
self.attn = torch.softmax(scores, dim=-1).masked_fill(
mask, 0.0

View File

@ -146,7 +146,9 @@ class MultiHeadAttention(nn.Module):
qk = qk + mask[:n_ctx, :n_ctx]
else:
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
min_value = float(np.finfo(torch.tensor(0, dtype=qk.dtype).numpy().dtype).min)
min_value = -float(
"inf"
) # min_value = float(np.finfo(torch.tensor(0, dtype=qk.dtype).numpy().dtype).min)
qk = qk.masked_fill(mask, min_value)
qk = qk.float()

View File

@ -112,7 +112,9 @@ class MultiHeadAttention(nn.Module):
qk = qk + mask[:n_ctx, :n_ctx]
else:
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
min_value = float(np.finfo(torch.tensor(0, dtype=qk.dtype).numpy().dtype).min)
min_value = -float(
"inf"
) # min_value = float(np.finfo(torch.tensor(0, dtype=qk.dtype).numpy().dtype).min)
qk = qk.masked_fill(mask, min_value)
qk = qk.float()

View File

@ -16,7 +16,7 @@ from collections import OrderedDict
from functools import cmp_to_key
def _get_checkpoint_paths(output_dir: str, last_n: int = 5):
def _get_checkpoint_paths(output_dir: str, last_n: int = 5, use_deepspeed=False, **kwargs):
"""
Get the paths of the last 'last_n' checkpoints by parsing filenames
in the output directory.
@ -29,7 +29,13 @@ def _get_checkpoint_paths(output_dir: str, last_n: int = 5):
sorted_items = (
sorted_items[:last_n] if avg_keep_nbest_models_type == "acc" else sorted_items[-last_n:]
)
checkpoint_paths = [os.path.join(output_dir, key) for key, value in sorted_items[:last_n]]
checkpoint_paths = []
for key, value in sorted_items[:last_n]:
if not use_deepspeed:
ckpt = os.path.join(output_dir, key)
else:
ckpt = os.path.join(output_dir, key, "mp_rank_00_model_states.pt")
except:
print(f"{checkpoint} does not exist, avg the lastet checkpoint.")
# List all files in the output directory
@ -49,7 +55,7 @@ def average_checkpoints(output_dir: str, last_n: int = 5, **kwargs):
Average the last 'last_n' checkpoints' model state_dicts.
If a tensor is of type torch.int, perform sum instead of average.
"""
checkpoint_paths = _get_checkpoint_paths(output_dir, last_n)
checkpoint_paths = _get_checkpoint_paths(output_dir, last_n, **kwargs)
print(f"average_checkpoints: {checkpoint_paths}")
state_dicts = []
@ -62,7 +68,8 @@ def average_checkpoints(output_dir: str, last_n: int = 5, **kwargs):
# Check if we have any state_dicts to average
if len(state_dicts) < 1:
raise RuntimeError("No checkpoints found for averaging.")
print("No checkpoints found for averaging.")
return
# Average or sum weights
avg_state_dict = OrderedDict()

View File

@ -23,12 +23,16 @@ except:
@contextmanager
def maybe_autocast(enabled):
if enabled:
with autocast():
def maybe_autocast(dtype=None, use_deepspeed=False):
if use_deepspeed:
with torch.cuda.amp.autocast(enabled=True, dtype=dtype, cache_enabled=False):
yield
else:
yield
if dtype == torch.float16:
with autocast(enabled=True):
yield
else:
yield
class Trainer:
@ -78,7 +82,7 @@ class Trainer:
self.world_size = world_size
self.use_ddp = use_ddp
self.use_fsdp = use_fsdp
self.use_deepspeed = use_deepspeed
self.device = kwargs.get("device", "cuda")
self.output_dir = output_dir
@ -91,7 +95,10 @@ class Trainer:
# self.kwargs = kwargs
self.log_interval = kwargs.get("log_interval", 50)
self.batch_total = 0
self.dtype = torch.float32
self.use_fp16 = use_fp16
if self.use_fp16:
self.dtype = torch.float16
self.save_checkpoint_interval = kwargs.get("save_checkpoint_interval", 5000)
self.validate_interval = kwargs.get("validate_interval", 5000)
self.keep_nbest_models = kwargs.get("keep_nbest_models", 500)
@ -128,6 +135,17 @@ class Trainer:
job_type="training",
reinit=True,
)
tensorboard_dir = os.path.join(output_dir, "tensorboard")
os.makedirs(tensorboard_dir, exist_ok=True)
try:
from tensorboardX import SummaryWriter
self.writer = SummaryWriter(tensorboard_dir) # if trainer.rank == 0 else None
except:
self.writer = None
self.use_deepspeed = use_deepspeed
self.deepspeed_config = kwargs.get("deepspeed_config", "")
def save_checkpoint(
self,
@ -148,9 +166,113 @@ class Trainer:
Args:
epoch (int): The epoch number at which the checkpoint is being saved.
"""
step_in_epoch = None if step is None else step_in_epoch
if self.rank == 0:
if self.use_deepspeed:
logging.info(f"Save checkpoint: {epoch}, rank: {self.local_rank}\n")
# self.step_or_epoch += 1
state = {
"epoch": epoch,
# "state_dict": model.state_dict(),
# "optimizer": optim.state_dict(),
# "scheduler": scheduler.state_dict(),
"saved_ckpts": self.saved_ckpts,
"val_acc_step_or_eoch": self.val_acc_step_or_eoch,
"val_loss_step_or_eoch": self.val_loss_step_or_eoch,
"best_step_or_epoch": self.best_step_or_epoch,
"avg_keep_nbest_models_type": self.avg_keep_nbest_models_type,
"step": step,
"step_in_epoch": step_in_epoch,
"data_split_i": kwargs.get("data_split_i", 0),
"data_split_num": kwargs.get("data_split_num", 1),
"batch_total": self.batch_total,
"train_loss_avg": kwargs.get("train_loss_avg", 0),
"train_acc_avg": kwargs.get("train_acc_avg", 0),
}
step = step_in_epoch
if hasattr(model, "module"):
state["state_dict"] = model.module.state_dict()
if scaler:
state["scaler_state"] = scaler.state_dict()
# Create output directory if it does not exist
os.makedirs(self.output_dir, exist_ok=True)
if step is None:
ckpt_name = f"model.pt.ep{epoch}"
else:
ckpt_name = f"model.pt.ep{epoch}.{step}"
filename = os.path.join(self.output_dir, ckpt_name)
# torch.save(state, filename)
with torch.no_grad():
model.save_checkpoint(save_dir=self.output_dir, tag=ckpt_name, client_state=state)
logging.info(f"\nCheckpoint saved to {filename}\n")
latest = Path(os.path.join(self.output_dir, f"model.pt"))
# torch.save(state, latest)
with torch.no_grad():
model.save_checkpoint(save_dir=self.output_dir, tag=f"model.pt", client_state=state)
if self.best_step_or_epoch == "":
self.best_step_or_epoch = ckpt_name
if self.avg_keep_nbest_models_type == "acc":
if (
self.val_acc_step_or_eoch[ckpt_name]
>= self.val_acc_step_or_eoch[self.best_step_or_epoch]
):
self.best_step_or_epoch = ckpt_name
best_ckpt = Path(os.path.join(self.output_dir, f"model.pt.best"))
# torch.save(state, best_ckpt)
with torch.no_grad():
model.save_checkpoint(
save_dir=self.output_dir, tag=f"model.pt.best", client_state=state
)
logging.info(
f"Update best acc: {self.val_acc_step_or_eoch[self.best_step_or_epoch]:.4f}, {best_ckpt}"
)
else:
logging.info(
f"No improvement in acc: {self.val_acc_step_or_eoch[ckpt_name]:.4f} < {self.val_acc_step_or_eoch[self.best_step_or_epoch]:.4f}, {os.path.join(self.output_dir, self.best_step_or_epoch)}"
)
elif self.avg_keep_nbest_models_type == "loss":
if (
self.val_loss_step_or_eoch[ckpt_name]
<= self.val_loss_step_or_eoch[self.best_step_or_epoch]
):
self.best_step_or_epoch = ckpt_name
best_ckpt = Path(os.path.join(self.output_dir, f"model.pt.best"))
# torch.save(state, best_ckpt)
with torch.no_grad():
model.save_checkpoint(
save_dir=self.output_dir, tag=f"model.pt.best", client_state=state
)
logging.info(
f"Update best loss: {self.val_loss_step_or_eoch[self.best_step_or_epoch]:.4f}, {best_ckpt}"
)
else:
logging.info(
f"No improvement in loss: {self.val_loss_step_or_eoch[ckpt_name]:.4f} > {self.val_loss_step_or_eoch[self.best_step_or_epoch]:.4f}, {os.path.join(self.output_dir, self.best_step_or_epoch)}"
)
else:
print("Undo")
self.saved_ckpts[ckpt_name] = getattr(
self, f"val_{self.avg_keep_nbest_models_type}_step_or_eoch"
)[ckpt_name]
if self.keep_nbest_models > 0:
if len(self.saved_ckpts) > self.keep_nbest_models:
if self.avg_keep_nbest_models_type == "acc":
key = min(self.saved_ckpts, key=self.saved_ckpts.get)
else:
key = max(self.saved_ckpts, key=self.saved_ckpts.get)
if key in self.saved_ckpts:
del self.saved_ckpts[key]
filename = os.path.join(self.output_dir, key)
logging.info(f"Delete: {filename}")
if os.path.exists(filename):
os.remove(filename)
elif self.use_fsdp:
pass
elif self.rank == 0:
logging.info(f"Save checkpoint: {epoch}, rank: {self.local_rank}\n")
# self.step_or_epoch += 1
state = {
@ -258,66 +380,117 @@ class Trainer:
resume_path (str): The file path to the checkpoint to resume from.
"""
if self.resume:
ckpt = os.path.join(self.output_dir, "model.pt")
if os.path.isfile(ckpt):
checkpoint = torch.load(ckpt, map_location="cpu")
self.start_epoch = checkpoint["epoch"]
# self.model.load_state_dict(checkpoint['state_dict'])
src_state = checkpoint["state_dict"]
dst_state = model.state_dict()
for k in dst_state.keys():
if not k.startswith("module.") and "module." + k in src_state.keys():
k_ddp = "module." + k
elif k.startswith("module.") and "module." + k not in src_state.keys():
k_ddp = k.replace("module.", "", 1)
else:
k_ddp = k
if k_ddp in src_state.keys():
dst_state[k] = src_state[k_ddp]
else:
print(f"Miss key in ckpt: model: {k}, ckpt: {k_ddp}")
model.load_state_dict(dst_state)
optim.load_state_dict(checkpoint["optimizer"])
scheduler.load_state_dict(checkpoint["scheduler"])
if scaler is not None and "scaler_state" in checkpoint:
scaler.load_state_dict(checkpoint["scaler_state"])
if self.use_deepspeed:
ckpt = os.path.join(self.output_dir, "model.pt")
if os.path.exists(ckpt):
_, checkpoint = model.load_checkpoint(self.output_dir, "model.pt")
self.saved_ckpts = checkpoint["saved_ckpts"]
self.val_acc_step_or_eoch = (
checkpoint["val_acc_step_or_eoch"]
if "val_acc_step_or_eoch" in checkpoint
else {}
)
self.val_loss_step_or_eoch = (
checkpoint["val_loss_step_or_eoch"]
if "val_loss_step_or_eoch" in checkpoint
else {}
)
self.best_step_or_epoch = (
checkpoint["best_step_or_epoch"] if "best_step_or_epoch" in checkpoint else ""
)
self.start_data_split_i = (
checkpoint["data_split_i"] if "data_split_i" in checkpoint else 0
)
self.batch_total = checkpoint["batch_total"] if "batch_total" in checkpoint else 0
self.start_step = checkpoint["step"] if "step" in checkpoint else 0
self.start_step = 0 if self.start_step is None else self.start_step
self.step_in_epoch = (
checkpoint["step_in_epoch"] if "step_in_epoch" in checkpoint else 0
)
self.step_in_epoch = 0 if self.step_in_epoch is None else self.step_in_epoch
print(checkpoint["train_acc_avg"])
self.train_acc_avg = (
checkpoint["train_acc_avg"] if "train_acc_avg" in checkpoint else 0
)
self.train_loss_avg = (
checkpoint["train_loss_avg"] if "train_loss_avg" in checkpoint else 0
)
model.to(self.device)
print(f"Checkpoint loaded successfully from '{ckpt}'")
self.saved_ckpts = checkpoint["saved_ckpts"]
self.val_acc_step_or_eoch = (
checkpoint["val_acc_step_or_eoch"]
if "val_acc_step_or_eoch" in checkpoint
else {}
)
self.val_loss_step_or_eoch = (
checkpoint["val_loss_step_or_eoch"]
if "val_loss_step_or_eoch" in checkpoint
else {}
)
self.best_step_or_epoch = (
checkpoint["best_step_or_epoch"]
if "best_step_or_epoch" in checkpoint
else ""
)
self.start_data_split_i = (
checkpoint["data_split_i"] if "data_split_i" in checkpoint else 0
)
self.batch_total = (
checkpoint["batch_total"] if "batch_total" in checkpoint else 0
)
self.start_step = checkpoint["step"] if "step" in checkpoint else 0
self.start_step = 0 if self.start_step is None else self.start_step
self.step_in_epoch = (
checkpoint["step_in_epoch"] if "step_in_epoch" in checkpoint else 0
)
self.step_in_epoch = 0 if self.step_in_epoch is None else self.step_in_epoch
print(checkpoint["train_acc_avg"])
self.train_acc_avg = (
checkpoint["train_acc_avg"] if "train_acc_avg" in checkpoint else 0
)
self.train_loss_avg = (
checkpoint["train_loss_avg"] if "train_loss_avg" in checkpoint else 0
)
model.to(self.device)
print(f"Checkpoint loaded successfully from '{ckpt}'")
else:
print(f"No checkpoint found at '{ckpt}', does not resume status!")
else:
print(f"No checkpoint found at '{ckpt}', does not resume status!")
ckpt = os.path.join(self.output_dir, "model.pt")
if os.path.isfile(ckpt):
checkpoint = torch.load(ckpt, map_location="cpu")
self.start_epoch = checkpoint["epoch"]
# self.model.load_state_dict(checkpoint['state_dict'])
src_state = checkpoint["state_dict"]
dst_state = model.state_dict()
for k in dst_state.keys():
if not k.startswith("module.") and "module." + k in src_state.keys():
k_ddp = "module." + k
elif k.startswith("module.") and "module." + k not in src_state.keys():
k_ddp = k.replace("module.", "", 1)
else:
k_ddp = k
if k_ddp in src_state.keys():
dst_state[k] = src_state[k_ddp]
else:
print(f"Miss key in ckpt: model: {k}, ckpt: {k_ddp}")
model.load_state_dict(dst_state)
optim.load_state_dict(checkpoint["optimizer"])
scheduler.load_state_dict(checkpoint["scheduler"])
if scaler is not None and "scaler_state" in checkpoint:
scaler.load_state_dict(checkpoint["scaler_state"])
self.saved_ckpts = checkpoint["saved_ckpts"]
self.val_acc_step_or_eoch = (
checkpoint["val_acc_step_or_eoch"]
if "val_acc_step_or_eoch" in checkpoint
else {}
)
self.val_loss_step_or_eoch = (
checkpoint["val_loss_step_or_eoch"]
if "val_loss_step_or_eoch" in checkpoint
else {}
)
self.best_step_or_epoch = (
checkpoint["best_step_or_epoch"]
if "best_step_or_epoch" in checkpoint
else ""
)
self.start_data_split_i = (
checkpoint["data_split_i"] if "data_split_i" in checkpoint else 0
)
self.batch_total = (
checkpoint["batch_total"] if "batch_total" in checkpoint else 0
)
self.start_step = checkpoint["step"] if "step" in checkpoint else 0
self.start_step = 0 if self.start_step is None else self.start_step
self.step_in_epoch = (
checkpoint["step_in_epoch"] if "step_in_epoch" in checkpoint else 0
)
self.step_in_epoch = 0 if self.step_in_epoch is None else self.step_in_epoch
print(checkpoint["train_acc_avg"])
self.train_acc_avg = (
checkpoint["train_acc_avg"] if "train_acc_avg" in checkpoint else 0
)
self.train_loss_avg = (
checkpoint["train_loss_avg"] if "train_loss_avg" in checkpoint else 0
)
model.to(self.device)
print(f"Checkpoint loaded successfully from '{ckpt}'")
else:
print(f"No checkpoint found at '{ckpt}', does not resume status!")
if self.use_ddp or self.use_fsdp:
dist.barrier()
@ -331,7 +504,6 @@ class Trainer:
dataloader_train=None,
dataloader_val=None,
epoch=None,
writer=None,
**kwargs,
):
"""
@ -339,7 +511,7 @@ class Trainer:
Args:
epoch (int): The current epoch number.
"""
if self.use_ddp or self.use_fsdp:
if self.use_ddp or self.use_fsdp or self.use_deepspeed:
dist.barrier()
logging.info(f"Train epoch: {epoch}, rank: {self.rank}\n")
model.train()
@ -356,14 +528,21 @@ class Trainer:
time_beg = time.perf_counter()
time5 = time_beg
for batch_idx, batch in enumerate(dataloader_train):
if self.use_ddp or self.use_fsdp:
dist.all_reduce(iterator_stop, dist.ReduceOp.SUM)
if iterator_stop > 0:
break
self.batch_total += 1
self.step_in_epoch += 1
loss_dict = {
"speed_stats": {},
"epoch": epoch,
"batch_idx": batch_idx,
"data_split_i": kwargs.get("data_split_i", 0),
"data_split_num": kwargs.get("data_split_num", 1),
"log_step": batch_idx + kwargs.get("start_step", 0),
"batch_total": self.batch_total,
"step_in_epoch": self.step_in_epoch,
}
time1 = time.perf_counter()
speed_stats["data_load"] = f"{time1-time_beg:0.3f}"
loss_dict["speed_stats"]["data_load"] = f"{time1-time_beg:0.3f}"
batch = to_device(batch, self.device)
@ -372,35 +551,43 @@ class Trainer:
my_context = model.no_sync if batch_idx % accum_grad != 0 else my_context
with my_context():
time2 = time.perf_counter()
loss_dict = {}
self.forward_step(model, batch, loss_dict=loss_dict)
time3 = time.perf_counter()
speed_stats["forward_time"] = f"{time3 - time2:0.3f}"
loss_dict["speed_stats"]["forward_time"] = f"{time3 - time2:0.3f}"
self.backward_step(model, scaler, loss_dict=loss_dict)
time4 = time.perf_counter()
speed_stats["backward_and_AllReaduce_time"] = f"{time4 - time3:0.3f}"
loss_dict["speed_stats"]["backward_time"] = f"{time4 - time3:0.3f}"
# self.train_loss_avg = (
# self.train_loss_avg * (batch_idx + kwargs.get("start_step", 0))
# + loss.detach().cpu().item()
# ) / (batch_idx + kwargs.get("start_step", 0) + 1)
# if "acc" in stats:
# self.train_acc_avg = (
# self.train_acc_avg * (batch_idx + kwargs.get("start_step", 0))
# + stats["acc"].detach().cpu().item()
# ) / (batch_idx + kwargs.get("start_step", 0) + 1)
self.update_step(model, optim, scheduler, scaler, loss_dict=loss_dict)
total_time = f"{(time.perf_counter() - time5):0.3f}"
time5 = time.perf_counter()
self.update_step(model, optim, scheduler, scaler, loss_dict)
# Perform an optimizer step only after accumulating enough gradients
loss_dict["speed_stats"]["optim_time"] = f"{time5 - time4:0.3f}"
loss_dict["speed_stats"]["total_time"] = total_time
loss_dict["lr"] = scheduler.get_last_lr()[0]
loss_dict["batch_num_epoch"] = len(dataloader_train)
self.train_loss_avg = (
self.train_loss_avg * batch_idx + loss_dict["loss"].detach().cpu().item()
) / (batch_idx + 1)
if "acc" in loss_dict["stats"]:
self.train_acc_avg = (
self.train_acc_avg * batch_idx + loss_dict["stats"]["acc"].detach().cpu().item()
) / (batch_idx + 1)
self.log(loss_dict, tag="train")
if self.step_in_epoch % self.validate_interval == 0:
self.validate_epoch(
model=model,
dataloader_val=dataloader_val,
epoch=epoch,
writer=writer,
writer=self.writer,
step=batch_idx + 1,
step_in_epoch=self.step_in_epoch,
)
@ -421,41 +608,22 @@ class Trainer:
)
time_beg = time.perf_counter()
else:
if self.use_ddp or self.use_fsdp:
iterator_stop.fill_(1)
dist.all_reduce(iterator_stop, dist.ReduceOp.SUM)
if self.use_ddp or self.use_fsdp:
dist.barrier()
iterator_stop = torch.tensor(0).to(self.device)
if self.use_ddp or self.use_fsdp or self.use_deepspeed:
train_loss_avg = torch.tensor(self.train_loss_avg, dtype=torch.float32).to(self.device)
train_acc_avg = torch.tensor(self.train_acc_avg, dtype=torch.float32).to(self.device)
dist.all_reduce(train_loss_avg, op=dist.ReduceOp.SUM)
dist.all_reduce(train_acc_avg, op=dist.ReduceOp.SUM)
self.train_loss_avg = train_loss_avg.detach().cpu().item() / self.world_size
self.train_acc_avg = train_acc_avg.detach().cpu().item() / self.world_size
def forward_step(self, model, batch, loss_dict={}):
with maybe_autocast(self.use_fp16):
dtype = torch.bfloat16
with maybe_autocast(dtype=self.dtype, use_deepspeed=self.use_deepspeed):
retval = model(**batch)
if (
self.reset_gpu_cache
and (torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024) > 70
):
torch.cuda.empty_cache()
loss, stats, weight = retval
stats = {k: v for k, v in stats.items() if v is not None}
# if self.use_ddp or self.use_fsdp:
# # Apply weighted averaging for loss and stats
# loss = (loss * weight.type(loss.dtype)).sum()
# # if distributed, this method can also apply all_reduce()
# # stats, weight = recursive_average(stats, weight, distributed=True)
# if self.use_ddp or self.use_fsdp:
# dist.all_reduce(weight, op=dist.ReduceOp.SUM)
# # Now weight is summation over all workers
# loss /= weight.sum() # shape:[1] -> shape:[]
# # Multiply world_size because DistributedDataParallel
# # automatically normalizes the gradient by world_size.
# loss *= self.world_size
# loss *= self.world_size
# Scale the loss since we're not updating for every mini-batch
loss_dict["loss"] = loss
loss_dict["stats"] = stats
@ -473,69 +641,37 @@ class Trainer:
else:
loss.backward()
def update_step(self, model, optim, scheduler, scaler, batch_idx=0, loss_dict=loss_dict):
if (batch_idx + 1) % self.accum_grad == 0:
# Perform gradient clipping if it is set
if self.grad_clip > 0:
grad_norm = torch.nn.utils.clip_grad_norm_(
model.parameters(),
max_norm=self.grad_clip,
norm_type=self.grad_clip_type,
)
if not torch.isfinite(grad_norm):
logging.warning(f"The grad norm is {grad_norm}. Skipping updating the model.")
optim.zero_grad() # Reset gradients
return
def update_step(self, model, optim, scheduler, scaler, loss_dict=None):
batch_idx = loss_dict["batch_idx"]
if self.use_deepspeed:
model.step()
else:
if (batch_idx + 1) % self.accum_grad == 0:
# Perform gradient clipping if it is set
if self.grad_clip > 0:
grad_norm = torch.nn.utils.clip_grad_norm_(
model.parameters(),
max_norm=self.grad_clip,
norm_type=self.grad_clip_type,
)
if not torch.isfinite(grad_norm):
logging.warning(
f"The grad norm is {grad_norm}. Skipping updating the model."
)
optim.zero_grad() # Reset gradients
return
# Execute an optimization step (update model parameters)
if self.use_ddp or self.use_fsdp:
dist.barrier()
if self.use_fp16:
scaler.step(optim)
scaler.update()
else:
optim.step()
scheduler.step()
# Clear gradients for the next accumulation stage
optim.zero_grad(set_to_none=True)
if self.use_ddp or self.use_fsdp:
train_loss_avg = torch.tensor(self.train_loss_avg, dtype=torch.float32).to(
self.device
)
train_acc_avg = torch.tensor(self.train_acc_avg, dtype=torch.float32).to(
self.device
)
dist.all_reduce(train_loss_avg, op=dist.ReduceOp.SUM)
dist.all_reduce(train_acc_avg, op=dist.ReduceOp.SUM)
self.train_loss_avg = train_loss_avg.detach().cpu().item() / self.world_size
self.train_acc_avg = train_acc_avg.detach().cpu().item() / self.world_size
total_time = f"{(time.perf_counter() - time5) / accum_grad:0.3f}"
time5 = time.perf_counter()
speed_stats["optim_time"] = f"{time5 - time4:0.3f}"
speed_stats["total_time"] = total_time
lr = scheduler.get_last_lr()[0]
batch_num_epoch = 1
if hasattr(dataloader_train, "__len__"):
batch_num_epoch = len(dataloader_train)
self.log(
epoch,
batch_idx,
log_step=batch_idx + kwargs.get("start_step", 0),
step_in_epoch=self.step_in_epoch,
batch_num_epoch=batch_num_epoch,
lr=lr,
loss=loss.detach().cpu().item(),
speed_stats=speed_stats,
stats=stats,
writer=writer,
tag="train",
data_split_i=kwargs.get("data_split_i", 0),
data_split_num=kwargs.get("data_split_num", 1),
)
# Execute an optimization step (update model parameters)
if self.use_ddp or self.use_fsdp:
dist.barrier()
if self.use_fp16:
scaler.step(optim)
scaler.update()
else:
optim.step()
scheduler.step()
# Clear gradients for the next accumulation stage
optim.zero_grad(set_to_none=True)
def validate_epoch(
self,
@ -552,7 +688,7 @@ class Trainer:
Args:
epoch (int): The current epoch number.
"""
if self.use_ddp or self.use_fsdp:
if self.use_ddp or self.use_fsdp or self.use_deepspeed:
dist.barrier()
logging.info(f"Validate epoch: {epoch}, rank: {self.rank}\n")
model.eval()
@ -560,77 +696,61 @@ class Trainer:
with torch.no_grad():
speed_stats = {}
time5 = time.perf_counter()
iterator_stop = torch.tensor(0).to(self.device)
time_beg = time.perf_counter()
time5 = time_beg
dataloader_val.batch_sampler.set_epoch(epoch)
for batch_idx, batch in enumerate(dataloader_val):
if self.use_ddp or self.use_fsdp:
dist.all_reduce(iterator_stop, dist.ReduceOp.SUM)
if iterator_stop > 0:
break
loss_dict = {
"speed_stats": {},
"epoch": epoch,
"batch_idx": batch_idx,
"data_split_i": kwargs.get("data_split_i", 0),
"data_split_num": kwargs.get("data_split_num", 1),
"log_step": batch_idx + kwargs.get("start_step", 0),
"batch_total": batch_idx,
"step_in_epoch": batch_idx,
"lr": 0.0,
}
time1 = time.perf_counter()
speed_stats["data_load"] = f"{time1 - time5:0.3f}"
loss_dict["speed_stats"]["data_load"] = f"{time1 - time_beg:0.3f}"
batch = to_device(batch, self.device)
time2 = time.perf_counter()
retval = model(**batch)
self.forward_step(model, batch, loss_dict=loss_dict)
time3 = time.perf_counter()
speed_stats["forward_time"] = f"{time3 - time2:0.3f}"
loss, stats, weight = retval
stats = {k: v for k, v in stats.items() if v is not None}
if self.use_ddp or self.use_fsdp:
# Apply weighted averaging for loss and stats
loss = (loss * weight.type(loss.dtype)).sum()
# if distributed, this method can also apply all_reduce()
# stats, weight = recursive_average(stats, weight, distributed=True)
if self.use_ddp or self.use_fsdp:
dist.all_reduce(weight, op=dist.ReduceOp.SUM)
# Now weight is summation over all workers
loss /= weight.sum() # shape:[1] -> shape:[]
# Multiply world_size because DistributedDataParallel
# automatically normalizes the gradient by world_size.
loss *= self.world_size
# Scale the loss since we're not updating for every mini-batch
loss = loss
time4 = time.perf_counter()
loss_dict["speed_stats"]["forward_time"] = f"{time3 - time2:0.3f}"
self.val_loss_avg = (self.val_loss_avg * batch_idx + loss.detach().cpu().item()) / (
batch_idx + 1
)
if "acc" in stats:
self.val_acc_avg = (
self.val_acc_avg * batch_idx + stats["acc"].detach().cpu().item()
) / (batch_idx + 1)
if self.use_ddp or self.use_fsdp:
val_loss_avg = torch.tensor(self.val_loss_avg, dtype=torch.float32).to(
self.device
)
val_acc_avg = torch.tensor(self.val_acc_avg, dtype=torch.float32).to(
self.device
)
dist.all_reduce(val_loss_avg, op=dist.ReduceOp.SUM)
dist.all_reduce(val_acc_avg, op=dist.ReduceOp.SUM)
self.val_loss_avg = val_loss_avg.detach().cpu().item() / self.world_size
self.val_acc_avg = val_acc_avg.detach().cpu().item() / self.world_size
total_time = f"{(time.perf_counter() - time5):0.3f}"
time5 = time.perf_counter()
batch_num_epoch = 1
if hasattr(dataloader_val, "__len__"):
batch_num_epoch = len(dataloader_val)
self.log(
epoch,
batch_idx,
batch_num_epoch=batch_num_epoch,
lr=0.0,
loss=loss.detach().cpu().item(),
speed_stats=speed_stats,
stats=stats,
writer=writer,
tag="val",
)
else:
if self.use_ddp or self.use_fsdp:
iterator_stop.fill_(1)
dist.all_reduce(iterator_stop, dist.ReduceOp.SUM)
loss_dict["speed_stats"]["total_time"] = total_time
loss_dict["batch_num_epoch"] = len(dataloader_val)
self.log(loss_dict, tag="val")
time_beg = time.perf_counter()
self.val_loss_avg = (
self.val_loss_avg * batch_idx + loss_dict["loss"].detach().cpu().item()
) / (batch_idx + 1)
if "acc" in loss_dict["stats"]:
self.val_acc_avg = (
self.val_acc_avg * batch_idx
+ loss_dict["stats"]["acc"].detach().cpu().item()
) / (batch_idx + 1)
if self.use_ddp or self.use_fsdp or self.use_deepspeed:
val_loss_avg = torch.tensor(self.val_loss_avg, dtype=torch.float32).to(self.device)
val_acc_avg = torch.tensor(self.val_acc_avg, dtype=torch.float32).to(self.device)
dist.all_reduce(val_loss_avg, op=dist.ReduceOp.SUM)
dist.all_reduce(val_acc_avg, op=dist.ReduceOp.SUM)
self.val_loss_avg = val_loss_avg.detach().cpu().item() / self.world_size
self.val_acc_avg = val_acc_avg.detach().cpu().item() / self.world_size
if kwargs.get("step_in_epoch", None) is None:
ckpt_name = f"model.pt.ep{epoch}"
@ -640,27 +760,25 @@ class Trainer:
self.val_loss_step_or_eoch[ckpt_name] = self.val_loss_avg
model.train()
if self.use_ddp or self.use_fsdp:
dist.barrier()
iterator_stop = torch.tensor(0).to(self.device)
def log(
self,
epoch=0,
batch_idx=0,
step_in_epoch=0,
batch_num_epoch=-1,
lr=0.0,
loss=0.0,
speed_stats=None,
stats=None,
writer=None,
loss_dict: dict = None,
tag="train",
data_split_i=0,
data_split_num=1,
log_step=None,
**kwargs,
):
loss = loss_dict["loss"].detach().cpu().item()
epoch = loss_dict["epoch"]
batch_idx = loss_dict["batch_idx"]
step_in_epoch = loss_dict["step_in_epoch"]
batch_total = loss_dict["batch_total"]
batch_num_epoch = loss_dict["batch_num_epoch"]
lr = loss_dict["lr"]
speed_stats = loss_dict["speed_stats"]
stats = loss_dict["stats"]
data_split_i = loss_dict["data_split_i"]
data_split_num = loss_dict["data_split_num"]
log_step = loss_dict.get("log_step", None)
if (batch_idx + 1) % self.log_interval == 0:
batch_idx = log_step if log_step is not None else batch_idx
@ -683,7 +801,7 @@ class Trainer:
f"rank: {self.rank}, "
f"epoch: {epoch}/{self.max_epoch}, "
f"data_slice: {data_split_i}/{data_split_num}, "
f"step_in_slice: {batch_idx + 1}/{batch_num_epoch}, step_in_epoch: {step_in_epoch}, total step: {self.batch_total}, "
f"step_in_slice: {batch_idx + 1}/{batch_num_epoch}, step_in_epoch: {step_in_epoch}, total step: {batch_total}, "
f"(loss_avg_rank: {loss:.3f}), "
f"(loss_avg_slice: {loss_avg_epoch:.3f}), "
f"(ppl_avg_slice: {math.exp(loss_avg_epoch):.3e}), "
@ -700,23 +818,20 @@ class Trainer:
f"rank{self.rank}_lr/{tag}": lr,
}
writer = self.writer
if writer is not None:
writer.add_scalar(f"rank{self.rank}_loss/{tag}", loss, self.batch_total)
writer.add_scalar(f"rank{self.rank}_lr/{tag}", lr, self.batch_total)
writer.add_scalar(f"rank{self.rank}_loss/{tag}", loss, batch_total)
writer.add_scalar(f"rank{self.rank}_lr/{tag}", lr, batch_total)
for key, var in stats.items():
writer.add_scalar(
f"stats_rank{self.rank}_{key}/{tag}", var.item(), self.batch_total
)
writer.add_scalar(f"stats_rank{self.rank}_{key}/{tag}", var.item(), batch_total)
description_dict[f"stats_rank{self.rank}_{key}/{tag}"] = var.item()
for key, var in speed_stats.items():
writer.add_scalar(
f"stats_rank{self.rank}_{key}/{tag}", eval(var), self.batch_total
)
writer.add_scalar(f"stats_rank{self.rank}_{key}/{tag}", eval(var), batch_total)
description_dict[f"stats_rank{self.rank}_{key}/{tag}"] = eval(var)
if self.use_wandb and wandb is not None:
wandb.log(
description_dict,
setp=self.batch_total,
setp=batch_total,
)
def close(self, writer=None):
@ -770,31 +885,62 @@ class Trainer:
"find_unused_parameters", False
),
)
# elif self.use_fsdp:
# # model = FSDP(model).cuda(local_rank)
#
# def custom_auto_wrap_policy(
# module: nn.Module,
# recurse: bool,
# nonwrapped_numel: int,
# # Additional custom arguments
# min_num_params: int = int(1e8),
# ) -> bool:
# # 根据自定义逻辑决定是否包装模块
# is_large = unwrapped_params >= min_num_params
# requires_grad_uniform = len({p.requires_grad for p in module.parameters()}) == 1
# return is_large and requires_grad_uniform
#
# # Configure a custom `min_num_params`
# my_auto_wrap_policy = functools.partial(custom_auto_wrap_policy, min_num_params=int(1e5))
# torch.cuda.set_device(local_rank)
# model = FSDP(
# model,
# auto_wrap_policy=custom_auto_wrap_policy,
# mixed_precision=None,
# device_id=torch.cuda.current_device(),
# )
else:
model = model.to(device=kwargs.get("device", "cuda"))
return model
def warp_optim_scheduler(self, model, **kwargs):
from funasr.optimizers import optim_classes
from funasr.schedulers import scheduler_classes
from omegaconf import OmegaConf, DictConfig
import json
# optim
logging.info("Build optim")
optim = kwargs.get("optim", "adam")
assert optim in optim_classes
optim_class = optim_classes.get(optim)
optim = optim_class(model.parameters(), **kwargs.get("optim_conf"))
# scheduler
logging.info("Build scheduler")
scheduler = kwargs.get("scheduler", "warmuplr")
assert scheduler in scheduler_classes
scheduler_class = scheduler_classes.get(scheduler)
scheduler = scheduler_class(optim, **kwargs.get("scheduler_conf"))
if self.use_deepspeed:
import deepspeed
args = OmegaConf.create({"deepspeed_config": self.deepspeed_config})
with open(self.deepspeed_config, "r") as fin:
ds_configs = json.load(fin)
if "bf16" in ds_configs and ds_configs["bf16"]["enabled"]:
self.dtype = torch.bfloat16
if "fp16" in ds_configs and ds_configs["fp16"]["enabled"]:
self.dtype = torch.float16
if "optimizer" in ds_configs:
# NOTE(xcsong): Disable custom optimizer if it is set in ds_config,
# extremely useful when enable cpu_offload, DeepspeedCpuAdam
# could be 4~5x faster than torch native adam
optim = None
if "scheduler" in ds_configs:
scheduler = None
else:
def scheduler(opt):
return scheduler_class(opt, **kwargs.get("scheduler_conf"))
model, optimizer, _, scheduler = deepspeed.initialize(
args=args,
model=model,
optimizer=optim,
lr_scheduler=scheduler,
model_parameters=model.parameters(),
)
return model, optim, scheduler