mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
add data2vec pretrain
This commit is contained in:
parent
42c0a57912
commit
933d5afc02
@ -0,0 +1,65 @@
|
||||
# network architecture
|
||||
# encoder related
|
||||
encoder: data2vec_encoder
|
||||
encoder_conf:
|
||||
extractor_mode: layer_norm
|
||||
encoder_layerdrop: 0.05
|
||||
dropout_input: 0.0
|
||||
dropout_features: 0.0
|
||||
feature_grad_mult: 1.0
|
||||
encoder_embed_dim: 768
|
||||
|
||||
mask_prob: 0.65
|
||||
mask_length: 10
|
||||
|
||||
loss_beta: 0
|
||||
loss_scale: null
|
||||
|
||||
instance_norm_target_layer: true
|
||||
average_top_k_layers: 8
|
||||
|
||||
pos_conv_depth: 5
|
||||
conv_pos: 95
|
||||
|
||||
ema_decay: 0.999
|
||||
ema_end_decay: 0.9999
|
||||
ema_anneal_end_step: 30000
|
||||
ema_transformer_only: true
|
||||
ema_layers_only: true
|
||||
|
||||
require_same_masks: true
|
||||
mask_dropout: 0
|
||||
|
||||
log_interval: 50
|
||||
normalize: None
|
||||
|
||||
# minibatch related
|
||||
batch_type: length
|
||||
batch_bins: 64000
|
||||
num_workers: 16
|
||||
|
||||
# optimization related
|
||||
accum_grad: 1
|
||||
grad_clip: 5
|
||||
patience: none
|
||||
max_epoch: 600
|
||||
val_scheduler_criterion:
|
||||
- valid
|
||||
- acc
|
||||
best_model_criterion:
|
||||
- - valid
|
||||
- loss
|
||||
- min
|
||||
keep_nbest_models: 50
|
||||
unused_parameters: true
|
||||
|
||||
optim: fairseq_adam
|
||||
optim_conf:
|
||||
lr: 0.0005
|
||||
adam_betas: [0.9,0.98]
|
||||
adam_eps: 1.0e-06
|
||||
weight_decay: 0.01
|
||||
|
||||
scheduler: tri_stage
|
||||
scheduler_conf:
|
||||
phase_ratio: [0.03,0.9,0.07]
|
||||
53
egs/aishell2/data2vec_pretrain/local/prepare_data.sh
Executable file
53
egs/aishell2/data2vec_pretrain/local/prepare_data.sh
Executable file
@ -0,0 +1,53 @@
|
||||
#!/usr/bin/env bash
|
||||
# Copyright 2018 AIShell-Foundation(Authors:Jiayu DU, Xingyu NA, Bengu WU, Hao ZHENG)
|
||||
# 2018 Beijing Shell Shell Tech. Co. Ltd. (Author: Hui BU)
|
||||
# Apache 2.0
|
||||
|
||||
# transform raw AISHELL-2 data to kaldi format
|
||||
|
||||
. ./path.sh || exit 1;
|
||||
|
||||
tmp=
|
||||
dir=
|
||||
|
||||
if [ $# != 3 ]; then
|
||||
echo "Usage: $0 <corpus-data-dir> <tmp-dir> <output-dir>"
|
||||
echo " $0 /export/AISHELL-2/iOS/train data/local/train data/train"
|
||||
exit 1;
|
||||
fi
|
||||
|
||||
corpus=$1
|
||||
tmp=$2
|
||||
dir=$3
|
||||
|
||||
echo "prepare_data.sh: Preparing data in $corpus"
|
||||
|
||||
mkdir -p $tmp
|
||||
mkdir -p $dir
|
||||
|
||||
# corpus check
|
||||
if [ ! -d $corpus ] || [ ! -f $corpus/wav.scp ] || [ ! -f $corpus/trans.txt ]; then
|
||||
echo "Error: $0 requires wav.scp and trans.txt under $corpus directory."
|
||||
exit 1;
|
||||
fi
|
||||
|
||||
# validate utt-key list, IC0803W0380 is a bad utterance
|
||||
awk '{print $1}' $corpus/wav.scp | grep -v 'IC0803W0380' > $tmp/wav_utt.list
|
||||
awk '{print $1}' $corpus/trans.txt > $tmp/trans_utt.list
|
||||
tools/filter_scp.pl -f 1 $tmp/wav_utt.list $tmp/trans_utt.list > $tmp/utt.list
|
||||
|
||||
# wav.scp
|
||||
awk -F'\t' -v path_prefix=$corpus '{printf("%s\t%s/%s\n",$1,path_prefix,$2)}' $corpus/wav.scp > $tmp/tmp_wav.scp
|
||||
tools/filter_scp.pl -f 1 $tmp/utt.list $tmp/tmp_wav.scp | sort -k 1 | uniq > $tmp/wav.scp
|
||||
|
||||
# text
|
||||
tools/filter_scp.pl -f 1 $tmp/utt.list $corpus/trans.txt | sort -k 1 | uniq > $tmp/text
|
||||
|
||||
# copy prepared resources from tmp_dir to target dir
|
||||
mkdir -p $dir
|
||||
for f in wav.scp text; do
|
||||
cp $tmp/$f $dir/$f || exit 1;
|
||||
done
|
||||
|
||||
echo "local/prepare_data.sh succeeded"
|
||||
exit 0;
|
||||
6
egs/aishell2/data2vec_pretrain/path.sh
Executable file
6
egs/aishell2/data2vec_pretrain/path.sh
Executable file
@ -0,0 +1,6 @@
|
||||
export FUNASR_DIR=$PWD/../../..
|
||||
|
||||
# NOTE(kan-bayashi): Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
|
||||
export PYTHONIOENCODING=UTF-8
|
||||
export PYTHONPATH=../../../:$PYTHONPATH
|
||||
export PATH=$FUNASR_DIR/funasr/bin:$PATH
|
||||
172
egs/aishell2/data2vec_pretrain/run.sh
Executable file
172
egs/aishell2/data2vec_pretrain/run.sh
Executable file
@ -0,0 +1,172 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
. ./path.sh || exit 1;
|
||||
|
||||
# machines configuration
|
||||
CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
|
||||
gpu_num=8
|
||||
count=1
|
||||
|
||||
train_cmd=tools/run.pl
|
||||
|
||||
# general configuration
|
||||
feats_dir="../DATA" #feature output dictionary
|
||||
exp_dir="."
|
||||
lang=zh
|
||||
dumpdir=dump/fbank
|
||||
feats_type=fbank
|
||||
token_type=char
|
||||
dataset_type=large
|
||||
stage=0
|
||||
stop_stage=4
|
||||
|
||||
# feature configuration
|
||||
feats_dim=80
|
||||
sample_frequency=16000
|
||||
nj=100
|
||||
speed_perturb="0.9,1.0,1.1"
|
||||
|
||||
# data
|
||||
tr_dir=
|
||||
dev_tst_dir=
|
||||
|
||||
# exp tag
|
||||
tag="exp1"
|
||||
|
||||
. utils/parse_options.sh || exit 1;
|
||||
|
||||
# Set bash to 'debug' mode, it will exit on :
|
||||
# -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands',
|
||||
set -e
|
||||
set -u
|
||||
set -o pipefail
|
||||
|
||||
train_set=train
|
||||
valid_set=dev_ios
|
||||
|
||||
asr_config=conf/train_asr_paraformer_conformer_20e_1280_320_6d_1280_320.yaml
|
||||
model_dir="baseline_$(basename "${asr_config}" .yaml)_${feats_type}_${lang}_${token_type}_${tag}"
|
||||
|
||||
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
||||
echo "stage 0: Data preparation"
|
||||
# For training set
|
||||
local/prepare_data.sh ${tr_dir} ${feats_dir}/data/local/train ${feats_dir}/data/train || exit 1;
|
||||
# # For dev and test set
|
||||
for x in Android iOS Mic; do
|
||||
local/prepare_data.sh ${dev_tst_dir}/${x}/dev ${feats_dir}/data/local/dev_${x,,} ${feats_dir}/data/dev_${x,,} || exit 1;
|
||||
local/prepare_data.sh ${dev_tst_dir}/${x}/test ${feats_dir}/data/local/test_${x,,} ${feats_dir}/data/test_${x,,} || exit 1;
|
||||
done
|
||||
# Normalize text to capital letters
|
||||
for x in train dev_android dev_ios dev_mic test_android test_ios test_mic; do
|
||||
mv ${feats_dir}/data/${x}/text ${feats_dir}/data/${x}/text.org
|
||||
paste -d " " <(cut -f 1 ${feats_dir}/data/${x}/text.org) <(cut -f 2- ${feats_dir}/data/${x}/text.org \
|
||||
| tr 'A-Z' 'a-z' | tr -d " ") \
|
||||
> ${feats_dir}/data/${x}/text
|
||||
tools/text2token.py -n 1 -s 1 ${feats_dir}/data/${x}/text > ${feats_dir}/data/${x}/text.org
|
||||
mv ${feats_dir}/data/${x}/text.org ${feats_dir}/data/${x}/text
|
||||
done
|
||||
fi
|
||||
|
||||
feat_train_dir=${feats_dir}/${dumpdir}/${train_set}; mkdir -p ${feat_train_dir}
|
||||
feat_dev_dir=${feats_dir}/${dumpdir}/${valid_set}; mkdir -p ${feat_dev_dir}
|
||||
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
||||
echo "stage 1: Feature Generation"
|
||||
# compute fbank features
|
||||
fbankdir=${feats_dir}/fbank
|
||||
steps/compute_fbank.sh --cmd "$train_cmd" --nj $nj --speed_perturb ${speed_perturb} \
|
||||
${feats_dir}/data/train ${exp_dir}/exp/make_fbank/train ${fbankdir}/train
|
||||
tools/fix_data_feat.sh ${fbankdir}/train
|
||||
for x in android ios mic; do
|
||||
steps/compute_fbank.sh --cmd "$train_cmd" --nj $nj \
|
||||
${feats_dir}/data/dev_${x} ${exp_dir}/exp/make_fbank/dev_${x} ${fbankdir}/dev_${x}
|
||||
tools/fix_data_feat.sh ${fbankdir}/dev_${x}
|
||||
steps/compute_fbank.sh --cmd "$train_cmd" --nj $nj \
|
||||
${feats_dir}/data/test_${x} ${exp_dir}/exp/make_fbank/test_${x} ${fbankdir}/test_${x}
|
||||
tools/fix_data_feat.sh ${fbankdir}/test_${x}
|
||||
done
|
||||
|
||||
# compute global cmvn
|
||||
steps/compute_cmvn.sh --cmd "$train_cmd" --nj $nj \
|
||||
${fbankdir}/train ${exp_dir}/exp/make_fbank/train
|
||||
|
||||
# apply cmvn
|
||||
steps/apply_cmvn.sh --cmd "$train_cmd" --nj $nj \
|
||||
${fbankdir}/${train_set} ${fbankdir}/train/cmvn.json ${exp_dir}/exp/make_fbank/${train_set} ${feat_train_dir}
|
||||
steps/apply_cmvn.sh --cmd "$train_cmd" --nj $nj \
|
||||
${fbankdir}/${valid_set} ${fbankdir}/train/cmvn.json ${exp_dir}/exp/make_fbank/${valid_set} ${feat_dev_dir}
|
||||
for x in android ios mic; do
|
||||
steps/apply_cmvn.sh --cmd "$train_cmd" --nj $nj \
|
||||
${fbankdir}/test_${x} ${fbankdir}/train/cmvn.json ${exp_dir}/exp/make_fbank/test_${x} ${feats_dir}/${dumpdir}/test_${x}
|
||||
done
|
||||
|
||||
cp ${fbankdir}/${train_set}/text ${fbankdir}/${train_set}/speech_shape ${fbankdir}/${train_set}/text_shape ${feat_train_dir}
|
||||
tools/fix_data_feat.sh ${feat_train_dir}
|
||||
cp ${fbankdir}/${valid_set}/text ${fbankdir}/${valid_set}/speech_shape ${fbankdir}/${valid_set}/text_shape ${feat_dev_dir}
|
||||
tools/fix_data_feat.sh ${feat_dev_dir}
|
||||
for x in android ios mic; do
|
||||
cp ${fbankdir}/test_${x}/text ${fbankdir}/test_${x}/speech_shape ${fbankdir}/test_${x}/text_shape ${feats_dir}/${dumpdir}/test_${x}
|
||||
tools/fix_data_feat.sh ${feats_dir}/${dumpdir}/test_${x}
|
||||
done
|
||||
fi
|
||||
|
||||
token_list=${feats_dir}/data/${lang}_token_list/char/tokens.txt
|
||||
echo "dictionary: ${token_list}"
|
||||
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
||||
echo "stage 2: Dictionary Preparation"
|
||||
mkdir -p ${feats_dir}/data/${lang}_token_list/char/
|
||||
|
||||
echo "make a dictionary"
|
||||
echo "<blank>" > ${token_list}
|
||||
echo "<s>" >> ${token_list}
|
||||
echo "</s>" >> ${token_list}
|
||||
tools/text2token.py -s 1 -n 1 --space "" ${feats_dir}/data/${train_set}/text | cut -f 2- -d" " | tr " " "\n" \
|
||||
| sort | uniq | grep -a -v -e '^\s*$' | awk '{print $0}' >> ${token_list}
|
||||
num_token=$(cat ${token_list} | wc -l)
|
||||
echo "<unk>" >> ${token_list}
|
||||
vocab_size=$(cat ${token_list} | wc -l)
|
||||
awk -v v=,${vocab_size} '{print $0v}' ${feat_train_dir}/text_shape > ${feat_train_dir}/text_shape.char
|
||||
awk -v v=,${vocab_size} '{print $0v}' ${feat_dev_dir}/text_shape > ${feat_dev_dir}/text_shape.char
|
||||
mkdir -p ${feats_dir}/asr_stats_fbank_zh_char/${train_set}
|
||||
mkdir -p ${feats_dir}/asr_stats_fbank_zh_char/${valid_set}
|
||||
cp ${feat_train_dir}/speech_shape ${feat_train_dir}/text_shape ${feat_train_dir}/text_shape.char ${feats_dir}/asr_stats_fbank_zh_char/${train_set}
|
||||
cp ${feat_dev_dir}/speech_shape ${feat_dev_dir}/text_shape ${feat_dev_dir}/text_shape.char ${feats_dir}/asr_stats_fbank_zh_char/${valid_set}
|
||||
fi
|
||||
|
||||
# Training Stage
|
||||
world_size=$gpu_num # run on one machine
|
||||
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
||||
echo "stage 3: Training"
|
||||
mkdir -p ${exp_dir}/exp/${model_dir}
|
||||
mkdir -p ${exp_dir}/exp/${model_dir}/log
|
||||
INIT_FILE=${exp_dir}/exp/${model_dir}/ddp_init
|
||||
if [ -f $INIT_FILE ];then
|
||||
rm -f $INIT_FILE
|
||||
fi
|
||||
init_method=file://$(readlink -f $INIT_FILE)
|
||||
echo "$0: init method is $init_method"
|
||||
for ((i = 0; i < $gpu_num; ++i)); do
|
||||
{
|
||||
rank=$i
|
||||
local_rank=$i
|
||||
gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1])
|
||||
data2vec_train.py \
|
||||
--gpu_id $gpu_id \
|
||||
--use_preprocessor true \
|
||||
--dataset_type $dataset_type \
|
||||
--train_data_file $feats_dir/$dumpdir/${train_set}/data.list \
|
||||
--valid_data_file $feats_dir/$dumpdir/${valid_set}/data.list \
|
||||
--resume true \
|
||||
--output_dir ${exp_dir}/exp/${model_dir} \
|
||||
--config $asr_config \
|
||||
--input_size $feats_dim \
|
||||
--ngpu $gpu_num \
|
||||
--num_worker_count $count \
|
||||
--multiprocessing_distributed true \
|
||||
--dist_init_method $init_method \
|
||||
--dist_world_size $world_size \
|
||||
--dist_rank $rank \
|
||||
--local_rank $local_rank 1> ${exp_dir}/exp/${model_dir}/log/train.log.$i 2>&1
|
||||
} &
|
||||
done
|
||||
wait
|
||||
fi
|
||||
1
egs/aishell2/data2vec_pretrain/utils
Symbolic link
1
egs/aishell2/data2vec_pretrain/utils
Symbolic link
@ -0,0 +1 @@
|
||||
../../aishell/transformer/utils
|
||||
Loading…
Reference in New Issue
Block a user