add data2vec pretrain

This commit is contained in:
jmwang66 2023-02-06 16:04:18 +08:00
parent 42c0a57912
commit 933d5afc02
5 changed files with 297 additions and 0 deletions

View File

@ -0,0 +1,65 @@
# network architecture
# encoder related
encoder: data2vec_encoder
encoder_conf:
extractor_mode: layer_norm
encoder_layerdrop: 0.05
dropout_input: 0.0
dropout_features: 0.0
feature_grad_mult: 1.0
encoder_embed_dim: 768
mask_prob: 0.65
mask_length: 10
loss_beta: 0
loss_scale: null
instance_norm_target_layer: true
average_top_k_layers: 8
pos_conv_depth: 5
conv_pos: 95
ema_decay: 0.999
ema_end_decay: 0.9999
ema_anneal_end_step: 30000
ema_transformer_only: true
ema_layers_only: true
require_same_masks: true
mask_dropout: 0
log_interval: 50
normalize: None
# minibatch related
batch_type: length
batch_bins: 64000
num_workers: 16
# optimization related
accum_grad: 1
grad_clip: 5
patience: none
max_epoch: 600
val_scheduler_criterion:
- valid
- acc
best_model_criterion:
- - valid
- loss
- min
keep_nbest_models: 50
unused_parameters: true
optim: fairseq_adam
optim_conf:
lr: 0.0005
adam_betas: [0.9,0.98]
adam_eps: 1.0e-06
weight_decay: 0.01
scheduler: tri_stage
scheduler_conf:
phase_ratio: [0.03,0.9,0.07]

View File

@ -0,0 +1,53 @@
#!/usr/bin/env bash
# Copyright 2018 AIShell-Foundation(Authors:Jiayu DU, Xingyu NA, Bengu WU, Hao ZHENG)
# 2018 Beijing Shell Shell Tech. Co. Ltd. (Author: Hui BU)
# Apache 2.0
# transform raw AISHELL-2 data to kaldi format
. ./path.sh || exit 1;
tmp=
dir=
if [ $# != 3 ]; then
echo "Usage: $0 <corpus-data-dir> <tmp-dir> <output-dir>"
echo " $0 /export/AISHELL-2/iOS/train data/local/train data/train"
exit 1;
fi
corpus=$1
tmp=$2
dir=$3
echo "prepare_data.sh: Preparing data in $corpus"
mkdir -p $tmp
mkdir -p $dir
# corpus check
if [ ! -d $corpus ] || [ ! -f $corpus/wav.scp ] || [ ! -f $corpus/trans.txt ]; then
echo "Error: $0 requires wav.scp and trans.txt under $corpus directory."
exit 1;
fi
# validate utt-key list, IC0803W0380 is a bad utterance
awk '{print $1}' $corpus/wav.scp | grep -v 'IC0803W0380' > $tmp/wav_utt.list
awk '{print $1}' $corpus/trans.txt > $tmp/trans_utt.list
tools/filter_scp.pl -f 1 $tmp/wav_utt.list $tmp/trans_utt.list > $tmp/utt.list
# wav.scp
awk -F'\t' -v path_prefix=$corpus '{printf("%s\t%s/%s\n",$1,path_prefix,$2)}' $corpus/wav.scp > $tmp/tmp_wav.scp
tools/filter_scp.pl -f 1 $tmp/utt.list $tmp/tmp_wav.scp | sort -k 1 | uniq > $tmp/wav.scp
# text
tools/filter_scp.pl -f 1 $tmp/utt.list $corpus/trans.txt | sort -k 1 | uniq > $tmp/text
# copy prepared resources from tmp_dir to target dir
mkdir -p $dir
for f in wav.scp text; do
cp $tmp/$f $dir/$f || exit 1;
done
echo "local/prepare_data.sh succeeded"
exit 0;

View File

@ -0,0 +1,6 @@
export FUNASR_DIR=$PWD/../../..
# NOTE(kan-bayashi): Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
export PYTHONIOENCODING=UTF-8
export PYTHONPATH=../../../:$PYTHONPATH
export PATH=$FUNASR_DIR/funasr/bin:$PATH

View File

@ -0,0 +1,172 @@
#!/usr/bin/env bash
. ./path.sh || exit 1;
# machines configuration
CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
gpu_num=8
count=1
train_cmd=tools/run.pl
# general configuration
feats_dir="../DATA" #feature output dictionary
exp_dir="."
lang=zh
dumpdir=dump/fbank
feats_type=fbank
token_type=char
dataset_type=large
stage=0
stop_stage=4
# feature configuration
feats_dim=80
sample_frequency=16000
nj=100
speed_perturb="0.9,1.0,1.1"
# data
tr_dir=
dev_tst_dir=
# exp tag
tag="exp1"
. utils/parse_options.sh || exit 1;
# Set bash to 'debug' mode, it will exit on :
# -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands',
set -e
set -u
set -o pipefail
train_set=train
valid_set=dev_ios
asr_config=conf/train_asr_paraformer_conformer_20e_1280_320_6d_1280_320.yaml
model_dir="baseline_$(basename "${asr_config}" .yaml)_${feats_type}_${lang}_${token_type}_${tag}"
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
echo "stage 0: Data preparation"
# For training set
local/prepare_data.sh ${tr_dir} ${feats_dir}/data/local/train ${feats_dir}/data/train || exit 1;
# # For dev and test set
for x in Android iOS Mic; do
local/prepare_data.sh ${dev_tst_dir}/${x}/dev ${feats_dir}/data/local/dev_${x,,} ${feats_dir}/data/dev_${x,,} || exit 1;
local/prepare_data.sh ${dev_tst_dir}/${x}/test ${feats_dir}/data/local/test_${x,,} ${feats_dir}/data/test_${x,,} || exit 1;
done
# Normalize text to capital letters
for x in train dev_android dev_ios dev_mic test_android test_ios test_mic; do
mv ${feats_dir}/data/${x}/text ${feats_dir}/data/${x}/text.org
paste -d " " <(cut -f 1 ${feats_dir}/data/${x}/text.org) <(cut -f 2- ${feats_dir}/data/${x}/text.org \
| tr 'A-Z' 'a-z' | tr -d " ") \
> ${feats_dir}/data/${x}/text
tools/text2token.py -n 1 -s 1 ${feats_dir}/data/${x}/text > ${feats_dir}/data/${x}/text.org
mv ${feats_dir}/data/${x}/text.org ${feats_dir}/data/${x}/text
done
fi
feat_train_dir=${feats_dir}/${dumpdir}/${train_set}; mkdir -p ${feat_train_dir}
feat_dev_dir=${feats_dir}/${dumpdir}/${valid_set}; mkdir -p ${feat_dev_dir}
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
echo "stage 1: Feature Generation"
# compute fbank features
fbankdir=${feats_dir}/fbank
steps/compute_fbank.sh --cmd "$train_cmd" --nj $nj --speed_perturb ${speed_perturb} \
${feats_dir}/data/train ${exp_dir}/exp/make_fbank/train ${fbankdir}/train
tools/fix_data_feat.sh ${fbankdir}/train
for x in android ios mic; do
steps/compute_fbank.sh --cmd "$train_cmd" --nj $nj \
${feats_dir}/data/dev_${x} ${exp_dir}/exp/make_fbank/dev_${x} ${fbankdir}/dev_${x}
tools/fix_data_feat.sh ${fbankdir}/dev_${x}
steps/compute_fbank.sh --cmd "$train_cmd" --nj $nj \
${feats_dir}/data/test_${x} ${exp_dir}/exp/make_fbank/test_${x} ${fbankdir}/test_${x}
tools/fix_data_feat.sh ${fbankdir}/test_${x}
done
# compute global cmvn
steps/compute_cmvn.sh --cmd "$train_cmd" --nj $nj \
${fbankdir}/train ${exp_dir}/exp/make_fbank/train
# apply cmvn
steps/apply_cmvn.sh --cmd "$train_cmd" --nj $nj \
${fbankdir}/${train_set} ${fbankdir}/train/cmvn.json ${exp_dir}/exp/make_fbank/${train_set} ${feat_train_dir}
steps/apply_cmvn.sh --cmd "$train_cmd" --nj $nj \
${fbankdir}/${valid_set} ${fbankdir}/train/cmvn.json ${exp_dir}/exp/make_fbank/${valid_set} ${feat_dev_dir}
for x in android ios mic; do
steps/apply_cmvn.sh --cmd "$train_cmd" --nj $nj \
${fbankdir}/test_${x} ${fbankdir}/train/cmvn.json ${exp_dir}/exp/make_fbank/test_${x} ${feats_dir}/${dumpdir}/test_${x}
done
cp ${fbankdir}/${train_set}/text ${fbankdir}/${train_set}/speech_shape ${fbankdir}/${train_set}/text_shape ${feat_train_dir}
tools/fix_data_feat.sh ${feat_train_dir}
cp ${fbankdir}/${valid_set}/text ${fbankdir}/${valid_set}/speech_shape ${fbankdir}/${valid_set}/text_shape ${feat_dev_dir}
tools/fix_data_feat.sh ${feat_dev_dir}
for x in android ios mic; do
cp ${fbankdir}/test_${x}/text ${fbankdir}/test_${x}/speech_shape ${fbankdir}/test_${x}/text_shape ${feats_dir}/${dumpdir}/test_${x}
tools/fix_data_feat.sh ${feats_dir}/${dumpdir}/test_${x}
done
fi
token_list=${feats_dir}/data/${lang}_token_list/char/tokens.txt
echo "dictionary: ${token_list}"
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
echo "stage 2: Dictionary Preparation"
mkdir -p ${feats_dir}/data/${lang}_token_list/char/
echo "make a dictionary"
echo "<blank>" > ${token_list}
echo "<s>" >> ${token_list}
echo "</s>" >> ${token_list}
tools/text2token.py -s 1 -n 1 --space "" ${feats_dir}/data/${train_set}/text | cut -f 2- -d" " | tr " " "\n" \
| sort | uniq | grep -a -v -e '^\s*$' | awk '{print $0}' >> ${token_list}
num_token=$(cat ${token_list} | wc -l)
echo "<unk>" >> ${token_list}
vocab_size=$(cat ${token_list} | wc -l)
awk -v v=,${vocab_size} '{print $0v}' ${feat_train_dir}/text_shape > ${feat_train_dir}/text_shape.char
awk -v v=,${vocab_size} '{print $0v}' ${feat_dev_dir}/text_shape > ${feat_dev_dir}/text_shape.char
mkdir -p ${feats_dir}/asr_stats_fbank_zh_char/${train_set}
mkdir -p ${feats_dir}/asr_stats_fbank_zh_char/${valid_set}
cp ${feat_train_dir}/speech_shape ${feat_train_dir}/text_shape ${feat_train_dir}/text_shape.char ${feats_dir}/asr_stats_fbank_zh_char/${train_set}
cp ${feat_dev_dir}/speech_shape ${feat_dev_dir}/text_shape ${feat_dev_dir}/text_shape.char ${feats_dir}/asr_stats_fbank_zh_char/${valid_set}
fi
# Training Stage
world_size=$gpu_num # run on one machine
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
echo "stage 3: Training"
mkdir -p ${exp_dir}/exp/${model_dir}
mkdir -p ${exp_dir}/exp/${model_dir}/log
INIT_FILE=${exp_dir}/exp/${model_dir}/ddp_init
if [ -f $INIT_FILE ];then
rm -f $INIT_FILE
fi
init_method=file://$(readlink -f $INIT_FILE)
echo "$0: init method is $init_method"
for ((i = 0; i < $gpu_num; ++i)); do
{
rank=$i
local_rank=$i
gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1])
data2vec_train.py \
--gpu_id $gpu_id \
--use_preprocessor true \
--dataset_type $dataset_type \
--train_data_file $feats_dir/$dumpdir/${train_set}/data.list \
--valid_data_file $feats_dir/$dumpdir/${valid_set}/data.list \
--resume true \
--output_dir ${exp_dir}/exp/${model_dir} \
--config $asr_config \
--input_size $feats_dim \
--ngpu $gpu_num \
--num_worker_count $count \
--multiprocessing_distributed true \
--dist_init_method $init_method \
--dist_world_size $world_size \
--dist_rank $rank \
--local_rank $local_rank 1> ${exp_dir}/exp/${model_dir}/log/train.log.$i 2>&1
} &
done
wait
fi

View File

@ -0,0 +1 @@
../../aishell/transformer/utils