mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
Dev gzf deepspeed (#1736)
* resume from step * batch * batch * batch * batch * batch * batch * batch * batch * batch * batch * batch * batch * batch * batch * batch * train_loss_avg train_acc_avg * train_loss_avg train_acc_avg * train_loss_avg train_acc_avg * log step * wav is not exist * wav is not exist * decoding * decoding * decoding * wechat * decoding key * decoding key * decoding key * decoding key * decoding key * decoding key * dynamic batch * start_data_split_i=0 * total_time/accum_grad * total_time/accum_grad * total_time/accum_grad * update avg slice * update avg slice * sensevoice sanm * sensevoice sanm * add * add * add * add * deepspeed * update with main (#1731) * c++ runtime adapt to 1.0 (#1724) * adapt vad runtime to 1.0 * add json * change yml name * add func LoadVocabFromJson * add token file for InitAsr * add token path for OfflineStream * add funcOpenYaml * add token file for InitPunc * add token file for stream * update punc-model * update funasr-wss-server * update runtime_sdk_download_tool.py * update docker list * Delete docs/images/wechat.png * Add files via upload * Emo2Vec限定选择的情感类别 (#1730) * 限定选择的情感类别 * 使用none来禁用情感标签输出 * 修改输出接口 * 使用unuse来禁用token --------- Co-authored-by: 常材 <gaochangfeng.gcf@alibaba-inc.com> * bugfix * v1.0.27 * update docs * hf hub * Fix incorrect assignment of 'end' attribute to 'start' in sentences list comprehension (#1680) --------- Co-authored-by: Yabin Li <wucong.lyb@alibaba-inc.com> Co-authored-by: gaochangfeng <54253717+gaochangfeng@users.noreply.github.com> Co-authored-by: 常材 <gaochangfeng.gcf@alibaba-inc.com> Co-authored-by: nsdou <168500039+nsdou@users.noreply.github.com> * docs * docs * deepspeed * deepspeed * deepspeed * deepspeed * update * ds * ds * ds * ds * ds * ds * ds --------- Co-authored-by: Yabin Li <wucong.lyb@alibaba-inc.com> Co-authored-by: gaochangfeng <54253717+gaochangfeng@users.noreply.github.com> Co-authored-by: 常材 <gaochangfeng.gcf@alibaba-inc.com> Co-authored-by: nsdou <168500039+nsdou@users.noreply.github.com>
This commit is contained in:
parent
d3da0760a5
commit
961ec280af
Binary file not shown.
|
Before Width: | Height: | Size: 157 KiB After Width: | Height: | Size: 181 KiB |
@ -130,32 +130,10 @@ def main(**kwargs):
|
||||
|
||||
model = trainer.warp_model(model)
|
||||
|
||||
kwargs["device"] = next(model.parameters()).device
|
||||
trainer.device = kwargs["device"]
|
||||
kwargs["device"] = int(os.environ.get("LOCAL_RANK", 0))
|
||||
trainer.device = int(os.environ.get("LOCAL_RANK", 0))
|
||||
|
||||
# optim
|
||||
logging.info("Build optim")
|
||||
optim = kwargs.get("optim", "adam")
|
||||
assert optim in optim_classes
|
||||
optim_class = optim_classes.get(optim)
|
||||
optim = optim_class(model.parameters(), **kwargs.get("optim_conf"))
|
||||
|
||||
# scheduler
|
||||
logging.info("Build scheduler")
|
||||
scheduler = kwargs.get("scheduler", "warmuplr")
|
||||
assert scheduler in scheduler_classes
|
||||
scheduler_class = scheduler_classes.get(scheduler)
|
||||
scheduler = scheduler_class(optim, **kwargs.get("scheduler_conf"))
|
||||
|
||||
if use_deepspeed:
|
||||
args = OmegaConf.create({"deepspeed_config": kwargs.get("deepspeed_config", "")})
|
||||
model, optimizer, _, scheduler = deepspeed.initialize(
|
||||
args=args,
|
||||
model=model,
|
||||
optimizer=optim,
|
||||
lr_scheduler=scheduler,
|
||||
model_parameters=model.parameters(),
|
||||
)
|
||||
model, optim, scheduler = trainer.warp_optim_scheduler(model, **kwargs)
|
||||
|
||||
# dataset
|
||||
logging.info("Build dataloader")
|
||||
@ -175,15 +153,6 @@ def main(**kwargs):
|
||||
scaler=scaler,
|
||||
)
|
||||
|
||||
tensorboard_dir = os.path.join(kwargs.get("output_dir"), "tensorboard")
|
||||
os.makedirs(tensorboard_dir, exist_ok=True)
|
||||
try:
|
||||
from tensorboardX import SummaryWriter
|
||||
|
||||
writer = SummaryWriter(tensorboard_dir) # if trainer.rank == 0 else None
|
||||
except:
|
||||
writer = None
|
||||
|
||||
dataloader_tr, dataloader_val = None, None
|
||||
for epoch in range(trainer.start_epoch, trainer.max_epoch):
|
||||
time1 = time.perf_counter()
|
||||
@ -201,7 +170,6 @@ def main(**kwargs):
|
||||
dataloader_train=dataloader_tr,
|
||||
dataloader_val=dataloader_val,
|
||||
epoch=epoch,
|
||||
writer=writer,
|
||||
data_split_i=data_split_i,
|
||||
data_split_num=dataloader.data_split_num,
|
||||
start_step=trainer.start_step,
|
||||
@ -211,9 +179,7 @@ def main(**kwargs):
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
trainer.start_data_split_i = 0
|
||||
trainer.validate_epoch(
|
||||
model=model, dataloader_val=dataloader_val, epoch=epoch + 1, writer=writer
|
||||
)
|
||||
trainer.validate_epoch(model=model, dataloader_val=dataloader_val, epoch=epoch + 1)
|
||||
scheduler.step()
|
||||
trainer.step_in_epoch = 0
|
||||
trainer.save_checkpoint(
|
||||
@ -232,7 +198,9 @@ def main(**kwargs):
|
||||
trainer.train_loss_avg = 0.0
|
||||
|
||||
if trainer.rank == 0:
|
||||
average_checkpoints(trainer.output_dir, trainer.avg_nbest_model)
|
||||
average_checkpoints(
|
||||
trainer.output_dir, trainer.avg_nbest_model, use_deepspeed=trainer.use_deepspeed
|
||||
)
|
||||
|
||||
trainer.close()
|
||||
|
||||
|
||||
@ -72,6 +72,7 @@ class EspnetStyleBatchSampler(DistributedSampler):
|
||||
self.min_token_length = kwargs.get("min_token_length", 0)
|
||||
self.length_scale_source = kwargs.get("length_scale_source", 1.0)
|
||||
self.start_step = start_step
|
||||
self.batch_num = 1
|
||||
if self.start_step > 0:
|
||||
logging.info(f"Warning, start_step > 0, dataloader start from step: {self.start_step}")
|
||||
# super().__init__(dataset, num_replicas=num_replicas, rank=rank,
|
||||
@ -146,6 +147,7 @@ class EspnetStyleBatchSampler(DistributedSampler):
|
||||
start_idx = self.rank * batches_per_rank
|
||||
end_idx = start_idx + batches_per_rank
|
||||
rank_batches = buffer_batches[start_idx + self.start_step : end_idx]
|
||||
self.batch_num = len(rank_batches)
|
||||
logging.info(
|
||||
f"rank: {self.rank}, dataloader start from step: {self.start_step}, batch_num: {end_idx-start_idx}, batch_num_after_step: {len(rank_batches)}"
|
||||
)
|
||||
@ -154,7 +156,7 @@ class EspnetStyleBatchSampler(DistributedSampler):
|
||||
|
||||
def __len__(self):
|
||||
# Calculate the number of batches per epoch for the current rank
|
||||
return 1
|
||||
return self.batch_num
|
||||
|
||||
def set_epoch(self, epoch):
|
||||
# Set the epoch for shuffling
|
||||
|
||||
@ -100,7 +100,9 @@ class MultiHeadedAttention(nn.Module):
|
||||
n_batch = value.size(0)
|
||||
if mask is not None:
|
||||
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
|
||||
min_value = float(numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min)
|
||||
min_value = -float(
|
||||
"inf"
|
||||
) # float(numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min)
|
||||
scores = scores.masked_fill(mask, min_value)
|
||||
self.attn = torch.softmax(scores, dim=-1).masked_fill(
|
||||
mask, 0.0
|
||||
@ -269,7 +271,9 @@ class MultiHeadedAttentionSANM(nn.Module):
|
||||
|
||||
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
|
||||
|
||||
min_value = float(numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min)
|
||||
min_value = -float(
|
||||
"inf"
|
||||
) # float(numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min)
|
||||
scores = scores.masked_fill(mask, min_value)
|
||||
self.attn = torch.softmax(scores, dim=-1).masked_fill(
|
||||
mask, 0.0
|
||||
@ -673,7 +677,9 @@ class MultiHeadedAttentionCrossAtt(nn.Module):
|
||||
n_batch = value.size(0)
|
||||
if mask is not None:
|
||||
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
|
||||
min_value = float(numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min)
|
||||
min_value = -float(
|
||||
"inf"
|
||||
) # float(numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min)
|
||||
# logging.info(
|
||||
# "scores: {}, mask_size: {}".format(scores.size(), mask.size()))
|
||||
scores = scores.masked_fill(mask, min_value)
|
||||
@ -858,7 +864,9 @@ class MultiHeadSelfAttention(nn.Module):
|
||||
|
||||
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
|
||||
|
||||
min_value = float(numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min)
|
||||
min_value = -float(
|
||||
"inf"
|
||||
) # float(numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min)
|
||||
scores = scores.masked_fill(mask, min_value)
|
||||
self.attn = torch.softmax(scores, dim=-1).masked_fill(
|
||||
mask, 0.0
|
||||
|
||||
@ -146,7 +146,9 @@ class MultiHeadAttention(nn.Module):
|
||||
qk = qk + mask[:n_ctx, :n_ctx]
|
||||
else:
|
||||
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
|
||||
min_value = float(np.finfo(torch.tensor(0, dtype=qk.dtype).numpy().dtype).min)
|
||||
min_value = -float(
|
||||
"inf"
|
||||
) # min_value = float(np.finfo(torch.tensor(0, dtype=qk.dtype).numpy().dtype).min)
|
||||
qk = qk.masked_fill(mask, min_value)
|
||||
|
||||
qk = qk.float()
|
||||
|
||||
@ -112,7 +112,9 @@ class MultiHeadAttention(nn.Module):
|
||||
qk = qk + mask[:n_ctx, :n_ctx]
|
||||
else:
|
||||
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
|
||||
min_value = float(np.finfo(torch.tensor(0, dtype=qk.dtype).numpy().dtype).min)
|
||||
min_value = -float(
|
||||
"inf"
|
||||
) # min_value = float(np.finfo(torch.tensor(0, dtype=qk.dtype).numpy().dtype).min)
|
||||
qk = qk.masked_fill(mask, min_value)
|
||||
|
||||
qk = qk.float()
|
||||
|
||||
@ -16,7 +16,7 @@ from collections import OrderedDict
|
||||
from functools import cmp_to_key
|
||||
|
||||
|
||||
def _get_checkpoint_paths(output_dir: str, last_n: int = 5):
|
||||
def _get_checkpoint_paths(output_dir: str, last_n: int = 5, use_deepspeed=False, **kwargs):
|
||||
"""
|
||||
Get the paths of the last 'last_n' checkpoints by parsing filenames
|
||||
in the output directory.
|
||||
@ -29,7 +29,13 @@ def _get_checkpoint_paths(output_dir: str, last_n: int = 5):
|
||||
sorted_items = (
|
||||
sorted_items[:last_n] if avg_keep_nbest_models_type == "acc" else sorted_items[-last_n:]
|
||||
)
|
||||
checkpoint_paths = [os.path.join(output_dir, key) for key, value in sorted_items[:last_n]]
|
||||
checkpoint_paths = []
|
||||
for key, value in sorted_items[:last_n]:
|
||||
if not use_deepspeed:
|
||||
ckpt = os.path.join(output_dir, key)
|
||||
else:
|
||||
ckpt = os.path.join(output_dir, key, "mp_rank_00_model_states.pt")
|
||||
|
||||
except:
|
||||
print(f"{checkpoint} does not exist, avg the lastet checkpoint.")
|
||||
# List all files in the output directory
|
||||
@ -49,7 +55,7 @@ def average_checkpoints(output_dir: str, last_n: int = 5, **kwargs):
|
||||
Average the last 'last_n' checkpoints' model state_dicts.
|
||||
If a tensor is of type torch.int, perform sum instead of average.
|
||||
"""
|
||||
checkpoint_paths = _get_checkpoint_paths(output_dir, last_n)
|
||||
checkpoint_paths = _get_checkpoint_paths(output_dir, last_n, **kwargs)
|
||||
print(f"average_checkpoints: {checkpoint_paths}")
|
||||
state_dicts = []
|
||||
|
||||
@ -62,7 +68,8 @@ def average_checkpoints(output_dir: str, last_n: int = 5, **kwargs):
|
||||
|
||||
# Check if we have any state_dicts to average
|
||||
if len(state_dicts) < 1:
|
||||
raise RuntimeError("No checkpoints found for averaging.")
|
||||
print("No checkpoints found for averaging.")
|
||||
return
|
||||
|
||||
# Average or sum weights
|
||||
avg_state_dict = OrderedDict()
|
||||
|
||||
@ -23,12 +23,16 @@ except:
|
||||
|
||||
|
||||
@contextmanager
|
||||
def maybe_autocast(enabled):
|
||||
if enabled:
|
||||
with autocast():
|
||||
def maybe_autocast(dtype=None, use_deepspeed=False):
|
||||
if use_deepspeed:
|
||||
with torch.cuda.amp.autocast(enabled=True, dtype=dtype, cache_enabled=False):
|
||||
yield
|
||||
else:
|
||||
yield
|
||||
if dtype == torch.float16:
|
||||
with autocast(enabled=True):
|
||||
yield
|
||||
else:
|
||||
yield
|
||||
|
||||
|
||||
class Trainer:
|
||||
@ -78,7 +82,7 @@ class Trainer:
|
||||
self.world_size = world_size
|
||||
self.use_ddp = use_ddp
|
||||
self.use_fsdp = use_fsdp
|
||||
self.use_deepspeed = use_deepspeed
|
||||
|
||||
self.device = kwargs.get("device", "cuda")
|
||||
|
||||
self.output_dir = output_dir
|
||||
@ -91,7 +95,10 @@ class Trainer:
|
||||
# self.kwargs = kwargs
|
||||
self.log_interval = kwargs.get("log_interval", 50)
|
||||
self.batch_total = 0
|
||||
self.dtype = torch.float32
|
||||
self.use_fp16 = use_fp16
|
||||
if self.use_fp16:
|
||||
self.dtype = torch.float16
|
||||
self.save_checkpoint_interval = kwargs.get("save_checkpoint_interval", 5000)
|
||||
self.validate_interval = kwargs.get("validate_interval", 5000)
|
||||
self.keep_nbest_models = kwargs.get("keep_nbest_models", 500)
|
||||
@ -128,6 +135,17 @@ class Trainer:
|
||||
job_type="training",
|
||||
reinit=True,
|
||||
)
|
||||
tensorboard_dir = os.path.join(output_dir, "tensorboard")
|
||||
os.makedirs(tensorboard_dir, exist_ok=True)
|
||||
try:
|
||||
from tensorboardX import SummaryWriter
|
||||
|
||||
self.writer = SummaryWriter(tensorboard_dir) # if trainer.rank == 0 else None
|
||||
except:
|
||||
self.writer = None
|
||||
|
||||
self.use_deepspeed = use_deepspeed
|
||||
self.deepspeed_config = kwargs.get("deepspeed_config", "")
|
||||
|
||||
def save_checkpoint(
|
||||
self,
|
||||
@ -148,9 +166,113 @@ class Trainer:
|
||||
Args:
|
||||
epoch (int): The epoch number at which the checkpoint is being saved.
|
||||
"""
|
||||
|
||||
step_in_epoch = None if step is None else step_in_epoch
|
||||
if self.rank == 0:
|
||||
if self.use_deepspeed:
|
||||
|
||||
logging.info(f"Save checkpoint: {epoch}, rank: {self.local_rank}\n")
|
||||
# self.step_or_epoch += 1
|
||||
state = {
|
||||
"epoch": epoch,
|
||||
# "state_dict": model.state_dict(),
|
||||
# "optimizer": optim.state_dict(),
|
||||
# "scheduler": scheduler.state_dict(),
|
||||
"saved_ckpts": self.saved_ckpts,
|
||||
"val_acc_step_or_eoch": self.val_acc_step_or_eoch,
|
||||
"val_loss_step_or_eoch": self.val_loss_step_or_eoch,
|
||||
"best_step_or_epoch": self.best_step_or_epoch,
|
||||
"avg_keep_nbest_models_type": self.avg_keep_nbest_models_type,
|
||||
"step": step,
|
||||
"step_in_epoch": step_in_epoch,
|
||||
"data_split_i": kwargs.get("data_split_i", 0),
|
||||
"data_split_num": kwargs.get("data_split_num", 1),
|
||||
"batch_total": self.batch_total,
|
||||
"train_loss_avg": kwargs.get("train_loss_avg", 0),
|
||||
"train_acc_avg": kwargs.get("train_acc_avg", 0),
|
||||
}
|
||||
step = step_in_epoch
|
||||
if hasattr(model, "module"):
|
||||
state["state_dict"] = model.module.state_dict()
|
||||
|
||||
if scaler:
|
||||
state["scaler_state"] = scaler.state_dict()
|
||||
# Create output directory if it does not exist
|
||||
os.makedirs(self.output_dir, exist_ok=True)
|
||||
if step is None:
|
||||
ckpt_name = f"model.pt.ep{epoch}"
|
||||
else:
|
||||
ckpt_name = f"model.pt.ep{epoch}.{step}"
|
||||
filename = os.path.join(self.output_dir, ckpt_name)
|
||||
|
||||
# torch.save(state, filename)
|
||||
with torch.no_grad():
|
||||
model.save_checkpoint(save_dir=self.output_dir, tag=ckpt_name, client_state=state)
|
||||
logging.info(f"\nCheckpoint saved to {filename}\n")
|
||||
latest = Path(os.path.join(self.output_dir, f"model.pt"))
|
||||
# torch.save(state, latest)
|
||||
with torch.no_grad():
|
||||
model.save_checkpoint(save_dir=self.output_dir, tag=f"model.pt", client_state=state)
|
||||
if self.best_step_or_epoch == "":
|
||||
self.best_step_or_epoch = ckpt_name
|
||||
|
||||
if self.avg_keep_nbest_models_type == "acc":
|
||||
if (
|
||||
self.val_acc_step_or_eoch[ckpt_name]
|
||||
>= self.val_acc_step_or_eoch[self.best_step_or_epoch]
|
||||
):
|
||||
self.best_step_or_epoch = ckpt_name
|
||||
best_ckpt = Path(os.path.join(self.output_dir, f"model.pt.best"))
|
||||
# torch.save(state, best_ckpt)
|
||||
with torch.no_grad():
|
||||
model.save_checkpoint(
|
||||
save_dir=self.output_dir, tag=f"model.pt.best", client_state=state
|
||||
)
|
||||
logging.info(
|
||||
f"Update best acc: {self.val_acc_step_or_eoch[self.best_step_or_epoch]:.4f}, {best_ckpt}"
|
||||
)
|
||||
else:
|
||||
logging.info(
|
||||
f"No improvement in acc: {self.val_acc_step_or_eoch[ckpt_name]:.4f} < {self.val_acc_step_or_eoch[self.best_step_or_epoch]:.4f}, {os.path.join(self.output_dir, self.best_step_or_epoch)}"
|
||||
)
|
||||
elif self.avg_keep_nbest_models_type == "loss":
|
||||
if (
|
||||
self.val_loss_step_or_eoch[ckpt_name]
|
||||
<= self.val_loss_step_or_eoch[self.best_step_or_epoch]
|
||||
):
|
||||
self.best_step_or_epoch = ckpt_name
|
||||
best_ckpt = Path(os.path.join(self.output_dir, f"model.pt.best"))
|
||||
# torch.save(state, best_ckpt)
|
||||
with torch.no_grad():
|
||||
model.save_checkpoint(
|
||||
save_dir=self.output_dir, tag=f"model.pt.best", client_state=state
|
||||
)
|
||||
logging.info(
|
||||
f"Update best loss: {self.val_loss_step_or_eoch[self.best_step_or_epoch]:.4f}, {best_ckpt}"
|
||||
)
|
||||
else:
|
||||
logging.info(
|
||||
f"No improvement in loss: {self.val_loss_step_or_eoch[ckpt_name]:.4f} > {self.val_loss_step_or_eoch[self.best_step_or_epoch]:.4f}, {os.path.join(self.output_dir, self.best_step_or_epoch)}"
|
||||
)
|
||||
else:
|
||||
print("Undo")
|
||||
self.saved_ckpts[ckpt_name] = getattr(
|
||||
self, f"val_{self.avg_keep_nbest_models_type}_step_or_eoch"
|
||||
)[ckpt_name]
|
||||
if self.keep_nbest_models > 0:
|
||||
if len(self.saved_ckpts) > self.keep_nbest_models:
|
||||
if self.avg_keep_nbest_models_type == "acc":
|
||||
key = min(self.saved_ckpts, key=self.saved_ckpts.get)
|
||||
else:
|
||||
key = max(self.saved_ckpts, key=self.saved_ckpts.get)
|
||||
if key in self.saved_ckpts:
|
||||
del self.saved_ckpts[key]
|
||||
filename = os.path.join(self.output_dir, key)
|
||||
logging.info(f"Delete: {filename}")
|
||||
if os.path.exists(filename):
|
||||
os.remove(filename)
|
||||
|
||||
elif self.use_fsdp:
|
||||
pass
|
||||
elif self.rank == 0:
|
||||
logging.info(f"Save checkpoint: {epoch}, rank: {self.local_rank}\n")
|
||||
# self.step_or_epoch += 1
|
||||
state = {
|
||||
@ -258,66 +380,117 @@ class Trainer:
|
||||
resume_path (str): The file path to the checkpoint to resume from.
|
||||
"""
|
||||
if self.resume:
|
||||
ckpt = os.path.join(self.output_dir, "model.pt")
|
||||
if os.path.isfile(ckpt):
|
||||
checkpoint = torch.load(ckpt, map_location="cpu")
|
||||
self.start_epoch = checkpoint["epoch"]
|
||||
# self.model.load_state_dict(checkpoint['state_dict'])
|
||||
src_state = checkpoint["state_dict"]
|
||||
dst_state = model.state_dict()
|
||||
for k in dst_state.keys():
|
||||
if not k.startswith("module.") and "module." + k in src_state.keys():
|
||||
k_ddp = "module." + k
|
||||
elif k.startswith("module.") and "module." + k not in src_state.keys():
|
||||
k_ddp = k.replace("module.", "", 1)
|
||||
else:
|
||||
k_ddp = k
|
||||
if k_ddp in src_state.keys():
|
||||
dst_state[k] = src_state[k_ddp]
|
||||
else:
|
||||
print(f"Miss key in ckpt: model: {k}, ckpt: {k_ddp}")
|
||||
|
||||
model.load_state_dict(dst_state)
|
||||
optim.load_state_dict(checkpoint["optimizer"])
|
||||
scheduler.load_state_dict(checkpoint["scheduler"])
|
||||
if scaler is not None and "scaler_state" in checkpoint:
|
||||
scaler.load_state_dict(checkpoint["scaler_state"])
|
||||
if self.use_deepspeed:
|
||||
ckpt = os.path.join(self.output_dir, "model.pt")
|
||||
if os.path.exists(ckpt):
|
||||
_, checkpoint = model.load_checkpoint(self.output_dir, "model.pt")
|
||||
|
||||
self.saved_ckpts = checkpoint["saved_ckpts"]
|
||||
self.val_acc_step_or_eoch = (
|
||||
checkpoint["val_acc_step_or_eoch"]
|
||||
if "val_acc_step_or_eoch" in checkpoint
|
||||
else {}
|
||||
)
|
||||
self.val_loss_step_or_eoch = (
|
||||
checkpoint["val_loss_step_or_eoch"]
|
||||
if "val_loss_step_or_eoch" in checkpoint
|
||||
else {}
|
||||
)
|
||||
self.best_step_or_epoch = (
|
||||
checkpoint["best_step_or_epoch"] if "best_step_or_epoch" in checkpoint else ""
|
||||
)
|
||||
self.start_data_split_i = (
|
||||
checkpoint["data_split_i"] if "data_split_i" in checkpoint else 0
|
||||
)
|
||||
self.batch_total = checkpoint["batch_total"] if "batch_total" in checkpoint else 0
|
||||
self.start_step = checkpoint["step"] if "step" in checkpoint else 0
|
||||
self.start_step = 0 if self.start_step is None else self.start_step
|
||||
self.step_in_epoch = (
|
||||
checkpoint["step_in_epoch"] if "step_in_epoch" in checkpoint else 0
|
||||
)
|
||||
self.step_in_epoch = 0 if self.step_in_epoch is None else self.step_in_epoch
|
||||
print(checkpoint["train_acc_avg"])
|
||||
self.train_acc_avg = (
|
||||
checkpoint["train_acc_avg"] if "train_acc_avg" in checkpoint else 0
|
||||
)
|
||||
self.train_loss_avg = (
|
||||
checkpoint["train_loss_avg"] if "train_loss_avg" in checkpoint else 0
|
||||
)
|
||||
model.to(self.device)
|
||||
print(f"Checkpoint loaded successfully from '{ckpt}'")
|
||||
self.saved_ckpts = checkpoint["saved_ckpts"]
|
||||
self.val_acc_step_or_eoch = (
|
||||
checkpoint["val_acc_step_or_eoch"]
|
||||
if "val_acc_step_or_eoch" in checkpoint
|
||||
else {}
|
||||
)
|
||||
self.val_loss_step_or_eoch = (
|
||||
checkpoint["val_loss_step_or_eoch"]
|
||||
if "val_loss_step_or_eoch" in checkpoint
|
||||
else {}
|
||||
)
|
||||
self.best_step_or_epoch = (
|
||||
checkpoint["best_step_or_epoch"]
|
||||
if "best_step_or_epoch" in checkpoint
|
||||
else ""
|
||||
)
|
||||
self.start_data_split_i = (
|
||||
checkpoint["data_split_i"] if "data_split_i" in checkpoint else 0
|
||||
)
|
||||
self.batch_total = (
|
||||
checkpoint["batch_total"] if "batch_total" in checkpoint else 0
|
||||
)
|
||||
self.start_step = checkpoint["step"] if "step" in checkpoint else 0
|
||||
self.start_step = 0 if self.start_step is None else self.start_step
|
||||
self.step_in_epoch = (
|
||||
checkpoint["step_in_epoch"] if "step_in_epoch" in checkpoint else 0
|
||||
)
|
||||
self.step_in_epoch = 0 if self.step_in_epoch is None else self.step_in_epoch
|
||||
print(checkpoint["train_acc_avg"])
|
||||
self.train_acc_avg = (
|
||||
checkpoint["train_acc_avg"] if "train_acc_avg" in checkpoint else 0
|
||||
)
|
||||
self.train_loss_avg = (
|
||||
checkpoint["train_loss_avg"] if "train_loss_avg" in checkpoint else 0
|
||||
)
|
||||
model.to(self.device)
|
||||
print(f"Checkpoint loaded successfully from '{ckpt}'")
|
||||
else:
|
||||
print(f"No checkpoint found at '{ckpt}', does not resume status!")
|
||||
else:
|
||||
print(f"No checkpoint found at '{ckpt}', does not resume status!")
|
||||
|
||||
ckpt = os.path.join(self.output_dir, "model.pt")
|
||||
if os.path.isfile(ckpt):
|
||||
checkpoint = torch.load(ckpt, map_location="cpu")
|
||||
self.start_epoch = checkpoint["epoch"]
|
||||
# self.model.load_state_dict(checkpoint['state_dict'])
|
||||
src_state = checkpoint["state_dict"]
|
||||
dst_state = model.state_dict()
|
||||
for k in dst_state.keys():
|
||||
if not k.startswith("module.") and "module." + k in src_state.keys():
|
||||
k_ddp = "module." + k
|
||||
elif k.startswith("module.") and "module." + k not in src_state.keys():
|
||||
k_ddp = k.replace("module.", "", 1)
|
||||
else:
|
||||
k_ddp = k
|
||||
if k_ddp in src_state.keys():
|
||||
dst_state[k] = src_state[k_ddp]
|
||||
else:
|
||||
print(f"Miss key in ckpt: model: {k}, ckpt: {k_ddp}")
|
||||
|
||||
model.load_state_dict(dst_state)
|
||||
optim.load_state_dict(checkpoint["optimizer"])
|
||||
scheduler.load_state_dict(checkpoint["scheduler"])
|
||||
if scaler is not None and "scaler_state" in checkpoint:
|
||||
scaler.load_state_dict(checkpoint["scaler_state"])
|
||||
|
||||
self.saved_ckpts = checkpoint["saved_ckpts"]
|
||||
self.val_acc_step_or_eoch = (
|
||||
checkpoint["val_acc_step_or_eoch"]
|
||||
if "val_acc_step_or_eoch" in checkpoint
|
||||
else {}
|
||||
)
|
||||
self.val_loss_step_or_eoch = (
|
||||
checkpoint["val_loss_step_or_eoch"]
|
||||
if "val_loss_step_or_eoch" in checkpoint
|
||||
else {}
|
||||
)
|
||||
self.best_step_or_epoch = (
|
||||
checkpoint["best_step_or_epoch"]
|
||||
if "best_step_or_epoch" in checkpoint
|
||||
else ""
|
||||
)
|
||||
self.start_data_split_i = (
|
||||
checkpoint["data_split_i"] if "data_split_i" in checkpoint else 0
|
||||
)
|
||||
self.batch_total = (
|
||||
checkpoint["batch_total"] if "batch_total" in checkpoint else 0
|
||||
)
|
||||
self.start_step = checkpoint["step"] if "step" in checkpoint else 0
|
||||
self.start_step = 0 if self.start_step is None else self.start_step
|
||||
self.step_in_epoch = (
|
||||
checkpoint["step_in_epoch"] if "step_in_epoch" in checkpoint else 0
|
||||
)
|
||||
self.step_in_epoch = 0 if self.step_in_epoch is None else self.step_in_epoch
|
||||
print(checkpoint["train_acc_avg"])
|
||||
self.train_acc_avg = (
|
||||
checkpoint["train_acc_avg"] if "train_acc_avg" in checkpoint else 0
|
||||
)
|
||||
self.train_loss_avg = (
|
||||
checkpoint["train_loss_avg"] if "train_loss_avg" in checkpoint else 0
|
||||
)
|
||||
model.to(self.device)
|
||||
print(f"Checkpoint loaded successfully from '{ckpt}'")
|
||||
else:
|
||||
print(f"No checkpoint found at '{ckpt}', does not resume status!")
|
||||
|
||||
if self.use_ddp or self.use_fsdp:
|
||||
dist.barrier()
|
||||
@ -331,7 +504,6 @@ class Trainer:
|
||||
dataloader_train=None,
|
||||
dataloader_val=None,
|
||||
epoch=None,
|
||||
writer=None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
@ -339,7 +511,7 @@ class Trainer:
|
||||
Args:
|
||||
epoch (int): The current epoch number.
|
||||
"""
|
||||
if self.use_ddp or self.use_fsdp:
|
||||
if self.use_ddp or self.use_fsdp or self.use_deepspeed:
|
||||
dist.barrier()
|
||||
logging.info(f"Train epoch: {epoch}, rank: {self.rank}\n")
|
||||
model.train()
|
||||
@ -356,14 +528,21 @@ class Trainer:
|
||||
time_beg = time.perf_counter()
|
||||
time5 = time_beg
|
||||
for batch_idx, batch in enumerate(dataloader_train):
|
||||
if self.use_ddp or self.use_fsdp:
|
||||
dist.all_reduce(iterator_stop, dist.ReduceOp.SUM)
|
||||
if iterator_stop > 0:
|
||||
break
|
||||
self.batch_total += 1
|
||||
self.step_in_epoch += 1
|
||||
loss_dict = {
|
||||
"speed_stats": {},
|
||||
"epoch": epoch,
|
||||
"batch_idx": batch_idx,
|
||||
"data_split_i": kwargs.get("data_split_i", 0),
|
||||
"data_split_num": kwargs.get("data_split_num", 1),
|
||||
"log_step": batch_idx + kwargs.get("start_step", 0),
|
||||
"batch_total": self.batch_total,
|
||||
"step_in_epoch": self.step_in_epoch,
|
||||
}
|
||||
|
||||
time1 = time.perf_counter()
|
||||
speed_stats["data_load"] = f"{time1-time_beg:0.3f}"
|
||||
loss_dict["speed_stats"]["data_load"] = f"{time1-time_beg:0.3f}"
|
||||
|
||||
batch = to_device(batch, self.device)
|
||||
|
||||
@ -372,35 +551,43 @@ class Trainer:
|
||||
my_context = model.no_sync if batch_idx % accum_grad != 0 else my_context
|
||||
with my_context():
|
||||
time2 = time.perf_counter()
|
||||
loss_dict = {}
|
||||
|
||||
self.forward_step(model, batch, loss_dict=loss_dict)
|
||||
|
||||
time3 = time.perf_counter()
|
||||
speed_stats["forward_time"] = f"{time3 - time2:0.3f}"
|
||||
loss_dict["speed_stats"]["forward_time"] = f"{time3 - time2:0.3f}"
|
||||
self.backward_step(model, scaler, loss_dict=loss_dict)
|
||||
|
||||
time4 = time.perf_counter()
|
||||
speed_stats["backward_and_AllReaduce_time"] = f"{time4 - time3:0.3f}"
|
||||
loss_dict["speed_stats"]["backward_time"] = f"{time4 - time3:0.3f}"
|
||||
|
||||
# self.train_loss_avg = (
|
||||
# self.train_loss_avg * (batch_idx + kwargs.get("start_step", 0))
|
||||
# + loss.detach().cpu().item()
|
||||
# ) / (batch_idx + kwargs.get("start_step", 0) + 1)
|
||||
# if "acc" in stats:
|
||||
# self.train_acc_avg = (
|
||||
# self.train_acc_avg * (batch_idx + kwargs.get("start_step", 0))
|
||||
# + stats["acc"].detach().cpu().item()
|
||||
# ) / (batch_idx + kwargs.get("start_step", 0) + 1)
|
||||
self.update_step(model, optim, scheduler, scaler, loss_dict=loss_dict)
|
||||
total_time = f"{(time.perf_counter() - time5):0.3f}"
|
||||
time5 = time.perf_counter()
|
||||
|
||||
self.update_step(model, optim, scheduler, scaler, loss_dict)
|
||||
# Perform an optimizer step only after accumulating enough gradients
|
||||
loss_dict["speed_stats"]["optim_time"] = f"{time5 - time4:0.3f}"
|
||||
|
||||
loss_dict["speed_stats"]["total_time"] = total_time
|
||||
|
||||
loss_dict["lr"] = scheduler.get_last_lr()[0]
|
||||
loss_dict["batch_num_epoch"] = len(dataloader_train)
|
||||
|
||||
self.train_loss_avg = (
|
||||
self.train_loss_avg * batch_idx + loss_dict["loss"].detach().cpu().item()
|
||||
) / (batch_idx + 1)
|
||||
if "acc" in loss_dict["stats"]:
|
||||
self.train_acc_avg = (
|
||||
self.train_acc_avg * batch_idx + loss_dict["stats"]["acc"].detach().cpu().item()
|
||||
) / (batch_idx + 1)
|
||||
|
||||
self.log(loss_dict, tag="train")
|
||||
|
||||
if self.step_in_epoch % self.validate_interval == 0:
|
||||
self.validate_epoch(
|
||||
model=model,
|
||||
dataloader_val=dataloader_val,
|
||||
epoch=epoch,
|
||||
writer=writer,
|
||||
writer=self.writer,
|
||||
step=batch_idx + 1,
|
||||
step_in_epoch=self.step_in_epoch,
|
||||
)
|
||||
@ -421,41 +608,22 @@ class Trainer:
|
||||
)
|
||||
|
||||
time_beg = time.perf_counter()
|
||||
else:
|
||||
if self.use_ddp or self.use_fsdp:
|
||||
iterator_stop.fill_(1)
|
||||
dist.all_reduce(iterator_stop, dist.ReduceOp.SUM)
|
||||
|
||||
if self.use_ddp or self.use_fsdp:
|
||||
dist.barrier()
|
||||
iterator_stop = torch.tensor(0).to(self.device)
|
||||
if self.use_ddp or self.use_fsdp or self.use_deepspeed:
|
||||
train_loss_avg = torch.tensor(self.train_loss_avg, dtype=torch.float32).to(self.device)
|
||||
train_acc_avg = torch.tensor(self.train_acc_avg, dtype=torch.float32).to(self.device)
|
||||
dist.all_reduce(train_loss_avg, op=dist.ReduceOp.SUM)
|
||||
dist.all_reduce(train_acc_avg, op=dist.ReduceOp.SUM)
|
||||
self.train_loss_avg = train_loss_avg.detach().cpu().item() / self.world_size
|
||||
self.train_acc_avg = train_acc_avg.detach().cpu().item() / self.world_size
|
||||
|
||||
def forward_step(self, model, batch, loss_dict={}):
|
||||
with maybe_autocast(self.use_fp16):
|
||||
dtype = torch.bfloat16
|
||||
with maybe_autocast(dtype=self.dtype, use_deepspeed=self.use_deepspeed):
|
||||
retval = model(**batch)
|
||||
|
||||
if (
|
||||
self.reset_gpu_cache
|
||||
and (torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024) > 70
|
||||
):
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
loss, stats, weight = retval
|
||||
stats = {k: v for k, v in stats.items() if v is not None}
|
||||
# if self.use_ddp or self.use_fsdp:
|
||||
# # Apply weighted averaging for loss and stats
|
||||
# loss = (loss * weight.type(loss.dtype)).sum()
|
||||
# # if distributed, this method can also apply all_reduce()
|
||||
# # stats, weight = recursive_average(stats, weight, distributed=True)
|
||||
# if self.use_ddp or self.use_fsdp:
|
||||
# dist.all_reduce(weight, op=dist.ReduceOp.SUM)
|
||||
# # Now weight is summation over all workers
|
||||
# loss /= weight.sum() # shape:[1] -> shape:[]
|
||||
# # Multiply world_size because DistributedDataParallel
|
||||
# # automatically normalizes the gradient by world_size.
|
||||
# loss *= self.world_size
|
||||
# loss *= self.world_size
|
||||
# Scale the loss since we're not updating for every mini-batch
|
||||
|
||||
loss_dict["loss"] = loss
|
||||
loss_dict["stats"] = stats
|
||||
@ -473,69 +641,37 @@ class Trainer:
|
||||
else:
|
||||
loss.backward()
|
||||
|
||||
def update_step(self, model, optim, scheduler, scaler, batch_idx=0, loss_dict=loss_dict):
|
||||
if (batch_idx + 1) % self.accum_grad == 0:
|
||||
# Perform gradient clipping if it is set
|
||||
if self.grad_clip > 0:
|
||||
grad_norm = torch.nn.utils.clip_grad_norm_(
|
||||
model.parameters(),
|
||||
max_norm=self.grad_clip,
|
||||
norm_type=self.grad_clip_type,
|
||||
)
|
||||
if not torch.isfinite(grad_norm):
|
||||
logging.warning(f"The grad norm is {grad_norm}. Skipping updating the model.")
|
||||
optim.zero_grad() # Reset gradients
|
||||
return
|
||||
def update_step(self, model, optim, scheduler, scaler, loss_dict=None):
|
||||
batch_idx = loss_dict["batch_idx"]
|
||||
if self.use_deepspeed:
|
||||
model.step()
|
||||
else:
|
||||
if (batch_idx + 1) % self.accum_grad == 0:
|
||||
# Perform gradient clipping if it is set
|
||||
if self.grad_clip > 0:
|
||||
grad_norm = torch.nn.utils.clip_grad_norm_(
|
||||
model.parameters(),
|
||||
max_norm=self.grad_clip,
|
||||
norm_type=self.grad_clip_type,
|
||||
)
|
||||
if not torch.isfinite(grad_norm):
|
||||
logging.warning(
|
||||
f"The grad norm is {grad_norm}. Skipping updating the model."
|
||||
)
|
||||
optim.zero_grad() # Reset gradients
|
||||
return
|
||||
|
||||
# Execute an optimization step (update model parameters)
|
||||
if self.use_ddp or self.use_fsdp:
|
||||
dist.barrier()
|
||||
if self.use_fp16:
|
||||
scaler.step(optim)
|
||||
scaler.update()
|
||||
else:
|
||||
optim.step()
|
||||
scheduler.step()
|
||||
# Clear gradients for the next accumulation stage
|
||||
optim.zero_grad(set_to_none=True)
|
||||
|
||||
if self.use_ddp or self.use_fsdp:
|
||||
train_loss_avg = torch.tensor(self.train_loss_avg, dtype=torch.float32).to(
|
||||
self.device
|
||||
)
|
||||
train_acc_avg = torch.tensor(self.train_acc_avg, dtype=torch.float32).to(
|
||||
self.device
|
||||
)
|
||||
dist.all_reduce(train_loss_avg, op=dist.ReduceOp.SUM)
|
||||
dist.all_reduce(train_acc_avg, op=dist.ReduceOp.SUM)
|
||||
self.train_loss_avg = train_loss_avg.detach().cpu().item() / self.world_size
|
||||
self.train_acc_avg = train_acc_avg.detach().cpu().item() / self.world_size
|
||||
|
||||
total_time = f"{(time.perf_counter() - time5) / accum_grad:0.3f}"
|
||||
time5 = time.perf_counter()
|
||||
|
||||
speed_stats["optim_time"] = f"{time5 - time4:0.3f}"
|
||||
|
||||
speed_stats["total_time"] = total_time
|
||||
lr = scheduler.get_last_lr()[0]
|
||||
batch_num_epoch = 1
|
||||
if hasattr(dataloader_train, "__len__"):
|
||||
batch_num_epoch = len(dataloader_train)
|
||||
self.log(
|
||||
epoch,
|
||||
batch_idx,
|
||||
log_step=batch_idx + kwargs.get("start_step", 0),
|
||||
step_in_epoch=self.step_in_epoch,
|
||||
batch_num_epoch=batch_num_epoch,
|
||||
lr=lr,
|
||||
loss=loss.detach().cpu().item(),
|
||||
speed_stats=speed_stats,
|
||||
stats=stats,
|
||||
writer=writer,
|
||||
tag="train",
|
||||
data_split_i=kwargs.get("data_split_i", 0),
|
||||
data_split_num=kwargs.get("data_split_num", 1),
|
||||
)
|
||||
# Execute an optimization step (update model parameters)
|
||||
if self.use_ddp or self.use_fsdp:
|
||||
dist.barrier()
|
||||
if self.use_fp16:
|
||||
scaler.step(optim)
|
||||
scaler.update()
|
||||
else:
|
||||
optim.step()
|
||||
scheduler.step()
|
||||
# Clear gradients for the next accumulation stage
|
||||
optim.zero_grad(set_to_none=True)
|
||||
|
||||
def validate_epoch(
|
||||
self,
|
||||
@ -552,7 +688,7 @@ class Trainer:
|
||||
Args:
|
||||
epoch (int): The current epoch number.
|
||||
"""
|
||||
if self.use_ddp or self.use_fsdp:
|
||||
if self.use_ddp or self.use_fsdp or self.use_deepspeed:
|
||||
dist.barrier()
|
||||
logging.info(f"Validate epoch: {epoch}, rank: {self.rank}\n")
|
||||
model.eval()
|
||||
@ -560,77 +696,61 @@ class Trainer:
|
||||
with torch.no_grad():
|
||||
|
||||
speed_stats = {}
|
||||
time5 = time.perf_counter()
|
||||
iterator_stop = torch.tensor(0).to(self.device)
|
||||
time_beg = time.perf_counter()
|
||||
time5 = time_beg
|
||||
|
||||
dataloader_val.batch_sampler.set_epoch(epoch)
|
||||
for batch_idx, batch in enumerate(dataloader_val):
|
||||
if self.use_ddp or self.use_fsdp:
|
||||
dist.all_reduce(iterator_stop, dist.ReduceOp.SUM)
|
||||
if iterator_stop > 0:
|
||||
break
|
||||
|
||||
loss_dict = {
|
||||
"speed_stats": {},
|
||||
"epoch": epoch,
|
||||
"batch_idx": batch_idx,
|
||||
"data_split_i": kwargs.get("data_split_i", 0),
|
||||
"data_split_num": kwargs.get("data_split_num", 1),
|
||||
"log_step": batch_idx + kwargs.get("start_step", 0),
|
||||
"batch_total": batch_idx,
|
||||
"step_in_epoch": batch_idx,
|
||||
"lr": 0.0,
|
||||
}
|
||||
|
||||
time1 = time.perf_counter()
|
||||
speed_stats["data_load"] = f"{time1 - time5:0.3f}"
|
||||
loss_dict["speed_stats"]["data_load"] = f"{time1 - time_beg:0.3f}"
|
||||
|
||||
batch = to_device(batch, self.device)
|
||||
|
||||
time2 = time.perf_counter()
|
||||
retval = model(**batch)
|
||||
|
||||
self.forward_step(model, batch, loss_dict=loss_dict)
|
||||
|
||||
time3 = time.perf_counter()
|
||||
speed_stats["forward_time"] = f"{time3 - time2:0.3f}"
|
||||
loss, stats, weight = retval
|
||||
stats = {k: v for k, v in stats.items() if v is not None}
|
||||
if self.use_ddp or self.use_fsdp:
|
||||
# Apply weighted averaging for loss and stats
|
||||
loss = (loss * weight.type(loss.dtype)).sum()
|
||||
# if distributed, this method can also apply all_reduce()
|
||||
# stats, weight = recursive_average(stats, weight, distributed=True)
|
||||
if self.use_ddp or self.use_fsdp:
|
||||
dist.all_reduce(weight, op=dist.ReduceOp.SUM)
|
||||
# Now weight is summation over all workers
|
||||
loss /= weight.sum() # shape:[1] -> shape:[]
|
||||
# Multiply world_size because DistributedDataParallel
|
||||
# automatically normalizes the gradient by world_size.
|
||||
loss *= self.world_size
|
||||
# Scale the loss since we're not updating for every mini-batch
|
||||
loss = loss
|
||||
time4 = time.perf_counter()
|
||||
loss_dict["speed_stats"]["forward_time"] = f"{time3 - time2:0.3f}"
|
||||
|
||||
self.val_loss_avg = (self.val_loss_avg * batch_idx + loss.detach().cpu().item()) / (
|
||||
batch_idx + 1
|
||||
)
|
||||
if "acc" in stats:
|
||||
self.val_acc_avg = (
|
||||
self.val_acc_avg * batch_idx + stats["acc"].detach().cpu().item()
|
||||
) / (batch_idx + 1)
|
||||
if self.use_ddp or self.use_fsdp:
|
||||
val_loss_avg = torch.tensor(self.val_loss_avg, dtype=torch.float32).to(
|
||||
self.device
|
||||
)
|
||||
val_acc_avg = torch.tensor(self.val_acc_avg, dtype=torch.float32).to(
|
||||
self.device
|
||||
)
|
||||
dist.all_reduce(val_loss_avg, op=dist.ReduceOp.SUM)
|
||||
dist.all_reduce(val_acc_avg, op=dist.ReduceOp.SUM)
|
||||
self.val_loss_avg = val_loss_avg.detach().cpu().item() / self.world_size
|
||||
self.val_acc_avg = val_acc_avg.detach().cpu().item() / self.world_size
|
||||
total_time = f"{(time.perf_counter() - time5):0.3f}"
|
||||
time5 = time.perf_counter()
|
||||
batch_num_epoch = 1
|
||||
if hasattr(dataloader_val, "__len__"):
|
||||
batch_num_epoch = len(dataloader_val)
|
||||
self.log(
|
||||
epoch,
|
||||
batch_idx,
|
||||
batch_num_epoch=batch_num_epoch,
|
||||
lr=0.0,
|
||||
loss=loss.detach().cpu().item(),
|
||||
speed_stats=speed_stats,
|
||||
stats=stats,
|
||||
writer=writer,
|
||||
tag="val",
|
||||
)
|
||||
|
||||
else:
|
||||
if self.use_ddp or self.use_fsdp:
|
||||
iterator_stop.fill_(1)
|
||||
dist.all_reduce(iterator_stop, dist.ReduceOp.SUM)
|
||||
loss_dict["speed_stats"]["total_time"] = total_time
|
||||
|
||||
loss_dict["batch_num_epoch"] = len(dataloader_val)
|
||||
|
||||
self.log(loss_dict, tag="val")
|
||||
time_beg = time.perf_counter()
|
||||
self.val_loss_avg = (
|
||||
self.val_loss_avg * batch_idx + loss_dict["loss"].detach().cpu().item()
|
||||
) / (batch_idx + 1)
|
||||
if "acc" in loss_dict["stats"]:
|
||||
self.val_acc_avg = (
|
||||
self.val_acc_avg * batch_idx
|
||||
+ loss_dict["stats"]["acc"].detach().cpu().item()
|
||||
) / (batch_idx + 1)
|
||||
|
||||
if self.use_ddp or self.use_fsdp or self.use_deepspeed:
|
||||
val_loss_avg = torch.tensor(self.val_loss_avg, dtype=torch.float32).to(self.device)
|
||||
val_acc_avg = torch.tensor(self.val_acc_avg, dtype=torch.float32).to(self.device)
|
||||
dist.all_reduce(val_loss_avg, op=dist.ReduceOp.SUM)
|
||||
dist.all_reduce(val_acc_avg, op=dist.ReduceOp.SUM)
|
||||
self.val_loss_avg = val_loss_avg.detach().cpu().item() / self.world_size
|
||||
self.val_acc_avg = val_acc_avg.detach().cpu().item() / self.world_size
|
||||
|
||||
if kwargs.get("step_in_epoch", None) is None:
|
||||
ckpt_name = f"model.pt.ep{epoch}"
|
||||
@ -640,27 +760,25 @@ class Trainer:
|
||||
self.val_loss_step_or_eoch[ckpt_name] = self.val_loss_avg
|
||||
model.train()
|
||||
|
||||
if self.use_ddp or self.use_fsdp:
|
||||
dist.barrier()
|
||||
iterator_stop = torch.tensor(0).to(self.device)
|
||||
|
||||
def log(
|
||||
self,
|
||||
epoch=0,
|
||||
batch_idx=0,
|
||||
step_in_epoch=0,
|
||||
batch_num_epoch=-1,
|
||||
lr=0.0,
|
||||
loss=0.0,
|
||||
speed_stats=None,
|
||||
stats=None,
|
||||
writer=None,
|
||||
loss_dict: dict = None,
|
||||
tag="train",
|
||||
data_split_i=0,
|
||||
data_split_num=1,
|
||||
log_step=None,
|
||||
**kwargs,
|
||||
):
|
||||
loss = loss_dict["loss"].detach().cpu().item()
|
||||
epoch = loss_dict["epoch"]
|
||||
batch_idx = loss_dict["batch_idx"]
|
||||
step_in_epoch = loss_dict["step_in_epoch"]
|
||||
batch_total = loss_dict["batch_total"]
|
||||
batch_num_epoch = loss_dict["batch_num_epoch"]
|
||||
lr = loss_dict["lr"]
|
||||
|
||||
speed_stats = loss_dict["speed_stats"]
|
||||
stats = loss_dict["stats"]
|
||||
data_split_i = loss_dict["data_split_i"]
|
||||
data_split_num = loss_dict["data_split_num"]
|
||||
log_step = loss_dict.get("log_step", None)
|
||||
|
||||
if (batch_idx + 1) % self.log_interval == 0:
|
||||
batch_idx = log_step if log_step is not None else batch_idx
|
||||
@ -683,7 +801,7 @@ class Trainer:
|
||||
f"rank: {self.rank}, "
|
||||
f"epoch: {epoch}/{self.max_epoch}, "
|
||||
f"data_slice: {data_split_i}/{data_split_num}, "
|
||||
f"step_in_slice: {batch_idx + 1}/{batch_num_epoch}, step_in_epoch: {step_in_epoch}, total step: {self.batch_total}, "
|
||||
f"step_in_slice: {batch_idx + 1}/{batch_num_epoch}, step_in_epoch: {step_in_epoch}, total step: {batch_total}, "
|
||||
f"(loss_avg_rank: {loss:.3f}), "
|
||||
f"(loss_avg_slice: {loss_avg_epoch:.3f}), "
|
||||
f"(ppl_avg_slice: {math.exp(loss_avg_epoch):.3e}), "
|
||||
@ -700,23 +818,20 @@ class Trainer:
|
||||
f"rank{self.rank}_lr/{tag}": lr,
|
||||
}
|
||||
|
||||
writer = self.writer
|
||||
if writer is not None:
|
||||
writer.add_scalar(f"rank{self.rank}_loss/{tag}", loss, self.batch_total)
|
||||
writer.add_scalar(f"rank{self.rank}_lr/{tag}", lr, self.batch_total)
|
||||
writer.add_scalar(f"rank{self.rank}_loss/{tag}", loss, batch_total)
|
||||
writer.add_scalar(f"rank{self.rank}_lr/{tag}", lr, batch_total)
|
||||
for key, var in stats.items():
|
||||
writer.add_scalar(
|
||||
f"stats_rank{self.rank}_{key}/{tag}", var.item(), self.batch_total
|
||||
)
|
||||
writer.add_scalar(f"stats_rank{self.rank}_{key}/{tag}", var.item(), batch_total)
|
||||
description_dict[f"stats_rank{self.rank}_{key}/{tag}"] = var.item()
|
||||
for key, var in speed_stats.items():
|
||||
writer.add_scalar(
|
||||
f"stats_rank{self.rank}_{key}/{tag}", eval(var), self.batch_total
|
||||
)
|
||||
writer.add_scalar(f"stats_rank{self.rank}_{key}/{tag}", eval(var), batch_total)
|
||||
description_dict[f"stats_rank{self.rank}_{key}/{tag}"] = eval(var)
|
||||
if self.use_wandb and wandb is not None:
|
||||
wandb.log(
|
||||
description_dict,
|
||||
setp=self.batch_total,
|
||||
setp=batch_total,
|
||||
)
|
||||
|
||||
def close(self, writer=None):
|
||||
@ -770,31 +885,62 @@ class Trainer:
|
||||
"find_unused_parameters", False
|
||||
),
|
||||
)
|
||||
# elif self.use_fsdp:
|
||||
# # model = FSDP(model).cuda(local_rank)
|
||||
#
|
||||
# def custom_auto_wrap_policy(
|
||||
# module: nn.Module,
|
||||
# recurse: bool,
|
||||
# nonwrapped_numel: int,
|
||||
# # Additional custom arguments
|
||||
# min_num_params: int = int(1e8),
|
||||
# ) -> bool:
|
||||
# # 根据自定义逻辑决定是否包装模块
|
||||
# is_large = unwrapped_params >= min_num_params
|
||||
# requires_grad_uniform = len({p.requires_grad for p in module.parameters()}) == 1
|
||||
# return is_large and requires_grad_uniform
|
||||
#
|
||||
# # Configure a custom `min_num_params`
|
||||
# my_auto_wrap_policy = functools.partial(custom_auto_wrap_policy, min_num_params=int(1e5))
|
||||
# torch.cuda.set_device(local_rank)
|
||||
# model = FSDP(
|
||||
# model,
|
||||
# auto_wrap_policy=custom_auto_wrap_policy,
|
||||
# mixed_precision=None,
|
||||
# device_id=torch.cuda.current_device(),
|
||||
# )
|
||||
|
||||
else:
|
||||
model = model.to(device=kwargs.get("device", "cuda"))
|
||||
|
||||
return model
|
||||
|
||||
def warp_optim_scheduler(self, model, **kwargs):
|
||||
from funasr.optimizers import optim_classes
|
||||
from funasr.schedulers import scheduler_classes
|
||||
from omegaconf import OmegaConf, DictConfig
|
||||
import json
|
||||
|
||||
# optim
|
||||
logging.info("Build optim")
|
||||
optim = kwargs.get("optim", "adam")
|
||||
assert optim in optim_classes
|
||||
optim_class = optim_classes.get(optim)
|
||||
optim = optim_class(model.parameters(), **kwargs.get("optim_conf"))
|
||||
|
||||
# scheduler
|
||||
logging.info("Build scheduler")
|
||||
scheduler = kwargs.get("scheduler", "warmuplr")
|
||||
assert scheduler in scheduler_classes
|
||||
scheduler_class = scheduler_classes.get(scheduler)
|
||||
scheduler = scheduler_class(optim, **kwargs.get("scheduler_conf"))
|
||||
|
||||
if self.use_deepspeed:
|
||||
import deepspeed
|
||||
|
||||
args = OmegaConf.create({"deepspeed_config": self.deepspeed_config})
|
||||
with open(self.deepspeed_config, "r") as fin:
|
||||
ds_configs = json.load(fin)
|
||||
|
||||
if "bf16" in ds_configs and ds_configs["bf16"]["enabled"]:
|
||||
self.dtype = torch.bfloat16
|
||||
|
||||
if "fp16" in ds_configs and ds_configs["fp16"]["enabled"]:
|
||||
self.dtype = torch.float16
|
||||
if "optimizer" in ds_configs:
|
||||
# NOTE(xcsong): Disable custom optimizer if it is set in ds_config,
|
||||
# extremely useful when enable cpu_offload, DeepspeedCpuAdam
|
||||
# could be 4~5x faster than torch native adam
|
||||
optim = None
|
||||
if "scheduler" in ds_configs:
|
||||
scheduler = None
|
||||
else:
|
||||
|
||||
def scheduler(opt):
|
||||
return scheduler_class(opt, **kwargs.get("scheduler_conf"))
|
||||
|
||||
model, optimizer, _, scheduler = deepspeed.initialize(
|
||||
args=args,
|
||||
model=model,
|
||||
optimizer=optim,
|
||||
lr_scheduler=scheduler,
|
||||
model_parameters=model.parameters(),
|
||||
)
|
||||
|
||||
return model, optim, scheduler
|
||||
|
||||
Loading…
Reference in New Issue
Block a user